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Abstract. The aim of this paper is to survey some work done recently or still in progress

that applies generalized matrices (also called abstract logics by some) to the study of

sentential logics. My main concern will be to emphasize the links between this line of

research and other existing frameworks in Algebraic Logic, either well-established ones

(such as the old theory of logical matrices and the younger theories of protoalgebraic logics,

algebraizable logics and the associated hierarchy) or really new ones (such as the theory of

algebraizability of Gentzen systems or the model theory of equality-free logic). I would like

to convey the idea that the interaction between these neighbouring fields may be specially

fruitful, as it seems to be one of the leading forces in the shaping of this emerging field

called Abstract Algebraic Logic.

Abstract Algebraic Logic (AAL) may be described as today’s view of
Algebraic Logic. The term began to be used around the mid-nineties, pro-
moted by Wim Blok and Don Pigozzi (the expression “universal algebraic
logic” was also used for a short time). In 1997 a Workshop on Abstract Alge-
braic Logic [35] was organized as the closing event of a Semester in Algebraic
Logic and Model Theory of the Centre de Recerca Matemàtica of the Institut
d’Estudis Catalans, located in Bellaterra, near Barcelona. Selected from its
more than thirty talks, twelve papers have been published in two special
issues of Studia Logica (number 1 of volume 65, 2000, and numbers 1/2 of
volume 74, 2003). One of them [38] is a long survey of the field. In the
meantime, the encyclopedic monograph [22] by Janusz Czelakowski has
appeared. Also the long paper [26] by Czelakowski and Pigozzi contains
a readable, substantial introduction to the field; finally, a forthcoming long
paper surveying an important part of the subject is Blok and Pigozzi’s
[6]. With this material now available, I feel safe in limiting my aim to the
topic indicated by the title and in not giving too many details; interested
readers now have several sources where to find whatever they want to know
about the undefined notions I will deal with and about some theorems I am
going to mention.

Let me begin with some general reflections.
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1. On Abstract Algebraic Logic

In my view, most of the work done in this area can be organized around two
main questions:

Q1. What do we mean when we say that a logic L can be alge-
braized and that the class K is its algebraic counterpart ?

Q2. What can we learn about the logic L or about the class K

when they are related as in question (Q1) ?

Question (Q1) concerns the process of algebraization while question (Q2)
concerns the consequences of this process. Works on question (Q1) are easily
recognized, as they address the problem rather explicitly. Also, many works
on question (Q2) have an explicit format; for instance, the Budapest group
(Andréka, Németi, Sain, etc.) has coined the expression bridge theorems
for those that take the typical form

L has property P ⇐⇒ K has property P’ , (1)

where P is a typically logical property, what one usually calls a metalogical
property (e.g., interpolation), and P’ is a typically algebraic property (e.g.,
amalgamation). There are also papers whose contents is (almost) entirely
algebraic, but which can be considered as dealing with question (Q2) if we
put them in the proper context.

One of the most interesting facts one recognizes in the historical devel-
opment of Algebraic Logic, specially in the last ten or twenty years, is that
answers to these and related questions have been organized and have to be
organized at several levels.

Through the works of Blok, Pigozzi, Czelakowski and Herrmann

a hierarchy of logics, also called the Leibniz hierarchy, has emerged. This
hierarchy is organized by taking into account the strength of the relationship
Logic↔Algebras, or more generally Logic↔Models, that is, by their degree
of algebraizability; the term algebraizable in the technical sense is applied
only to those more restricted classes of logics where these links are very
strong, and still with several qualifications: weak, finite, strong, regular.
The most common answer to question (Q1) is that each algebra of K has a
distinguished element 1 such that the following completeness theorem holds.

Γ ⊢L ϕ ⇐⇒ {γ ≈ 1 : γ ∈ Γ} |=K ϕ ≈ 1 (2)

This is a particular case of the technical notion of the class K being an al-
gebraic semantics for L [3], where a finite set of equations in one variable
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replaces the single equation x ≈ 1 exemplified here. Having an algebraic
semantics has been shown to be a rather weak kind of algebraizability, and
actually not playing a particular rôle in the hierarchy unless it is comple-
mented by stronger conditions; roughly speaking, representability of |=K

inside L as a kind of converse of (2); the following is the most common
particular case:

{δi ≈ εi : i ∈ I} |=K δ ≈ ε ⇐⇒ {δi ↔ εi : i ∈ I} ⊢L δ ↔ ε (3)

(in general, a finite set of formulas in two variables replaces the formula
x↔ y used here). Only if the two representations are inverse to one another
in a certain precise, natural sense, we get algebraizability, a situation where
interesting and strong bridge theorems can be obtained. All this is explained
in [38].

Analysing the hierarchy one recognizes that the different levels of alge-
braizability are reflected in different levels of complexity of the models: In
the best-behaved cases (the different modalities of algebraizability) we can
work with just algebras A, without further structure. Since algebras carry
in themselves their equations, we can work with the equational consequence
|=K relativized to a class K of algebras; and it is this consequence that
makes the connections and helps in finding the bridge theorems. But in
wider classes of logics (equivalential, protoalgebraic) we have to work with
matrices, i.e., structures 〈A, F 〉 where A is an algebra and F ⊆ A. Then
the bridge theorems will concern classes of matrices rather than classes of
algebras. There is now a reasonable evidence that the widest class of logics
for which this scheme seems to work smoothly enough in order to obtain
significant bridge theorems concerning matrices is the class of protoalgebraic
logics. By way of illustration, in [4, 21] it is shown that for protoalgebraic
logics the LDT (Local Deduction Theorem) is equivalent to the FEP (fil-
ter extension property) for the class of reduced matrix models of the logic;
if the logic is finitely algebraizable then the FEP reduces to the more al-
gebraic RCEP (relative congruence extension property) for the equivalent
quasivariety K.

When trying to enlarge the domain of applicability of the methods of
Abstract Algebraic Logic outside the class of protoalgebraic logics, one can
put more structure in the model, and consider generalized matrices, that is,
systems 〈A, C〉 where A is an algebra and C ⊆ P(A) is a family of subsets
of A. This will be the proper subject of the paper.

So far I have recalled two hierarchies: One among logics, and one among
their models. I would like to consider another process of enlarging the scope
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of Algebraic Logic that has also created a kind of hierarchy: the notion of
sentential logic itself can also be considered at several levels.

The first level, which I call the old style, is to define a logic as a set
of formulas (satisfying some conditions, of course; for instance invariance
under substitutions). At this level, one identifies a logic L with a set of
theorems.

The second level, which I prefer to call the Tarski style (and resist to
call “Polish style”), is to define a logic L as a consequence relation be-
tween sets of formulas and formulas, denoted by ⊢L, also satisfying some
minimal requirements, for instance invariance under substitutions, or (op-
tionally) finitarity. The consequences of the empty set of assumptions are
called theorems, and constitute a “logic” in the old style. In this paper the
word “logic” will refer to a logic in the second level sense, unless otherwise
specified. Considering logics at this level has become absolutely necessary
in some situations; for instance, if we want to study the algebraizability
and several bridge properties of modal logics: It is well-known that in this
domain there are different consequence relations with the same set of the-
orems, each showing a different behaviour both from the metalogical and
from the algebraic points of view; this is for instance the case of the two
consequences one can associate with each class of Kripke-style or relational
frames, a “global” or strong consequence and a “local” or weak one.

In the finitary case a logic at this level is determined by a set of rules
of the form ϕ0 , . . . , ϕn−1 ⊢ ϕn through the well-known syntactical notion of
proof. In particular such a proof system generates all the theorems of the
logic. Indeed, in the old style days this was the only purpose of a proof
system, and the analysis of the rules that preserve the set of “theorems” led
in a further step to the creation of the second level conception. Tarski in [47]
mentions “the axiomatic method” along with “the matrix method” as the
two forms of definition of a logic in his sense, and in the first case he assumes
substitution is one of the rules of the proof system. In [57] his investigation
takes the most general form and he does not assume substitution-invariance;
this condition was explicitly incorporated by  Loś and Suszko [46] in 1958.
Rasiowa does not include invariance under substitutions in her general
definition of a logic in the second level sense, but she explicitly assumes such
a logic as given by an axiomatic system where axioms and rules are closed
under substitution instances; [50, §VIII.5].

There is a third level that has been a natural step when trying to answer
question (Q1) for non-protoalgebraic logics. I will call it the Gentzen style.
Its main object of study are the so-called Gentzen style rules, that is, rules
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of the form
{Γi ⊢ ϕi : i < n}

Γn ⊢ ϕn

(4)

where the Γi can be either finite sets or finite sequences of formulas. This
style appeared by purely proof-theoretic motivations: the investigation of
the “rules” that preserved the set of sequents of the logic in the second level
sense, that is, the pairs 〈Γ,ϕ〉 such that Γ ⊢L ϕ. By using these rules, the
old notion of proof, now acting on sequents (commonly written as Γ ⊢ ϕ)
as basic linguistic objects, defines the so-called Gentzen systems, that is,
consequence relations between sets of sequents and sequents, again satis-
fying some minimal requirements such as invariance under substitutions;
additionally, they can satisfy some of the so-called structural rules (idempo-
tency, exchange, weakening, cut, etc.). These are the “logics” in the third
level sense.

The relations between the second and the third levels closely parallel
those between the first and the second. Moreover, if all structural rules are
(at least) admissible, then the “theorems” of a Gentzen system G, i.e., its
derivable sequents, define a logic in the sense of the second level by means of

ϕ0 , . . . , ϕn−1 ⊢L ϕn ⇐⇒ the sequent ϕ0 , . . . , ϕn−1 ⊢ ϕn

is derivable in G

(5)

or a similar stipulation; and two different Gentzen systems can have the
same derivable sequents but different metalogical properties (for instance,
one can be cut-free while the other is not).

In recent years the increased interest on the so-called substructural log-
ics has put Gentzen calculi in a more central position. Again, we can take
a broader view and consider them as just one of the ways of presenting a
Gentzen system, the abstract notion whose semantical and algebraic sides
can also be studied. This trend began in [40]; among the most recent contri-
butions let me mention [1, 41, 42]. Its study, very interesting by itself, has
been also useful for the algebraic study of sentential logics (in the second
level sense) that do not successfully fit into the hierarchy of protoalgebraic
logics. Moreover, the abstract theory can be generalized and applied not only
to sequents of the form Γ ⊢ ϕ but to arbitrary kinds of sequents Γ ⊢ ∆,
and even to more complicated syntactical objects that have been recently
considered, such as m-sided sequents and hypersequents. The study of the
relationship between the abstract algebraic study of such systems and their
proof-theoretic properties has just begun, as shows [41], where the connec-
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tion between protoalgebraicity (applied to m-sided Gentzen systems) and
the presence of the cut rule is studied.

Here I will consider only the work done with the restricted kind of se-
quents first considered, and assume all logics are finitary. In this case, gener-
alized matrices provide one of the most natural notions of model of a logic in
the third level sense, and at the same time they are also models of logics in
the second level sense in an extremely natural way. Actually, I consider that
one of the most interesting facets of the research with generalized matrices
is the interaction between these two rôles they can play. I will try to show
some results that emphasize this interaction.

2. Prehistory

To be precise, let F m denote the formula algebra of a certain arbitrary,
fixed, algebraic type. A sentential logic L is given by a finitary and
substitution-invariant consequence relation ⊢L between sets of formulas and
formulas (i.e., ⊢L ⊆ P (Fm) × Fm) which will be written in infix notation
as usual. The set of all theories of the logic is denoted by ThL, and the
associated closure operator by CnL; that is, for each set Γ of formulas,
CnL(Γ ) = {ϕ ∈ Fm : Γ ⊢L ϕ} is the theory generated by Γ .

The traditional algebraic model theory of sentential logics is matrix-
based. A matrix is a pair 〈A, F 〉 where A is an algebra of the appropriate
type, and F ⊆ A, and it is a model of L when F is an L-filter , that
is, when for any ϕ0 , . . . , ϕn ∈ Fm, if ϕ0 , . . . , ϕn−1 ⊢L ϕn and h(ϕi) ∈ F
for all i < n then h(ϕn) ∈ F , for any interpretation h in A

(

i.e., for any
h ∈ Hom(F m,A)

)

. The set of all L-filters on A is denoted by FiLA.
The most general notion of generalized matrix is a pair A = 〈A, C〉

where A is an algebra (of the required type) and C ⊆ P(A) is an arbitrary
collection of subsets of A. In this sense, they were conceived around 1969 by
Wójcicki (in [59, 60]; see also [61, § IV.4]) as generalizations of the idea of
matrix, more precisely, as an alternative presentation of the closely related
notion of a bundle of matrices, which refers to the family

{

〈A, F 〉 : F ∈
C
}

. Most model-theoretic or universal-algebraic ideas and constructions
on matrices can be reproduced or adjusted for generalized matrices. Also,
set-theoretically, as a set with a family of subsets, they can be considered
under topological intuitions. An ordinary matrix can be identified with the
generalized matrix of the form

〈

A, {F ,A}
〉

; thus the new theory can contain
the classical one to a certain extent. Generalized matrices have reappeared
recently in [28] under the name of atlases, where its use is extended to deal
with “multiple-conclusion logics” or “Scott consequence relations”.
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Generalized matrices have a well-known dual presentation as pairs 〈A,C〉
where C : P(A) → P(A) is a closure operator on the power set of A. This
was Smiley’s presentation in [56] and Magari’s in [48] (he used the term
calcoli generali). The first in-depth study of generalized matrices under
this presentation was Brown’s 1969 dissertation [13], where Suszko was
the principal advisor, and then their joint papers with Bloom [11, 10, 14];
the last two were published together in 1973 with an interesting preface by
Suszko. In these they coined the term abstract logics. While [11, 14] present
the general theory with short examples, [10] studies the abstract logics con-
sisting of a Boolean algebra and the closure operator of filter generation and
shows these are characterized, roughly speaking, by the same metalogical
properties that determine classical logic, viz. finitarity, the Deduction Theo-
rem1, and having the classical tautologies as theorems (that these properties
characterize classical sentential logic is due to Tarski). Similar characteri-
zations were obtained in [8, 9] for several natural fragments of intuitionistic
logic containing conjunction. This approach was extensively followed by the
Barcelona group, see [33] and the many references therein. However, except
for [56], all these works prior to 1990 do not try to provide a precise expla-
nation of the relationship between the abstract logics they were considering
and the sentential logics they had in mind. They explored the analogies be-
tween a logic L presented as the abstract logic 〈F m,CnL〉 and the abstract
logics of the form 〈A,FiA〉 where A is an algebra of the class naturally asso-
ciated with the logic (for instance, Boolean algebras or Heyting algebras for
classical or intuitionistic logic, respectively) and FiA is the corresponding
closure operator of filter generation; but again the analogy did not rest on a
technical notion of an abstract logic being a model of a sentential logic such
as that of Wójcicki’s.

Smiley’s 1962 discussion [56, pp. 433–435] of the insufficiency of ordinary
matrices to model some logics contains the first proposal to use algebras with
a closure operator in order to model the deducibility relation rather than
theoremhood. Unfortunately, Smiley’s proposal was only followed briefly
by Harrop in [44, 45] but did not attract any attention from the algebraic
logic community (even Smiley’s well-known monograph with Shoesmith

[55] uses only ordinary matrices) and Wójcicki did not further develop
the theory of generalized matrices beyond his first completeness results in
[59, 60]. The stream reappears only in 1991 in the paper [40] published
in Studia Logica, in a Special Issue on Algebraic Logic edited by Blok and
Pigozzi; indeed, the personal contact between these editors and the authors

1See the Appendix for formal statements of some properties.



64 Josep Maria Font

of [40] was a key point in the change of perspective.

Note that in order to obtain a one-to-one correspondence between the
two dual presentations one has to restrict attention to the generalized ma-
trices where the family of subsets C is a closure system (it is closed under
intersections of arbitrary subfamilies). Moreover, given the context of this
discussion in the model theory of sentential logics as defined above, I will
also assume that C is inductive (closed under unions of upwards-directed
subfamilies); dually, this means that C is finitary . These assumptions will
hold throughout the paper.

The duality is effected by the following constructions: Given an induc-
tive closure system C on a set A one obtains a finitary closure operator by
defining, for each X ⊆ A, C(X) =

⋂

{T ∈ C : X ⊆ T}. Conversely, for each
such C, the family C = {T ⊆ A : C(T ) = T} is an inductive closure sys-
tem. Bull’s 1976 paper [15] exploits this duality as the basis of an abstract
analysis of classical logic from the perspective of algebra and topology.

This duality is very convenient. In the development of the general the-
ory, each notion and each situation can be expressed or understood in the
presentation that best suits it. We are going to see this in the next sections.

3. Generalized matrices as models of sentential logics

As an easy example of the duality of presentations of generalized matrices
mentioned in the previous section, consider the notion of model of a logic:
Wójcicki’s original definition, which uses the closure system, is certainly
compact:

Definition 1. A generalized matrix 〈A, C〉 is a model of a sentential logic
L when C ⊆ FiLA; that is, when the closure system is just a collection of
L-filters in the traditional sense.

However concise this is, an equivalent definition using the closure oper-
ator gives a different and more intuitive view2:

Proposition 2. A generalized matrix 〈A,C〉 is a model of L if and only if
it is a model of all Hilbert-style rules of L, in the sense that

if ϕ0 , . . . , ϕn−1 ⊢L ϕn then h(ϕn) ∈ C
(

h(ϕ0), . . . , h(ϕn−1)
)

(6)

for any interpretation h in A and for any ϕ0 , . . . , ϕn ∈ Fm.

2I write C(a, . . . , z) for C
`

{a, . . . , z}
´

and C(X, a) for C
`

X ∪ {a}
´

when a, . . . , z ∈ A

and X ⊆ A, and use other similar customary abbreviations.
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Thus, behind this notion of model as a collection of L-filters, which
might look as an innocent generalization, there is a very natural notion of
an interpretation satisfying a sequent: We can say that h satisfies a sequent
ϕ0 , . . . , ϕn−1 ⊢ ϕn when the right-hand half of (6) holds. As the reader is
already guessing, this will be used later on to define the notion of a model
of a Gentzen-style rule or of a Gentzen system.

It may be convenient to consider another example. A mapping h is a
strict homomorphism between two generalized matrices A = 〈A, C〉 and
B = 〈B ,D〉 when it is an algebraic homomorphism h : A → B such that
C = {h−1[G] : G ∈ D}. The dual expression, however, is logically speaking
more significant: A homomorphism h : A → B is strict between A and B

if and only if for every X ∪ {a} ⊆ A , a ∈ C(X) ⇐⇒ h(a) ∈ D
(

h[X]
)

. Of
particular interest are the strict surjective homomorphisms, which are called
bilogical morphisms in [10, 33]: among other properties, they make the
closure systems C and D to be isomorphic as complete lattices.

A common way of describing Abstract Algebraic Logic [6, 38] is to say
that this theory starts from an abstraction of “the traditional Lindenbaum-
Tarski process”. As is well-known, this process consists in factoring the
formula algebra by congruences associated with theories of the logic, in or-
der to generate a class of algebras that can deserve the title of the algebraic
counterpart of the logic, i.e., the class of Lindenbaum-Tarski algebras. The
abstraction can be extended to make it a particular case of a process of

reduction that can be applied to an arbitrary generalized matrix. To im-
plement it we first consider the following

Definition 3. The Frege relation Λ(A) of a generalized matrix A is
defined by: 〈a, b〉 ∈ Λ(A) ⇐⇒ C(a) = C(b) , ∀a, b ∈ A. The Tarski con-

gruence of A,
∼
Ω(A), is the largest congruence of A that is below Λ(A).

A generalized matrix A is reduced when
∼
Ω(A) = IdA . The reduction of

A is A∗ =
〈

A/
∼
Ω(A), C/

∼
Ω (A)

〉

, where C/
∼
Ω(A) = {F/

∼
Ω (A) : F ∈ C}.

The Frege relation is an abstract analogue of the interderivability rela-
tion ⊣⊢L of sentential logics, and is always an equivalence relation, but may
not be a congruence. This is why in general it is strictly necessary to intro-
duce the Tarski congruence, which is the analogue for generalized matrices
of the Leibniz congruence of an ordinary matrix (and reduces to it when
the generalized matrix is an ordinary one). In some respects, generalized
matrices and the Tarski operator

∼
Ω behave on models of arbitrary logics as

ordinary matrices and the Leibniz operator Ω behave on (matrix) models of
protoalgebraic logics; for instance, the Tarski operator is always monotonic
with respect to the natural ordering between generalized matrices in their
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closure operator form, while the Leibniz operator is monotonic only on the
matrix models of a protoalgebraic logic.

In the literature one can find (at least) the following three general pro-
cesses for associating a class of algebras with a sentential logic L using this
reduction process:

◮ If we identify L with the generalized matrix 〈F m,ThL〉, where ThL
is the family of its theories, we can consider its Tarski congruence
∼
Ω(L) and the so-called Lindenbaum-Tarski algebra of L, i.e.,
the quotient algebra F m/

∼
Ω(L). This algebra generates the variety

V(L) = V
(

F m/
∼
Ω(L)

)

, considered e.g., in [51, 52], where it is called
the variety associated with L.

◮ In the classical theory of matrices we find the class Alg∗
L of algebraic

reducts of reduced matrix models for L.

◮ And finally there is the class AlgL of algebraic reducts of reduced (gen-
eralized matrices) models of L. They are called L-algebras.

The class Alg∗
L has been traditionally regarded as the algebraic counterpart

of L; however, as I will remark in a moment, there are reasons for considering
that it is AlgL that better does the job in general. But first let me use the
reduction process again to define the notion of full model, a special kind of
model that shows a remarkably nice behaviour.

Definition 4. A generalized matrix A = 〈A, C〉 is a full model of L when
the closure system of its reduction consists of all the L-filters of the quotient
algebra: C/

∼
Ω (A) = FiL

(

A/
∼
Ω(A)

)

. The class of all full models of L is
denoted by FGModL. The set of all full models of L over a fixed algebra
A, which is denoted by FGModLA, is ordered under the pointwise ordering
of the corresponding closure operators (which is dual to the set-inclusion
ordering of the corresponding closure systems).

Among general properties of this notion, let me highlight:

1. Full models are full in the sense that A = 〈A, C〉 is a full model of L

if and only if C = {F ∈ FiLA :
∼
Ω (A) is compatible with F }.

Recall that a congruence θ is compatible with a subset F when aθb
implies a ∈ F ⇐⇒ b ∈ F ; or, equivalently, when θ ⊆ ΩA(F ).

2. Full models are full in the sense that the class FGModL is the smallest
class of models of L closed under the construction of images and inverse
images by strict surjective homomorphisms that contains all models of
the form 〈A,FiLA〉 (the so-called basic full models).
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3. The so-called Isomorphism Theorem:

For any logic L and any algebra A, the Tarski operator
∼
Ω establishes

an order isomorphism between the complete lattices FGModLA and
CoAlgLA = {θ ∈ CoA : A/θ ∈ AlgL}.

What is most remarkable in this theorem is its extreme generality: it holds for
any logic and any algebra (of the relevant similarity type). It can be consid-
ered an extension of the isomorphism between filters and relative congruences
for finitely algebraizable logics; this last isomorphism, established in 1989 by
Blok and Pigozzi [3, Thm. 5.1], generalizes the well-known correspondence
between filters and congruences in Boolean algebras or in Heyting algebras,
and between open filters and congruences in topological or monadic Boolean
algebras. Other particular instances of the isomorphism were known before
long to algebraic logicians: in Rasiowa’s [50] the isomorphism is not explic-
itly stated, but follows easily from the correspondences between filters and
congruences there established, and in 1981 Czelakowski says, just before
proving his Theorem II.2.10 of [17], that it “generalizes some observations
made independently by several people”. This isomorphism has been an in-
spiring source of ideas about the relationships between logical and algebraic
properties, as well as a fundamental tool for showing non-algebraizability of
certain logics.

4. The class AlgL is also the class of algebraic reducts of the reduced full
models of L.

5. The algebras in AlgL can be obtained by factoring a formula algebra
of suitable cardinality by the Tarski congruence of some full model;
more precisely,

AlgL = I
{

F mκ/
∼
Ω (A) : A full model of L over F mκ , κ ∈ CARD

}

where F mκ is the formula algebra over κ variables.

Concerning the relationships between the three classes of algebras considered
so far there are several general facts and some particular ones:

6. In general Alg∗
L ⊆ AlgL ⊆ V(L).

7. AlgL is the class of subdirect products of algebras in Alg∗
L. Hence

the two classes generate the same quasivariety and the same variety.

8. The variety generated by Alg∗
L and by AlgL is V(L).

9. If L is protoalgebraic then Alg∗
L = AlgL.

Therefore, AlgL coincides with the class of “L-algebras” introduced by
Rasiowa for the logics she studied in [50] (now commonly called implicative
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logics), and with the equivalent quasivariety of the finitely algebraizable
logics introduced by Blok and Pigozzi in [3].

Two big classes of logics, independent of the just mentioned ones, for
which the definition of L-algebras gives a sound result are the following.

10. Let L be selfextensional (see Section 6.1) and have a Conjunction or
satisfy the uniterm Deduction Theorem. Then AlgL = V(L).

For non-protoalgebraic logics it is AlgL that gives the “right” or expected
result, while Alg∗

L can be a strictly smaller class with no particular met-
alogical significance. This has been shown to be the case, for instance, in
three of the most natural examples of non-protoalgebraic logics, represented
in Table 1: The conjunction-disjunction fragment of classical logic CPC∧∨

[40], Belnap’s four valued logic (with truth and falsity constants) B [32],

L AlgL FiLA for A ∈ AlgL

protoalgebraic

IPC→ Hilbert algebras {implicative filters}

CPC Boolean algebras {filters}

global S5 monadic Boolean algebras {open filters }

local S5 monadic Boolean algebras {filters}

 L∞ MV-algebras {implicative filters}

R R-algebras {F : F is a lattice filter

and a→ a ∈ F ∀a}

BCK BCK-algebras {implicative filters}

non-protoalgebraic

CPC∧∨ distributive lattices {lattice filters} ∪ {∅}

B De Morgan algebras {lattice filters}

IPC∗ pseudo-complemented {lattice filters}
distributive lattices

WR R-algebras {lattice filters} ∪ {∅}

Table 1. Some logics, their L-algebras and their reduced full models. See the text for
notations and references.
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or the implication-less fragment of intuitionistic logic IPC∗ [3, 53]. How-
ever, property 9 is not a characterization of protoalgebraicity: there are
non-protoalgebraic logics where the two classes coincide, like the inferential
version WR of the well-known system R of relevance logic, suggested in
[62, §2.10] and studied in [39]; this coincides with the semantic consequence
one can associate with the ternary relational semantics. While in most of
the non-protoalgebraic cases the class AlgL has been found to be a variety
and thus to coincide with V(L), for some subintuitionistic logics studied
in [12] the situation is quite different; more precisely, the three classes of
algebras associated with the global consequence of the class of transitive
“intuitionistic-like” Kripke models are all different (this solved one of the
open problems in [33]) and both Alg∗

L and AlgL are not even quasivari-
eties.

It is easy to see that the reduced full models have a very precise
form, namely they are exactly the generalized matrices 〈A, C〉 such that
A ∈ AlgL and C = FiLA. They are also characterized as the reduced basic
full models, i.e., the generalized matrices of the form 〈A,FiLA〉 that are
reduced. Hence, A ∈ AlgL iff 〈A,FiLA〉 is reduced. In examples, one
sees that these generalized matrices have both a logical and an algebraic
natural interpretation; the reader will not find any surprise in Table 13.
The empirical evidence it offers together with some of the previous results,
seem to be good enough reasons for considering that reduced full models
and AlgL give a satisfactory account of the algebraization of (almost ?) any
logic, regardless of whether it is protoalgebraic or not, and for calling AlgL

the class of Lindenbaum-Tarski algebras of L.
Quite different and a more interesting problem is the characterization of

arbitrary full models; they exist on any algebra, for instance 〈A,FiLA〉 is
always the finest one, but in general they are not so neatly characterized as
the reduced ones. One way will be dealt with in the next section.

One kind of the intended characterizations is to describe the full models
as certain families of L-filters of some particular form (in contrast to general
models, that can be obtained from arbitrary families of L-filters closed under
intersection). Experience shows that for most of the best-behaved logics full
models are principal filters in the lattice of all L-filters on each algebra. In
the next two results from [33] we see that this form of full models can even
characterize two main classes in the hierarchy:

3The two modal logics are the global and the local consequences associated with the
class of Kripke models for the logic, S5 in this case; they are sometimes called the normal
and the quasi-normal logics. A similar situation arises for every normal “system” (in the
old style sense) of modal logic
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Theorem 5. A logic L is protoalgebraic if and only if every full model of L

has the form 〈A, (FiLA)F 〉 for some F ∈ FiLA, where (FiLA)F = {G ∈
FiLA : F ⊆ G} is the principal filter of FiLA generated by F .

However, not every L-filter generates a full model in the above way;
those that do have been studied in [34], where they are called Leibniz filters
because they can be characterized as the smallest ones among all those
having the same Leibniz congruence.

Theorem 6. A logic L is weakly algebraizable if and only if the full models
of L are exactly all models of the form mentioned in the previous theorem.

The class of weakly algebraizable logics has been studied in depth in
[23]; it includes all algebraizable logics, but also others which are not al-
gebraizable, related to certain subtractive varieties. For these logics the
construction of Theorem 5 yields a lattice isomorphism between FGModLA

and FiLA, for every A. Thus to some extent working with full models
amounts to working with filters. Moreover, from this isomorphism and the
Isomorphism Theorem of item 3 above an alternative proof of Blok and
Pigozzi’s isomorphism is obtained.

4. Generalized matrices as models of Gentzen systems

This is a specially fruitful line of research concerning the problem of charac-
terization of full models. Notice that generalized matrices, in their disguise
as closure operators, satisfy all the so-called structural rules; therefore we
will restrict our attention to Gentzen systems having all structural rules.

Definition 7. A generalized matrix 〈A,C〉 is a model of a Gentzen-

style rule

{Γi ⊢ ϕi : i < n}

Γn ⊢ ϕn

(7)

when every interpretation h in A that satisfies all sequents in the antecedent
(in the sense given after Proposition 2), also satisfies the sequent in the
consequent.

A is a model of a Gentzen system G when it is a model of all its
derivable rules. The class of all such models is denoted by ModG.

A rule like (7) is a rule of L when the generalized matrix 〈F m,CnL〉 is a
model of (7) in the above sense; that is, when for every substitution σ such
that σΓi ⊢L σϕi for all i < n, also σΓn ⊢L σϕn .

The previous experience of the Barcelona group with particular logics and
particular classes of algebras has shown that some logics characterize their
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full models in terms of properties that can be expressed by Gentzen-style
rules (which are, of course, rules of the logic). To mention just the easiest
example: The full models of IPC→ are the generalized matrices that satisfy
the Deduction Theorem. This has led naturally to the question: When is the
class of full models of a logic completely described by some set of Gentzen-
style rules ? The associated technical notion (called “strong adequacy” in
[33]) is the following.

Definition 8. A Gentzen system G is fully adequate for a sentential logic
L when FGModL = ModG; in case L has no theorems, one has to assume
that all generalized matrices considered here have no theorems, either.

Among the consequences of G being fully adequate for L let me mention:

1. The Gentzen system G is adequate for the sentential logic L, that is,
the derivable sequents of G define L as in (5).

2. L is the weakest logic satisfying the rules of G.

3. AlgL = AlgG, the class of algebraic reducts of reduced models of G.

4. A ∈ AlgL if and only if 〈A,FiLA〉 is a reduced model of G (and it
is the only one on A).

Therefore we have a description of AlgL in terms of Gentzen-style rules:
Algebras in AlgL are exactly those supporting a generalized matrix that is
a model of the Gentzen system and is reduced. In case the Gentzen system
has a nice presentation, these characterizations can be useful and significant.
Examples can be found in Chapter 5 of [33].

Not every logic has a fully adequate Gentzen system, but if one exists
then it is unique, so it seems to have some kind of distinctness among all
those that are adequate for the logic; however, the deep significance of the
notion of full adequacy has not been thoroughly investigated. The ques-
tion of existence of a fully adequate Gentzen system for a sentential logic
has generated other questions, and has opened several lines of research; in
particular, it turns out that this problem is related to other, more classical
problems of Abstract Algebraic Logic, as I am going to show.

One line of research is to study the full adequacy problem in relation
with several closure properties of the class FGModL of all full models of
L or of the lattice FGModLA of all full models of L on a fixed, arbitrary
algebra A. Some relevant results obtained so far are:

Theorem 9 ([36]). For any logic L the following properties are equivalent:

(i) L has a fully adequate Gentzen system.

(ii) FGModL is closed under sub-generalized matrices and under reduced
products of generalized matrices.
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(iii) For any algebra A, the lattice FGModLA is closed under arbitrary
intersections (hence it is a complete sublattice of the lattice of all gen-
eralized matrices over A).

This belongs to the kind of results called bridge theorems at the begin-
ning, as the existence of a fully adequate Gentzen system can be regarded
as a metalogical property of the logic while the other items are properties of
models.

Another line of research is to relate full models with Deduction Theorems
of several kinds.

Theorem 10 ([36] and [37]). Let L be a finitely algebraizable logic. Then:

1. FGModL is closed under sub-generalized matrices if and only if L has
the Local Deduction Theorem (LDT).

2. L has a fully adequate Gentzen system if and only if L has the Deduc-
tion Theorem.

Besides their interest for the full adequacy problem, these results add
to the extensive literature on the several forms of the Deduction Theorem.
One of the key tools in this analysis has been the study of Leibniz filters
and their relation with full models as described in Theorems 5 and 6. The
other key approach is to exploit the presentation of generalized matrices as
first-order structures that are the models of a strict universal Horn theory
without equality, further extending Bloom’s idea [7], already generalized
by Blok and Pigozzi in [5]. Briefly: given a generalized matrix 〈A,C〉 one
considers the structure A =

〈

A, {RA
m : m ≥ 1}

〉

with algebraic part A and
where Rm is an m-ary relation symbol interpreted as

〈a1, . . . , am〉 ∈ RA
m ⇐⇒ am ∈ C

(

a1, . . . , am−1

)

for m > 1, and RA
1 = C(∅). This allows to take advantage of general

results on the model theory of equality-free logic, recently developed mainly
by Elgueta, Dellunde, Czelakowski and Jansana. The papers [16,
27, 29, 30] contain a sample of such results and witness the mutual influence
between Algebraic Logic and Model Theory.

The preceding results belong to the research line devoted to the theo-
retical analysis of full adequacy. One can also investigate it for particular
logics or groups or logics. One key problem here is, in case we know that
certain logic does have a fully adequate Gentzen system, to find a calculus or
presentation for it with Gentzen-style rules that have a relevant metalogical
significance. In Subsection 6.3 I mention two big classes of logics for which
the full adequacy problem has a positive solution.



Generalized Matrices in Abstract Algebraic Logic 73

5. Transfer properties

Let’s return to the beginning of the paper. There I mention bridge theorems
(1) in connection with question (Q2). Now I am interested in a more specific
class of typical answers to this question, which have been called transfer
theorems. They are similar in structure to bridge theorems, but in transfer
theorems the property P’ of (1) is the same as property P , and the right-
hand side of the equivalence has a local character; thus, their typical form
is

L has property P ⇐⇒ Every object in K has property P . (8)

Obviously, this can only make sense for properties P that can be equally
predicated of the logic and of its models; accordingly, one has to shape mod-
els in an appropriate way or consider one of their presentations or aspects
that can be successfully unified with those of the logic itself.

I think it is no exaggeration to say that one can view an important
number of recent works in Abstract Algebraic Logic as transfer theorems; to
be more precise, as works concerning transfer of properties of the lattice
〈ThL,∩,∨〉 of the theories of L to the lattices 〈FiLA,∩,∨〉 of the L-filters
on arbitrary algebras; or, equivalently, to the lattices 〈C ,∩,∨〉 of the closure
system of arbitrary full models. Some transfer properties hold in general,
while some hold only for restricted classes of logics; in some cases equivalent
conditions have been found for certain transfers to hold.

To mention only one example: That the lattice of theories is distribu-
tive does not imply in general that all filter lattices, or all full models, are
distributive; however, this is true inside the class of protoalgebraic logics, as
proved in 1984 by Czelakowski [18]4. Other celebrated results by Czel-

akowski, Blok, Pigozzi, Herrmann and Jansana are actually transfer
theorems concerning properties of the Leibniz operator, such as monotonic-
ity, definability, continuity, injectivity, commutativity with inverse endomor-
phisms, etc. Some of these properties transfer from ΩFm on ThL to ΩA

on FiLA in general, while some do only for protoalgebraic logics; moreover
the logics that satisfy some of them constitute well-known classes in the
hierarchy: protoalgebraic, equivalential, finitely equivalential, weakly alge-
braizable, algebraizable, etc. See [38] for more details and references.

Transfer theorems also arise in the context of generalized matrices: if
one considers the logic itself as the generalized matrix 〈F m,ThL〉 then it

4He stated and proved it for equivalential logics, but his proof actually works for all
protoalgebraic logics.
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makes sense to ask whether properties of L expressed by a Gentzen-style
rule do transfer from 〈F m,ThL〉 to models like 〈A,FiLA〉, or, equivalently,
to full models 〈A, C〉. This has the supplementary interest that properties
expressed by Gentzen-style rules usually have an intuitive and direct in-
terpretation at a metalogical level. Well-known examples are having the
Deduction Theorem, having a Disjunction, or the Introduction of Modality.
Czelakowski explicitly proved in [19, 20] that Disjunction and the Deduc-
tion Theorem always transfer, that is, that a logic satisfies any of them if
and only if all its full models satisfy it5. In the best-behaved cases (such as
the finitely algebraizable logics), the whole full model structure is encoded
in the algebraic structure, so that after being transferred to the models the
property may become equivalent to a typically algebraic property (and then
we have a typical bridge theorem). This is the case, for instance, of the
Deduction Theorem, which transfers to the equational consequence relative
to K, and there it becomes equivalent to the familiar EDPRC property, [6].
Some of the results establishing bridge theorems between several interpola-
tion and amalgamation properties can be formulated as transfer theorems for
carefully formulated forms of amalgamation for matrices; the general theory
of these correspondences has been developed in the context of equivalential
and algebraizable logics in [24].

I am not aware of much work on the transfer problem in general ; let
me mention a few results. Trivially, all properties expressible as a Hilbert-
style rule transfer. Moreover, Czelakowski’s proofs of the transference
of the Deduction Theorem or Disjunction can be generalized to obtain the
following.

Theorem 11. Let γ(x,−→y ) ∈ Fm be a formula, and let {xn : n ∈ ω} be
a denumerable set of variables disjoint from those in −→y . Call P(γ) the
property represented by the following set of Gentzen-style rules.

{

x0, . . . , xn−1 ⊢ xn

γ(x0,
−→y ), . . . , γ(xn−1,

−→y ) ⊢ γ(xn,
−→y )

: n ∈ ω

}

(9)

Then the property P(γ) transfers (from the logic to all full models).

The case γ(x, y) = y→ x essentially accounts for the transfer of the De-
duction Theorem, and the case γ(x, y) = x∨y covers the case of Disjunction.

Another very general, specially remarkable fact is the following result by
Czelakowski and Pigozzi:

5He did not use the notion of full model, but his results amount to this one.
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Theorem 12 (see [22], § 1.7). If L is a protoalgebraic logic, then any prop-
erty expressed by a universal sentence of the first-order language of lattices
transfers (that is, it holds in the lattice of theories if and only if it holds in
the lattice of the closure system of every full model).

We thus see that the transfer of distributivity mentioned before is not
an isolated phenomenon, but a particular instance of a more general fact.

A few more transfer results and some problems concerning the congru-
ence property will be mentioned in the next section.

6. Some open problems

This is a relatively new research area, so it is surely full of open problems
and ideas for further work. For instance, in Section 4 I have already said
that the notion of full adequacy has not been deeply investigated. Here,
rather than formulating very specific problems, I am going to comment on
a number of topics where there are several questions still to be scrutinized
and deserving, in my opinion, special attention. Some of them are intimately
connected, at least judging from the already known facts and the methods
of proof hitherto used; but perhaps new ideas will make them differentiate
significatively.

6.1. The transfer of congruence properties

This is a particular case of the general problem of transfer of any metalogical
property that can be formulated in terms of generalized matrices.

Extending the notation introduced in Theorem 5, for a generalized matrix
A = 〈A, C〉 and an F ∈ C we put CF = {G ∈ C : F ⊆ G} and AF =
〈A, CF 〉. If L is a sentential logic and T ∈ ThL is a theory closed under
substitutions then LT is what is commonly called an axiomatic extension of
L; but here closure under substitutions is not required.

Definition 13. A generalized matrix A has the congruence property

when Λ(A) ∈ CoA, that is, when
∼
Ω(A) = Λ(A); equivalently, when A is

a model of the congruence rules:

{xi ⊢ yi , yi ⊢ xi : i < n}

̟x0 . . . xn−1 ⊢ ̟y0 . . . yn−1

(10)

for each basic operation symbol ̟ in the language (where n is its arity).

A sentential logic L is selfextensional when as a generalized matrix it
has the congruence property in the just defined sense. That is, when the
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interderivability relation Λ(L) of the logic has the replacement property.

A generalized matrix 〈A, C〉 has the Fregean property when for each F ∈
C the generalized matrix A

F has the congruence property.

A logic is Fregean when as a generalized matrix it has the Fregean property,
that is, when the interderivability relation modulo any theory of the logic has
the replacement property.

Selfextensional logics were first considered by Wójcicki (see [62, §5.6.5]
for references); he has shown that they correspond to the local consequence
defined by any class of referential matrices, a special kind of generalized ma-
trices that abstract from several kinds of relational semantics. Fregean logics
were first considered, in the present sense, in [31]; protoalgebraic Fregean
logics were being studied independently at the same time by Czelakowski

and Pigozzi but their results have been published only recently in [22, 26].
Every Fregean logic is selfextensional; among Fregean logics we find clas-
sical and intuitionistic logic, their implicative or equivalential fragments,
their axiomatic extensions, and all two-valued logics. Among non-Fregean
but selfextensional logics there are the local consequences of normal modal
logics, Belnap’s logic, and the inferential system WR of relevance logic al-
ready mentioned in Section 3.

One can consider the transfer problem of these two properties: being
selfextensional and being Fregean.

The interest in the transfer of the congruence property is not merely
abstract. Having it makes life much easier; a generalized matrix is reduced
and has the congruence property if and only if C(a) = C(b) implies a = b;
topologically this means being T0 (a 6= b =⇒ ∃F ∈ C such that a ∈ F and
b /∈ F , or a /∈ F and b ∈ F ). In generalized matrices with the congruence
property the equations valid in its reduction are obtained by computing
“modulo C” in their algebra reduct. If L is a selfextensional logic then an
equation ϕ ≈ ψ holds in V(L) if and only if ϕ and ψ are interderivable
modulo L. Fregean logics seem to have rather strong properties and exhibit
a nice algebraic behaviour; see next subsection.

The general transfer problems of the congruence property and of the
Fregean property, stated in [33], have been open for some time, but were
recently solved in the negative independently by Babyonishev [2] and by
Bou [12]. Since the counterexamples they found are non-protoalgebraic
logics, it is still interesting to investigate these transfer problems restricted to
certain classes of logics, either to identify classes of logics where the transfer
problem has a positive solution, or to find more counterexamples inside these
classes. Some results have already been obtained:
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Theorem 14 ([26]). If L is a protoalgebraic logic then the Fregean property
transfers to all its full models.

This is actually a consequence of a more general result of the same paper,
which roughly speaking says that for protoalgebraic logics any property that
can be formulated in terms of Gentzen-style rules that admit an arbitrary
number of “side formulas” in the antecedent does transfer from the logic to
all its full models; being Fregean is a property of this kind.

Theorem 15 ([33]). Let L be a logic satisfying the uniterm Deduction The-
orem, or having a Conjunction. Then the congruence property transfers to
all its full models.

Selfextensional logics are much weaker than Fregean ones, and perhaps
adding protoalgebraicity is not enough for the transfer. Actually, every logic
with the Deduction Theorem is protoalgebraic, but the proof of the above
result works only if the Deduction Theorem holds for a single term connective
and cannot be extended to arbitrary protoalgebraic logics. But at present
no counterexample is known even inside the much restricted class of finitely
algebraizable logics. Hence the transfer problem of the congruence property
is still open for the classes in the Leibniz hierarchy.

6.2. The two hierarchies

The main hierarchy that organizes the universe of logics as studied by Ab-
stract Algebraic Logic, the so-called Leibniz hierarchy, can be described un-
der several points of view, all concerning notions of the classical theory of
matrices: the lattice-theoretic behaviour of the Leibniz operator on L-filters,
the definability of the L-filters of the reduced matrices, the closure proper-
ties of the class of all reduced matrices of the logic, etc. In view of some
already obtained results it seems that another, less complicated hierarchy
of logics deserves some attention. It is based on the congruence property.
Besides the classes of selfextensional and of Fregean logics it comprises the
following two:

Definition 16. A logic is fully selfextensional when all its full models
have the congruence property, and is fully Fregean when all its full models
have the Fregean property.

Thus the transfer problems of the congruence property can be para-
phrased as the questions of whether every selfextensional logic is fully self-
extensional, and of whether every Fregean logic is fully Fregean.

Here the (partly) open problems concern the clarification of the structure
of this hierarchy and of its relationships with the Leibniz hierarchy. Every
fully Fregean logic is both Fregean and fully selfextensional, but it is not
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known whether it equals the intersection of these two classes. The class
of selfextensional logics includes the other classes, and most probably it
does not equal their union (i.e., most probably there are selfextensional
logics which are neither Fregean nor fully selfextensional). From the negative
solutions to the transfer problems mentioned in Subsection 6.1 it follows that
the four classes are different.

In principle it seems that selfextensionality is a property independent
of the Leibniz hierarchy: There are selfextensional and non-selfextensional
examples in all its subclasses, except for a few cases. The situation is very
different for Fregean logics: due to Theorem 14 inside protoalgebraic logics
(that is, inside the whole Leibniz hierarchy) the classes of Fregean and of
fully Fregean logics coincide. And a few more things are known:

Theorem 17.

1. Every protoalgebraic Fregean logic with theorems is regularly algebraiz-
able, that is, it is algebraizable and the designated set of its reduced
matrices consists of a single element [26, 31].

2. A weakly algebraizable logic is Fregean if and only if it is fully selfex-
tensional [33].

3. A fully selfextensional logic is algebraizable if and only if it is weakly
algebraizable [33].

Thus inside weakly algebraizable logics (hence, inside algebraizable log-
ics) the only interesting remaining question is whether every selfextensional
such logic is Fregean. This problem was already formulated in [31], and as
far as I know, no counterexamples have been presented. In contrast with the
strength that being Fregean seems to acquire when this property is coupled
with algebraizability, as is clarified in [26, 49], selfextensionality seems much
weaker; this makes the absence of counterexamples particularly noteworthy.

A related remaining task, which is interesting by itself but which can
also shed some light over the mentioned open problems, is the classification
in the two hierarchies of as many logics as possible. This forcefully includes
the determination of the full models of these logics. The fact that the ma-
jority of logics (partially) classified up to now are either selfextensional, or
algebraizable, or both, may just indicate that these logics are among the
best known (and easier to study?) ones. The validity and usefulness of this
kind of general theories and general classification schemes depends on their
ability to deal not only with the well-behaved, central examples, but with
the more marginal or even pathological ones6. I am convinced that the ex-

6For instance, those that are neither protoalgebraic nor selfextensional.



Generalized Matrices in Abstract Algebraic Logic 79

amination of a large number of logics coming from very different contexts
will strengthen our understanding of these hierarchies and of the real signif-
icance of their subclasses; and as a bonus some of the problems might be
solved with natural rather than ad hoc counterexamples. Of course, it can
also turn out that some solution is affirmative, which would require a general
proof; but even in this case the analysis of examples and of why they have
certain property or why they do not have it, might help to shape a better
view of the situation.

6.3. The variety problem

This problem arises in the theory of algebraizable logics, but has ramifica-
tions concerning generalized matrices. If L is a finitary, finitely algebraizable
logic, then the general theory guarantees that its algebraic counterpart AlgL

(its largest equivalent algebraic semantics) is a quasivariety. However, expe-
rience shows that for a very large number of such algebraizable logics this
class is indeed a variety (when this happens the logics are called strongly

algebraizable). The interesting questions is: why is it so? What do these
logics have in common? Is there a characterization of such logics? Can we
find necessary or sufficient conditions that explain this behaviour? More
generally, one can also wonder why is it that AlgL is a variety for many
other logics, not necessarily algebraizable, not even protoalgebraic.

Some sufficient conditions have already been found in connection with
the proof of Theorem 15:

Theorem 18 ([33]). Let L be a selfextensional logic satisfying the uniterm
Deduction Theorem, or having a Conjunction. Then AlgL is a variety, that
is, AlgL = V(L).

Corollary 19. If L is a selfextensional and algebraizable logic satisfying
the uniterm Deduction Theorem, or having a Conjunction, then L is strongly
algebraizable.

We have already seen (Theorem 17.1) that if the logic is not merely
selfextensional but protoalgebraic and Fregean then it is also regularly alge-
braizable. Some deep results concerning this case are contained in [26]; all
the logics analysed in this paper are shown to be definitionally equivalent
to certain axiomatic expansions of the (→)-fragment and of the (→,∧)-
fragment, respectively, of the intuitionistic propositional logic; see [38, § 4.4]
for an overview. In [25] it is shown that the condition that the Deduction
Theorem is effected by a single term is essential in the preceding results, by
constructing an ad hoc example of a Fregean and algebraizable logic with a
two-term Deduction Theorem that is not strongly algebraizable.
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These are partial results that apply only to selfextensional or Fregean
logics, but the phenomenon has been equally observed in non-selfextensional
logics. Some of these cases might also be covered by the theory of the strong
version of a protoalgebraic logic started in [34]: There it is shown that certain
protoalgebraic logics that are not algebraizable engender a “strong version”
which is at least weakly algebraizable, and has the same class of associated
algebras. If in addition the weaker logic falls under one of the previous
results, then this class is a variety and the strong version happens to be
strongly algebraizable, without falling itself under the previous results. But
again this theory is of limited application (it applies only to protoalgebraic
logics), and moreover it only gives a sufficient condition. Thus there is plenty
of room here for investigation.

Another interesting research would be to obtain more direct proofs of the
preceding results, particularly of Theorem 18. The proof in [33] is obtained
in a broader context, where it is also shown that the full adequacy problem
has a positive solution in these cases:

Theorem 20. Let L be a selfextensional logic satisfying the uniterm De-
duction Theorem, or having a Conjunction. Then L has a fully adequate
Gentzen system.

Actually the finding of such fully adequate Gentzen system is the key
point in the proof that the associated class of algebras (which is also asso-
ciated to the Gentzen system) is a variety. Remark that the statements of
Theorems 15 and 18 concern generalized matrices understood as models of
sentential logics, but not necessarily as models of Gentzen systems. While
this fact emphasizes the usefulness of this double rôle of generalized matri-
ces, it also calls for new proofs that can be developed entirely within the
“sentential” level of the theory.

6.4. The notion of G-algebraizability

The just mentioned proof in [33] of Theorem 18 through the existence of a
fully adequate Gentzen systems goes farther away from the classical theory
of matrices and of generalized matrices. Actually, what one does to infer
Theorem 18 from Theorem 20 is to consider the fully adequate Gentzen
system under the light of a “third level” version of the notion of algebraiz-
ability. Such extension allows one to deal with substructural Gentzen sys-
tems, and was introduced by Gil, Rebagliato, Torrens and Verdú

[42, 43, 53, 54, 58]; a summary appears in Section 4.2 of [38]. In [33] it
is shown that the obtained Gentzen system is finitely algebraizable in the
sense of Rebagliato and Verdú, and that its largest equivalent algebraic
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semantics is precisely the class V(L); but on the other hand the general the-
ory says this largest equivalent algebraic semantics has to be AlgG, which
by full adequacy equals AlgL.

While this situation is a nice example of how to combine work at several
levels of the hierarchy of notions of sentential logic described in Section
1, it also suggests the consideration of a new notion of algebraizability for
sentential logics:

Definition 21. A sentential logic is G-algebraizable when it has a fully
adequate Gentzen system that is algebraizable in the sense of [53, 54].

Note that this new concept is not an extension of the notion of algebraiz-
able logic; there are logics which are algebraizable in the usual sense but do
not have a fully adequate Gentzen system (this can be shown by Theorem
10) and hence are not G-algebraizable; and conversely, some of the known
G-algebraizable logics are not algebraizable in the usual sense (actually they
are not even protoalgebraic). Examples of the first kind are BCK, R or  L∞,
and examples of the second kind are CPC∧∨ and B; see Table 1 for notations
and references.

In G-algebraizable logics the link with algebraic properties of their as-
sociated class of algebras is effected by properties expressible as Gentzen-
style rules, while in classically algebraizable logics the link is effected by the
equational consequence relative to the class of algebras and two substitution-
invariant translations. The in-depth study of the new notion and its inter-
action with the two hierarchies of Subsection 6.2 will surely be a rich area
of research.

6.5. Characterizing the class AlgL

The most common perspective in Algebraic Logic is to view it from the
logical side; i.e., one has a logic and is interested in knowing more things
about it through the study of the algebraic properties of a certain class of
algebras that bears to the logic some specific relation. Up to now the closest
kind of relation is that of being the equivalent algebraic semantics for the
logic, in case this one is algebraizable.

But there is a dual perspective, which is to start from a class of algebras
and to look for a certain logic that bears to it the said relationship; this
could be called the problem of the logification of a class of algebras. The
theory of algebraizability has found one solution to it: For instance, one
can specify necessary and sufficient conditions for a quasivariety to be the
equivalent algebraic semantics of a finitary, finitely algebraizable logic, see
[22, § 4.6]. An even finer work can be done if the focus is restricted to
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protoalgebraic Fregean logics: the corresponding algebras form the so-called
congruence-orderable relatively point-regular quasivarieties; see [38, § 4.4]
for more details and references. Sometimes, also the isomorphism theorem
for algebraizable logics can be used to show that a certain class of algebras
can never be the equivalent algebraic semantics of any algebraizable logic,
as is done in [32] for the variety of De Morgan algebras and in [40] for the
variety of distributive lattices.

I have already said that the notion of G-algebraizability just discussed
can account for the algebraic character of logics not falling under the alge-
braizable paradigm. Conversely, it can also give rise to a broader notion of
“algebra of logic”. What has not been investigated yet, is the dual perspec-
tive on this new concept: Is there a characterization of the classes of algebras
that can be shown to be the algebraic counterpart of a G-algebraizable logic?
My conjecture is that this should be relatively easy if one restricts the search
to fully selfextensional logics.

Finally, one can also consider the very general problem: Is there a char-
acterization of those classes of algebras that are of the form AlgL for some
sentential logic L of the most arbitrary kind? It is probably too difficult,
given its extremely generality, so one can also restrict the search to classes of
logics with a good behaviour in one sense or another (the results mentioned
two paragraphs above correspond to the restrictions to algebraizable and to
protoalgebraic and Fregean logics).

Appendix

Let L be a sentential logic. It satisfies the Deduction Theorem when
there is a finite set ∆(p, q) ⊆ Fm such that for all Γ ∪ {ϕ ,ψ} ⊆ Fm,
Γ,ϕ ⊢L ψ ⇐⇒

(

Γ ⊢L δ(ϕ,ψ) for all δ(p, q) ∈ ∆(p, q)
)

. If the set ∆
contains just one formula, we speak of a uniterm Deduction Theorem, in
contrast to the multiterm case, where the set ∆ may contain more than
one formula. In the literature this property is also called the Deduction-
Detachment Theorem (DDT).

L has a Conjunction when there is a binary term (i.e., a formula in
two variables) p ∧ q such that {ϕ , ψ} ⊣⊢L ϕ ∧ ψ for all φ ,ψ ∈ Fm.

L has a Disjunction when there is a binary term (i.e., a formula in two
variables) p ∨ q such that Γ ,ϕ ∨ ψ ⊢L ξ ⇐⇒

(

Γ ,ϕ ⊢L ξ and Γ ,ψ ⊢L ξ
)

for all Γ ∪ {ϕ ,ψ} ⊆ Fm.

L satisfies the Introduction of Modality for a unary connective or
term �p when Γ ⊢L ϕ implies �Γ ⊢L �ϕ, for all Γ ∪ {ϕ} ⊆ Fm.
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[57] Tarski, A. Über einige fundamentale Begriffe der Metamathematik. Comptes Rendus
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