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Introduction

Algebraic logic was born in the XIXth century with the work of Boole, De
Morgan, Peirce, Schröder, etc. on classical logic, see [12, 16]. They took
logical equivalence rather than truth as the primitive logical predicate, and,
exploiting the similarity between logical equivalence and equality, they devel-
oped logical systems in which metalogical investigations take on a distinctly
algebraic character. In particular, Boole’s work evolved into the modern
theory of Boolean algebras, and that of De Morgan, Peirce and Schröder
into the theory of relation algebras. Algebraic logic in this sense developed
more-or-less independently of the logical systems of Frege and Russell and
Whitehead where truth and logical truth were the underlying logical predi-
cates. Reinforced by Hilbert’s idea of metamathematics, this trend in logic
became focused around the formal notions of assertion (logical validity and
theoremhood) and logical inference. Thus we have from the beginning of
the contemporary era of logic two approaches to the subject, one centered
on the notion of logical equivalence and the other centered on the notions of
assertion and inference.

It was not until much later that logicians started to think about con-
nections between these two ways of looking at logic. Tarski ([131]) gave the
precise connection between Boolean algebra and the classical propositional
calculus. His approach builds on Lindenbaum’s idea of viewing the set of
formulas as an algebra with operations induced by the logical connectives.
Logical equivalence is a congruence relation on the formula algebra, and the
associated quotient algebra turns out to be a free Boolean algebra. This is
the so-called Lindenbaum-Tarski method (see below). The connection here
between the two ways of looking at classical propositional logic is made by
interpreting the logical equivalence of formulas ϕ and ψ as the theoremhood
of a suitable formula (ϕ ↔ ψ) in the assertional system. The connection
between the predicate calculus and relation algebras is not so straightfor-
ward, and in fact, when the Lindenbaum-Tarski method is applied to the
predicate calculus, it leads to cylindric and polyadic algebras rather than
relation algebras.

Other logics not relying on the (classical) notion of truth, like intuition-
istic logic (centered on the notion of constructive mathematical proof) or
multiple-valued logic, can also be approached from the two points of view,
the equivalential and the assertional. And the connection between them,
like in the predicate-logic case, can be complicated. For instance, when the
Lindenbaum-Tarski method is applied to the infinite-valued logistic system
of  Lukasiewicz one gets not MV-algebras, but the so-called Wajsberg alge-
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bras. In contrast to Boolean, cylindric, polyadic, and Wajsberg algebras
which were defined before the Lindenbaum-Tarski method was first applied
to generate them from the appropriate assertional systems, Heyting alge-
bras seem to be the first algebras of logic that were identified by applying
the Lindenbaum-Tarski method to a known assertional system, namely the
intuitionistic propositional calculus.

Traditionally algebraic logic has focused on the algebraic investigation
of particular classes of algebras of logic, whether or not they could be con-
nected to some known assertional system by means of the Lindenbaum-
Tarski method. However, when such a connection could be established,
there was interest in investigating the relationhip between various meta-
logical properties of the logistic system and the algebraic properties of the
associated class of algebras (obtaining what are sometimes called “bridge
theorems”). For example, it was discovered that there is a natural relation
between the interpolation theorems of classical, intuitionistic, and interme-
diate propositional calculi, and the amalgamation properties of varieties of
Heyting algebras. Similar connections were investigated between interpola-
tion theorems in the predicate calculus and amalgamation results in varieties
of cylindric and polyadic algebras.

Although interest in the traditional areas of algebraic logic has not di-
minished, the field has evolved considerably in other directions. The ad hoc

methods by which a class of algebras is associated to a given logic have given
way to a systematic investigation of broad classes of logics in an algebraic
context. The focus has shifted to the process by which a class of algebras

is associated with an arbitrary logic and away from the particular classes of
algebras that are obtained when the process is applied to specific logics. The
general theory of the algebraization of logical systems that has developed is
called Abstract Algebraic Logic (AAL from now on).

One of the goals of AAL is to discover general criteria for a class of
algebras (or for a class of mathematical objects closely related to algebras
such as, for instance, logical matrices or generalized matrices) to be the

algebraic counterpart of a logic, and to develop the methods for obtaining this
algebraic counterpart. In this connection an abstraction of the Lindenbaum-
Tarski method plays a major role.

Bridge theorems relating metalogical properties of a logic to algebraic
properties of its algebraic counterpart take on added interest in the con-
text of AAL. For example, it was known for some time that there is a close
connection between the deduction theorem and the property of a class of
algebras that its members have uniformly equationally definable principal
congruences, but it is only in the more general context of AAL that the con-
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nection can be made precise. Indeed, the desire to find the proper context
in which this connection could be made precise partly motivated the devel-
opment of AAL. There are other bridge theorems that relate metalogical
properties such as (Beth) definability, the existence of sensible Gentzen cal-
culi, etc. with algebraic properties such as the property that epimorphisms
are surjective, congruence extension, etc.

Another important goal of AAL is a classification of logical systems based
on the algebraic properties of their algebraic counterpart. Ideally, when it is
known that a given logic belongs to a particular group in the classification,
one hopes there will be general theorems that provide important information
about its properties and behaviour.

In this survey we try to describe the present state of research in AAL
after recalling its main building blocks, both historically and conceptually.
We think the subject is young enough so that understanding some points
in its early history is necessary in order to fully appreciate it. This is not
however a work on the details of this history, and we are going to use mainly
a unified terminology and notation in order to facilitate the task of reading
the paper and as a guide to the current and forthcoming literature. Three
papers of a historical or survey nature relating to AAL are [25, 29, 117]. The
following five papers [22, 51, 71, 107, 127] deal with various aspects of the
prehistory of AAL.

1. The First Steps

In this section we describe in more detail some of the milestones along the
way from algebraic logic as it was perceived in middle of the twentieth cen-
tury to the first truly general theory of the algebraization of logic as we see
it today.

Following is some of the terminology and notation that will be used be-
low. The expression “iff” is used as an abbreviation for “if and only if”.
The power set of a set A is denoted by P(A). For a function f with domain
A and any X ∈ P(A), f [X] = {f(x) : x ∈ X}. Algebraic structures, in
particular algebras, will be denoted by boldface complexes of letters begin-
ning with a capital Latin letter, e.g, A,B,Fm, . . . , and their universes by
the corresponding light-face letters, A,B, Fm, . . . . The set of congruences
of A is denoted by Co A. If K is a class of algebras and A an arbitrary
algebra, then θ ∈ Co A is called a K-congruence of A if A/θ ∈ K; the set
of K-congruences of A is denoted by CoKA. When the class K is clear from
context one speaks simply of the relative congruences of A. The set of
homomorphisms between algebras A and B is denoted by Hom(A,B).
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In this survey a logical language will be simply a set of connectives
(each with a fixed arity n ≥ 0). Given a logical language L and a countably
infinite set of propositional variables Var, the formulas are inductively de-
fined in the usual way. The connectives can be considered as the operation
symbols of an algebraic similarity type, and then the formulas are the terms
of this similarity type in the now commonly used algebraic sense, over the
set of propositional variables. Therefore we have at our disposal the algebra
of terms, which is an absolutely free algebra of type L over a denumerable
set of generators Var. We call it the algebra of formulas and denote it
by Fm. Thus, Fm consists in the set Fm of formulas together with the
operations of forming complex formulas associated with each connective.

1.1. Consequence operations and logics

In 1930 Tarski defined what later on were called finitary consequence op-
erations. In [130] he considered, for some countable set A, functions C :
P(A)→ P(A) that satisfy for every X ⊆ A,

(C1) X ⊆ C(X),

(C2) C
(

C(X)
)

= C(X),

(C3) C(X) =
⋃

{C(Y ) : Y ⊆ X ,Y finite} and

(C4) there is some a ∈ A such that C
(

{a}
)

= A.

Condition (C3) is called the finitarity condition and implies the weaker prop-
erty of monotonicity of C, i.e.,

(C5) if X ⊆ Y , then C(X) ⊆ C(Y ).

These properties were intended to abstract the properties of the consequence
operation of classical logic which do not depend on the meaning of the con-
nectives. Nowadays a consequence operation on a (not necessarily count-
able) set A means any function C : P(A) → P(A) that satisfies conditions
(C1), (C2) and (C5). If in addition the function satisfies the finitarity condi-
tion (C3), the consequence operation is said to be finitary. A consequence
operation C on a set A can be transformed into a relation `C ⊆ P(A) × A
between subsets of A and elements of A by postulating for every X ⊆ A and
every a ∈ A that

X `C a iff a ∈ C(X). (1.1)

The properties that `C inherits from the conditions (C1), (C2) and (C5) on
C define what is called a consequence relation. These three conditions
are usually translated into the following two conditions on `C .
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(C1’) if a ∈ X, then X `C a, and

(C2’) if Y `C a for all a ∈ X, and X `C b, then Y `C b,

which imply the monotonicity condition

(C5’) if X `C a and X ⊆ Y , then Y `C a.

Conversely, any consequence relation ` defines a consequence operation C`

by stipulating that a ∈ C`(X) iff X `C a, and the two processes are inverses
to one another.

In 1958  Loś and Suszko [101] added invariance under substitutions (which
they called structurality) to the conditions of Tarski when the consequence
operation acts on the set of formulas of a propositional logic; this was in-
tended to express the formal character of the logical consequence. Given a
logical language L a substitution is a function σ : Var → Fm; it extends to
a unique endomorphism of the formula algebra Fm, which we denote also
by σ. A consequence operation C on Fm is called substitution-invariant

when for any substitution σ and any set of formulas Γ ,

(C6) C
(

σ[Γ ]
)

= C
(

σ
[

C(Γ )
])

, or, equivalently, σ
[

C(Γ )
]

⊆ C
(

σ[Γ ]
)

.

The corresponding property for the associated consequence relation is

(C6’) if Γ `C ϕ, then for every substitution σ, σ[Γ ] `C σ(ϕ),

for every Γ ⊆ Fm and every ϕ ∈ Fm. The concept of formula algebra
together with that of a substitution-invariant consequence relation seem to
be the indispensable components of a general theory of the process of alge-
braizing different logical systems.

A formal concept of logic that considers only these two components has
been extensively studied since Tarski’s work mainly by logicians in Poland
[46, 142] and has become one of the standard frameworks of contemporary
AAL. Formally, given a logical language L, a logic or deductive system in
the language L is a pair S = 〈Fm,`S〉 where Fm is the algebra of formulas
of L and `S is a substitution-invariant consequence relation on Fm, that is, a
relation `S ⊆ P(Fm)×Fm satisfying (C1’), (C2’) and (C6’), and hence also
(C5’). A logic S is said to be finitary when its consequence relation satisfies
the relational form of property (C3), that is, when for every Γ ∪{ϕ} ⊆ Fm,

(C3’) if Γ `S ϕ, then there is a finite Γ ′ ⊆ Γ such that Γ ′ `S ϕ.

Most of the research in algebraic logic and its applications have been limited
to finitary logics, however the most general treatments benefit from the
easing of this restriction. It is useful to recall that with every logic S a
finitary logic Sf on the same formula algebra can be associated that for
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finite sets behaves like S. It is called the finitary companion of S and its
consequence relation is defined as follows.

Γ `Sf ϕ iff there is a finite ∆ ⊆ Γ such that ∆ `S ϕ. (1.2)

The theorems of a logic S are the formulas ϕ such that ∅ `S ϕ; observe
that in the general notion of logic considered here it is not required that
this set be nonempty. A theory of S, or simply an S-theory, is a set of
formulas Σ closed under the consequence relation `S , that is, such that if
Σ `S ϕ, then ϕ ∈ Σ; the set of all theories of S is denoted as ThS. A theory
is consistent if it is not the set of all formulas. The following notational
abbreviation will be very useful: If Γ ,∆ ⊆ Fm then the expression Γ `S ∆
means that Γ `S δ for each δ ∈ ∆.

Particular logics fall under this general concept in as much as they can
be presented in a form that satisfies the definition, irrespective of the way
they have been originally introduced. One of the most common ways of
doing this in the case of finitary logics is by means of “Hilbert-style” calculi,
which we now describe.

By a (finitary) inference rule, or simply a rule, over L we mean any
pair 〈Γ, ϕ〉 where Γ is a finite set of formulas and ϕ is a single formula.
An axiom is a rule of the form 〈∅, ϕ〉, which is usually written as simply

ϕ. The rule 〈Γ, ϕ〉 is often represented pictorially as
Γ

ϕ
. A formula ψ is

directly derivable from a set ∆ of formulas by the rule 〈Γ, ϕ〉 if there is
a substitution σ such that σϕ = ψ and σ[Γ ] ⊆ ∆. A logic S (over L) is
presented by a (possibly infinite) set of inference rules and axioms if Γ `S ϕ
iff ϕ is contained in the smallest set of formulas that includes Γ together
with all substitution instances of the axioms of S, and is closed under direct
derivability by the inference rules. The pair consisting of the sets of axioms
and inference rules that present S is called a presentation of S; every logic
has of course many presentations. A presentation is finite if both the set of
axioms and the set of inference rules are finite. A logic is finitely presented

if it has a finite presentation. A logic S ′ is an extension of a logic S if they
are both over the same language and `S ⊆ `S′ ; the extension is axiomatic

if a presentation of S ′ can be obtained from a presentation of S by adjoining
additional axioms, but no new rules of inference. S ′ is an expansion of a
logic S and S is a fragment of S ′ if the language of S ′ includes the language
of S and `S′ coincides with `S when restricted to the language of S.

There are various ways of defining a logic that can be naturally divided
into “syntactical” and “semantical” methods. The “syntactical” methods
use some combinatorial calculus, for example a Hilbert-style presentation (as
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discussed above), natural deduction, Gentzen calculus, resolution, tableaux,
etc. to define the logic; the “semantical” methods use (mathematical) ob-
jects external to the set of formulas, for instance algebraic semantics, rela-
tional semantics, game-theoretic semantics, etc. Thus the above notion of
a logic includes all the familiar sentential logics together with their various
fragments and expansions—for example, the classical and the intuitionistic
propositional calculi, the intermediate logics, the local and the global conse-
quences associated with various modal logics, the multiple-valued logics of
 Lukasiewicz and Post, etc.

Another observation is in order here. At first sight the notion of logic
considered in this survey does not seem to extend in scope beyond what is
commonly considered to be “propositional” or “sentential” logic. In partic-
ular quantifier logics might seem to be beyond its scope. So do the so-called
substructural logics [61, 113], such as BCK logic, relevance logic and linear
logic, defined by means of Gentzen calculi that fail to satisfy the structural
rules (see Section 4.2 below). But ordinary first-order logic can be reformu-
lated in such a way that it falls within the scope of the present concept of
logic; see for instance [23, Appendix C], and the substructural logics can also
be accommodated if the notion of logic is generalized in a certain natural
way; see Section 4.1.

With regard to the algebraization of quantifier logics, this is an appropri-
ate place to mention an alternate approach to abstract algebraic logic that
originated specifically from an attempt to abstract from the traditional al-
gebraization of the first-order logic. It leads to a different conception of logic

that is based on the conviction that there should be a semantical component
in its definition. This approach is discussed briefly in Section 6.1; see [10] or
[11] for a survey of the topic and more references.

1.2. Logical matrices

In the 1920’s  Lukasiewicz and Tarski [103] introduced the general concept of
logical matrix, already implicit in the previous work of  Lukasiewicz himself,
Bernays, Post and others that used “truth tables” for several purposes. In
current terminology a (logical) matrix for a logical language L, or an L-
matrix, is an ordered pair 〈A, F 〉 where A is an algebra of type L with
universe A, and F ⊆ A; this set F is called the set of designated values.
Logical matrices were first used as models of the theorems of a logic, in the
study of particular logics (as for instance in the paper [105] by McKinsey and
Tarski). The general theory was studied, mainly by Polish logicians, starting
with  Loś [100] in 1949 and continuing with  Loś and Suszko’s fundamental
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1958 paper [101], where the general notion of a logic defined by a class
of matrices is first given. Wójcicki’s 1988 book [142] and Czelakowski’s
recent [46] are the best sources for the large body of research on this topic;
Czelakowski’s book is especially useful for understanding the role of logical
matrices in AAL.

In any given L-matrix 〈A, F 〉, each formula ϕ of L has a unique interpre-
tation in A depending on the values in A that are assigned to its variables.
Using the facts that Fm is absolutely freely generated by the set of variables
and that A is an algebra over the same language, the interpretation of ϕ can
be expressed algebraically as h(ϕ), where h is a homomorphism from Fm

to A that maps each variable of ϕ into its assigned value. (Since the set of
variables of ϕ is a proper subset of the set of all variables, there are many ho-
momorphisms with this property, but they all map ϕ into the same element
of A.) A homomorphism whose domain is the formula algebra is called an
assignment. We often write a formula ϕ in the form ϕ(x0, . . . , xn−1) to in-
dicate that each of its variables occurs in the list x0, . . . , xn−1, and we write
ϕA(a0, . . . , an−1) for h(ϕ) where h is any assignment such that h(xi) = ai

for all i < n.
Given a logic S in a language L, an L-matrix 〈A, F 〉 is said to be a

model of S if, for every h ∈ Hom(Fm,A) and every Γ ∪ {ϕ} ⊆ Fm,

if h[Γ ] ⊆ F and Γ `S ϕ then h(ϕ) ∈ F ; (1.3)

in this case it is also said that F is a deductive filter of S or, as is common
now, an S-filter of A; this term was coined by Rasiowa in her 1974 book
[120]. Given an algebra A of type L, the set of all S-filters of A, which is
denoted by FiSA, is closed under intersections of arbitrary families and is
thus a complete lattice. Therefore, given any set X ⊆ A, there is always the
least S-filter of A that contains X; it is called the S-filter of A generated

by X and is denoted by FiAS (X). The class of all matrix models of a logic
S is denoted by ModS.

It is easy to see that the S-filters on the formula algebra are exactly the
S-theories, hence the S-theory axiomatized, that is, generated by a set of
formulas Γ , is exactly the S-filter on the formula algebra FiFm

S (Γ ) generated
by Γ . The idea of considering L-matrices on the formula algebra is due to
Lindenbaum; for this reason the matrices of the form 〈Fm, Σ〉 where Σ is
an S-theory are called the Lindenbaum matrices of S; clearly they are
models of S.

A logic S in the language L is said to be complete relative to a class

of L-matrices M if M ⊆ ModS and for every Γ ∪ {ϕ} ⊆ Fm such that
Γ 6`S ϕ there is a matrix 〈A, F 〉 ∈ M and an h ∈ Hom(Fm,A) such
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that h[Γ ] ⊆ F but h(ϕ) /∈ F . When this holds it is also said that M is a
matrix semantics for S or that M is strongly adequate or strongly

characteristic for S. Clearly every logic is complete relative to the class
of all its Lindenbaum matrices; therefore each logic is complete relative to
the class of all its matrix models too. In this sense every logic has a matrix
semantics.

Logical matrices may also be used to define logics. Given a class of
matrices M, two logics can be associated with it in a natural way: One is
the logic SM that is defined by

Γ `SM
ϕ iff
(

∀〈A, F 〉 ∈M
) (

∀h ∈ Hom(Fm,A)
)

h[Γ ] ⊆ F ⇒ h(ϕ) ∈ F ; (1.4)

the other is its finitary companion Sf
M. In general, the logic SM could be

nonfinitary. Obviously the logic SM is complete relative to M, while Sf
M is so

only in case it coincides with SM, that is, when the latter is finitary. Inter-
esting problems for AAL are to find a natural (complete) matrix semantics

for Sf
M and natural conditions under which SM is finitary.

1.3. Lindenbaum-Tarski algebras

By the classical Lindenbaum-Tarski method we mean the process of forming
the quotient of the formula algebra by the relation of logical equivalence. In
the case of the classical and intuitionistic propositional logics, and some of
their expansions, two formulas ϕ and ψ are logically equivalent, in symbols
ϕ ≡ ψ, when ϕ↔ ψ is a theorem (or equivalently when ϕ→ ψ and ψ → ϕ
are both theorems). Tarski was the first to use this method [131, 132] to
give the first precise formulation of the connection between the classical
propositional calculus and Boolean algebra, but a number of different people
became aware of essentially the same process about the same time; see [37,
pp. 103–104]. This appears to be the first occurrence in the literature of
what has become known as the Lindenbaum or Lindenbaum-Tarski algebra.
See the remark in [107] in reference to the origin of these names. For another
perspective see [71, 127] and the footnotes to Chapter VIII of [120]. The
method can be applied whenever the relation ≡ is a congruence, and has
been generalized to theories as follows. Given a theory Σ of classical or
intuitionistic logic, the relation ≡Σ defined by

ϕ ≡Σ ψ iff ϕ↔ ψ ∈ Σ (1.5)

is also a congruence of the algebra of formulas, and the corresponding quo-
tient algebra Fm/≡Σ is known as the Lindenbaum-Tarski algebra deter-
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mined by Σ. The Lindenbaum-Tarski algebras of classical propositional
logic, obtained in this way, are (up to isomorphism) the countable Boolean
algebras.

Around 1950 it was realized, by Henkin, Rasiowa, Sikorski and others
that this method can be applied to other logics with a connective of im-
plication satisfying some basic properties. This line of direct generalization
culminated in Rasiowa’s well-known 1974 monograph [120], where the class
of (now) so-called implicative logics is studied. These are the logics S
having a binary connective → satisfying the conditions ϕ ,ϕ→ ψ `S ψ and
ϕ `S ψ→ ϕ and such that, for each theory Σ, the relation ≤Σ (defined by:
ϕ ≤Σ ψ iff Σ `S ϕ→ ψ) is a quasi-order (reflexive and transitive) compati-
ble with all connectives in L. Thus its symmetrization, that is the relation
between formulas defined by

ϕ ≡Σ ψ iff Σ `S ϕ→ ψ and Σ `S ψ→ ϕ, (1.6)

is a congruence of the formula algebra that, in addition, has the following
property.

If ϕ ≡Σ ψ and ϕ ∈ Σ, then ψ ∈ Σ. (1.7)

To each theory Σ can be assigned the Lindenbaum-Tarski algebra Fm/≡Σ.
Besides classical logic, other examples of implicative logics are intuitionistic
logic, normal modal logics (with the rule of necessitation applicable to arbi-
trary sets of premises) and the many-valued logics of Post and  Lukasiewicz.
The corresponding Lindenbaum-Tarski algebras are the countable members
of, respectively, the classes of Heyting algebras, several classes of Boolean
algebras with operators (such as closure algebras, etc., depending on the
specific modal logic), Post algebras, Wajsberg algebras, etc.

Rasiowa’s book also contains what should be considered as the first gen-
eral definition of the notion of the algebraic counterpart of a logic, one that
had already been considered in her 1953 paper [121] with Sikorski. With
each implicative logic S she associates the class of algebras, later denoted by
Alg∗S, whose members she calls S-algebras: these are the algebras A of
type L with an element 1 ∈ A such that the L-matrix

〈

A , {1}
〉

is a model
of S, and, for all a, b ∈ A, a→ b = b→ a = 1 implies a = b.

Although implicative logics were defined by conditions on implication,
it is clear that it is the pair of formulas ϕ→ ψ ,ψ → ϕ that together play
the central role in the algebraization process. In view of (1.6) they act
collectively as an equivalence, thus generalizing the construction (1.5) for
classical logic. The next step in the generalization of the Lindenbaum-Tarski
method was taken in 1974 by Prucnal and Wrónski, who in [118] defined
the class of equivalential logics. Its members are the logics that have
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a (possibly infinite) set E of formulas in at most two variables (x, y) that
behaves like {x→y, y→x}, that is, for every theory Σ, the relation between
formulas defined by

ϕ ≡Σ ψ iff Σ `S δ(ϕ,ψ) for every δ(x, y) ∈ E (1.8)

is a congruence of the formula algebra satisfying (1.7). Using these congru-
ence relations a Lindenbaum-Tarski-like process can also be applied to any
equivalential logic. Equivalential logics were first systematically studied in
[40] by Czelakowski. To some extent these papers can be seen as the start-
ing point of the journey from traditional algebraic logic to abstract algebraic
logic.

The final step in the full generalization of the Lindenbaum-Tarski method
consists in disregarding the requirement that there are some formulas behav-
ing collectively as equivalence, and instead finding a truly general definition
of the congruence associated with a theory that can be applied to every

logic. All this will be explained at length, but with less historical detail, in
subsequent sections.

2. The Lindenbaum-Tarski Process Fully Generalized

The central concepts in metalogical studies are frequently logical truth or
theoremhood. However, the concepts that have proven to be fundamental
for the purpose of building a general theory of the algebraization of logic
applicable to arbitrary systems are those of logical equivalence and of equiv-
alence relative to a given theory. When the concepts of logical equivalence
and of logical truth are reciprocally definable, a theory can be built using
the second concept, but this is not the case in general. One of the reasons
why classical logic has its distinctive algebraic character lies precisely in
the fact that there the concepts of logical equivalence and logical truth are
reciprocally definable.

2.1. Frege’s principles

Real logics arise from the systematization of some inference phenomena. In
the process intuitive notions of logical consequence, logical equivalence and
logical truth are transformed by abstraction into precise mathematical for-
malizations of these notions. Logical equivalence can be expressed in terms
of consequence by saying that two sentences are logically equivalent if each
is a consequence of the other. Alternatively, it can be defined semantically:
two sentences are logically equivalent if they have the same semantic value
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in every interpretation. But if consequence itself is expressed semantically,
then these two ways of looking at logical equivalence usually amount to the
same thing. This is the case for instance if the semantic values are par-
tially ordered by their “degree of acceptance”, and the semantic value of
the conclusion is greater or equal to that of the premiss under this order-
ing. The expression ‘semantic value’ is used in the sense of Dummett’s [62].
For Frege, the semantic value (denotation) of a sentence is its truth value.
Thus, informally, two sentences of the language of classical logic are logically
equivalent iff they have the same truth value in every possible interpreta-
tion. Furthermore, two interpreted sentences of classical logic have the same
truth value iff, in every propositional context, if either one is replaced by
the other, the resulting sentences have the same truth value. This second
idea has been called Frege’s extensionality principle, or simply Frege’s prin-

ciple; as a consequence one obtains what we call Frege’s weak principle:
two (uninterpreted) sentences of classical logic are logically equivalent iff,
in every interpretation, they can be mutually substituted in a propositional
context without altering its truth value. These principles reflect Frege’s idea
of compositionality, and when formalized along the following lines they can
be generalized so as to be applicable to any logic.

When formalized, Frege’s principle for classical propositional logic CPL
takes the following form.

For every theory Σ of CPL, if Σ ∪ {ϕ} `CPL ψ and Σ ∪ {ψ} `CPL ϕ,

then for every formula δ with the variable x,

Σ ∪
{

δ(ϕ/x)
}

`CPL δ(ψ/x) and Σ ∪
{

δ(ψ/x)
}

`CPL δ(ϕ/x),

while Frege’s weak principle is equivalent to the following.

If ϕ `CPL ψ and ψ `CPL ϕ, then for every formula δ with the variable x,

δ(ϕ/x) `CPL δ(ψ/x) and δ(ψ/x) `CPL δ(ϕ/x).

The only primitive logical notion involved in these formulations of Frege’s
principles is the consequence relation of classical logic; this makes them
particularly well suited for application to the general notion of logic described
in Section 1.1, and thus for incorporation into the general framework of AAL.

Let S be a logic in a logical language L. By the Frege relation of S, in
symbols ΛS, we mean the relation of mutual implication between formulas,
that is

ΛS =
{

〈ϕ,ψ〉 : ϕ `S ψ and ψ `S ϕ
}

. (2.1)

The algebraic formulation of Frege’s weak principle for S is then:

The Frege relation of S is a congruence of the formula algebra.
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This principle will be called the abstract weak Frege’s principle and the
logics that satisfy it are called selfextensional logics following Wójcicki,
see [142, Chapter 5].

An abstract counterpart of Frege’s principle can we obtained in a similar
way. Given an S-theory Σ we say that two formulas are Σ-equivalent iff
each is a consequence of the other when adjoined to Σ. The relation so
defined is called the Frege relation of Σ relative to S, and is denoted by
ΛSΣ. Hence,

ΛSΣ =
{

〈ϕ,ψ〉 : Σ,ϕ `S ψ and Σ,ψ `S ϕ
}

. (2.2)

Notice that 〈ϕ,ψ〉 ∈ ΛSΣ iff ϕ and ψ belong to the same theories of S that
include Σ. Now the formal general counterpart of Frege’s principle for a
logic S takes the following form.

For every theory Σ of S, the Frege relation of Σ relative to S is
a congruence of the formula algebra.

This principle may be called the abstract Frege’s principle, and the logics
satisfying it are called Fregean logics or extensional logics; the logics
that do not satisfy it may be called intensional logics. The first formalized

distinction between Fregean and non-Fregean logics appears to have been
made by Suszko, see [128], and has been brought into AAL in [53, 54, 73, 115].

2.2. Algebras and matrices canonically associated with a logic

The Frege relation ΛSΣ for a theory Σ always satisfies the property analo-
gous to (1.7), that is,

if 〈ϕ,ψ〉 ∈ ΛSΣ and ϕ ∈ Σ then ψ ∈ Σ. (2.3)

Therefore, when a logic S is extensional, the Frege relation Σ gives rise to
a Lindenbaum-Tarski-like construction for every S-theory Σ: the quotient
matrix 〈Fm/ΛSΣ,Σ/ΛSΣ〉 can be defined, where Fm/ΛSΣ is the quo-
tient algebra and Σ/ΛSΣ is the set of equivalence classes of the elements
of Σ. This construction really is a generalization of the Lindenbaum-Tarski
method for Fregean logics. The classical logical equivalence relation, defined
in terms of the biconditional as in (1.6), or in terms of the pair of implications
ϕ→ ψ and ψ→ ϕ as mentioned above, coincides with the Fregean relation
for classical propositional logic and for the other Fregean logics studied in
the literature. Thus it makes sense to call the matrices obtained in this way
the Lindenbaum-Tarski matrices of S, and to call their algebra reducts
(i.e., the algebras Fm/ΛSΣ) the Lindenbaum-Tarski algebras of S.
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For intensional logics the process just described does not work and must
be modified in order to obtain a truly general version of the Lindenbaum-
Tarski method. It is not difficult to see that, for any logic S, there exists a
largest congruence contained in the Frege relation of an arbitrary theory Σ
of S, which is called the Suszko congruence of Σ relative to S, and is
denoted by

∼
ΩSΣ. Obviously, S is Fregean iff

∼
ΩSΣ = ΛSΣ for all theories

Σ of S. The notion of the Suszko congruence was introduced in Suszko’s
1977 talk [129] by the equivalent characterization

〈ϕ,ψ〉 ∈
∼
ΩSΣ iff for every formula δ with the variable x,

Σ ∪
{

δ(ϕ/x)
}

`S δ(ψ/x) and Σ ∪
{

δ(ψ/x)
}

`S δ(ϕ/x). (2.4)

Finally, using the Suszko congruences, we get a version of the Lindenbaum-
Tarski construction that can be applied to all logics. The Lindenbaum-

Tarski matrices of an arbitrary logic S are then the matrices of the form
〈

Fm/
∼
ΩSΣ ,Σ/

∼
ΩSΣ

〉

for an S-theory Σ, and their algebra reducts, that is,
the algebras of the form Fm/

∼
ΩSΣ with Σ ∈ ThS, are the Lindenbaum-

Tarski algebras of S. However, this class is too small (for instance, the
cardinality of these algebras cannot exceed that of the formula algebra) and
hence it cannot be taken as the canonical class of algebras to be associated
with a given logic; but clearly it must be included in it.

The Lindenbaum-Tarski method just described encompasses the gener-
alizations of the classical method discussed in Section 1.3. For equivalential
logics, which can be non-Fregean, it can be proved that for each theory Σ,
the relation ≡Σ defined in (1.8) is precisely the Suszko congruence of Σ.
The expression (1.8) shows that in this case the Suszko congruence of an
S-theory Σ is completely determined by Σ itself, as a set of formulas, inde-
pendently of the underlying logic S. But this is not true in general. This is
clear from the definition (2.4) of the Suszko congruence, and becomes even
clearer when (2.4) is reformulated in terms of S-theories. We have then that
〈ϕ ,ψ〉 ∈

∼
ΩSΣ iff, for every formula δ with the variable x, δ(ϕ/x) and δ(ψ/x)

belong to the same theories of S that include Σ. Thus all the S-theories
that include Σ must be taken into account in determining the Suszko con-
gruence of Σ. For some logics, such as the equivalential logics, this global
information is coded into the theory under consideration. This property es-
tablishes a sharp division within the class of all logics into the protoalgebraic

and nonprotoalgebraic logics (see Section 3.2). In the most general version
of the Lindenbaum-Tarski method just considered, the algebraic counterpart
of a logic is not obtained from individual theories but rather from families
of theories of the logic, that is, from the logic itself considered as an organic
whole.
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The class of algebras that is usually associated with a concrete logic S is
obtained by extending the original Lindenbaum-Tarski method from theories
to arbitrary matrix models of the logic. For instance, given a matrix 〈A, F 〉
that is a model of the classical propositional logic, a congruence relation
≡F on A can be defined by relating two objects a, b ∈ A iff a ↔ b ∈ F ;
this is the largest congruence on A that does not relate elements in F with
elements outside F , and the algebra A/≡F is a Boolean algebra; moreover,
all Boolean algebras are obtainable in this way. More generally, if S is an
implicative logic it can be proved that for any 〈A, F 〉 ∈ModS, the relation
≡F on A defined by a ≡F b iff a → b , b → a ∈ F is the largest congruence
of A that does not relate elements in F with elements outside F , and that,
moreover, F is the equivalence class of a → a, for every a ∈ A. The class
of the algebras A/≡F obtained in this way coincides with Rasiowa’s class
of “S-algebras”. Similarly, for any logic S, suitable analogues of the Frege
relation and of the Suszko congruence (so far defined only for S-theories)
can be defined for the S-filters of an arbitrary algebra. In this manner a
class of algebras can be associated in a canonical way with any given logic.
We now describe the process in detail.

Let S be a logic and let 〈A, F 〉 ∈ModS. The Frege relation of 〈A, F 〉
relative to S is the relation Λ

A

S F on A defined by:

Λ
A

S F=
{

〈a , b〉 ∈ A×A : ∀G ∈ FiSA , F ⊆ G=⇒ (a ∈ G⇐⇒ b ∈ G)
}

(2.5)

That is, 〈a, b〉 ∈ Λ
A

S F iff a and b belong to the same S-filters of A that
include F or, equivalently, iff FiAS

(

F ∪{a}
)

= FiAS
(

F ∪{b}
)

; this is clearly a
generalization of (2.2). The Suszko congruence of 〈A, F 〉 relative to S
is the largest congruence included in Λ

A
S F ; it is denoted by

∼
ΩA

S F . We define
the canonical class of algebras associated with the logic S by the extension
of the Lindenbaum-Tarski method as the closure under isomorphisms of the
class of quotient algebras {A/

∼
ΩA

S F : F ∈ FiSA ,A an L-algebra}. It will
be denoted by AlgS and its members will be called S-algebras.

In the general framework, however, the S-algebras are less important
than the matrices of the form 〈A/

∼
ΩA

S F , F/
∼
ΩA

S F 〉, for arbitrary A and all
F ∈ FiSA. These matrices have the important property of being Suszko-
reduced in the sense that their Suszko congruence relative to S is the identity
(the models of S whose Suszko congruence is the identity are called Suszko-

reduced). Every logic is complete with respect to the class of all its Suszko-
reduced matrices. The elements of AlgS are exactly the algebra reducts of
the Suszko-reduced models of S, but in general there is no canonical way
of associating a single filter FA with each A ∈ AlgS so that the logic is
complete relative to the class

{

〈A , FA〉 : A ∈ Alg S
}

. This is possible in
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the best behaved cases, such as classical logic or intuitionistic logic, where
one can take FA = {1}, so that in this sense the Boolean algebras and the
Heyting algebras are, respectively, a complete algebraic semantics for them.
By contrast, there are many cases of a pair of logics that have the same class
of S-algebras and which can be distinguished through their Suszko-reduced
matrices. A typical example of this phenomenon are the pairs of the local
and the global consequences associated with a normal modal logic such as
S4 or S5 ; some aspects of this situation have been explored in general in
[74, 97].

Further research on Suszko congruences and Suszko-reduced matrices can
be found in Czelakowski’s paper [47] included in the present volume.

3. The Core Theory of Abstract Algebraic Logic

The concepts that constitute the core of AAL were introduced in the 1980’s
and the basic results were obtained. This development was anticipated in
the considerable work on the algebraic theory of logical matrices that had
been done during the previous decade. In the 1990’s progress was made in
systematizing the core and generalizing many of its concepts and results. In
this section we present a systematic but non-historical description of the core
theory of AAL including the algebraic theory of logical matrices that pre-
ceded it and is now considered an integral part of ALL. Czelakowski’s recent
monograph [46] is a comprehensive exposition of a substantial part of AAL,
the only one presently available. It also includes previously unpublished ma-
terial and detailed historical notes for each chapter. A comprehensive review
[66] of it is included in the present volume.

3.1. Elements of the general theory of matrices

The basic concepts that turn out to be central to the development of the al-
gebraic theory of logical matrices and, more generally, to the development of
AAL, are those of a congruence of a matrix, in particular, the largest congru-
ence of a matrix, and the corresponding notion of a reduced matrix. Closely
related to the notion of matrix congruence is that of strict homomorphism.

A (matrix ) congruence of a matrix 〈A, F 〉 is a binary relation θ on A
that is a congruence of A and is compatible with F in the sense that,

for all a, b ∈ A, if 〈a , b〉 ∈ θ and a ∈ F , then b ∈ F .

It is easy to see that every matrix 〈A, F 〉 has a largest matrix congruence;
it is called the Leibniz congruence of 〈A, F 〉, or the Leibniz congruence of
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F in A, and is denoted by ΩAF . The notion, introduced for Lindenbaum
matrices by  Loś in [100] and in general by Wójcicki in [141], was given the
name Leibniz congruence by Blok and Pigozzi in [23] because of the following
characterization of ΩAF that can be viewed as the first-order analogue of
Leibniz’s second-order definition of identity.

〈a, b〉 ∈ ΩAF iff

for every ϕ(x, x0, . . . , xn−1) ∈ Fm and all c0, . . . , cn−1 ∈ A, (3.1)

ϕA(a, c0, . . . , cn−1) ∈ F iff ϕA(b, c0, . . . , cn−1) ∈ F.

Observe that the definition of the Leibniz congruence is completely inde-
pendent of any logic: it is intrinsic to A and F . When applied to models
of a logic S, one finds the following relation with the Suszko congruences
relative to S. For every S-filter F on an algebra A,

∼
Ω

A

S F =
⋂

{

ΩAG : G is an S-filter of A and F ⊆ G
}

. (3.2)

The following useful characterization of
∼
ΩA

S F is easily obtained from (3.1)

and (3.2).

〈a, b〉 ∈
∼
Ω

A

S F iff

for every ϕ(x, x0, . . . , xn−1) ∈ Fm and all c0, . . . , cn−1 ∈ A, (3.3)

FiAS
(

F ∪ {ϕA(a, c0, . . . , cn−1)}
)

= FiAS
(

F ∪ {ϕA(b, c0, . . . , cn−1)}
)

Observe that this is not intrinsic to A and F but depends on S through
the operator FiAS of S-filter generation on A.

For the Leibniz and the Suszko congruences of S-filters on the formula
algebra Fm, that is, of S-theories, we write simply Ω and

∼
ΩS in place of

ΩFm and
∼
ΩFm

S , respectively; similarly, for the Frege relation, ΛS is written
in place of Λ

Fm
S .

We define quotient matrices by matrix congruences. Given a matrix
〈A, F 〉 and a matrix congruence θ of 〈A, F 〉, the quotient of 〈A, F 〉 by θ
is the matrix 〈A/θ, F/θ〉, where A/θ is the quotient algebra and F/θ the
set of equivalence classes of the elements of F . There is only one matrix
congruence on the quotient of a matrix by its Leibniz congruence; this is
the identity relation. A logical matrix 〈A, F 〉 is said to be reduced (or
Leibniz-reduced) if its Leibniz congruence is the identity. Thus to each
matrix 〈A, F 〉 corresponds the reduced matrix 〈A/ΩAF, F/ΩAF 〉, which is
called its reduction
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The class of reduced matrix models of a logic S is denoted by Mod∗S.
The class of algebras that by tradition is associated with a logic S is the
class of algebraic reducts of the reduced models of S; it is denoted by Alg∗S.
Hence

Alg∗S =
{

A : ∃F ∈ FiSA such that ΩAF is the identity
}

.

Since clearly
∼
ΩA

S F ⊆ ΩAF , it is true in general that Alg∗S ⊆ AlgS. These
classes can be different, but they always generate the same quasivariety; in
many cases they coincide (see Theorem 3.4 below).

A strict or (matrix ) homomorphism from 〈A, F 〉 to 〈B, G〉 is an
h ∈ Hom(A ,B) such that F = h−1[G]. The relation between strict homo-
morphisms and matrix congruences parallels the well-known one in universal
algebra between homomorphisms and congruences: for every strict homo-
morphism from 〈A, F 〉 to 〈B, G〉, its kernel is a matrix congruence of 〈A, F 〉,
and every matrix congruence θ of 〈A, F 〉 is obtainable in this way: it is the
kernel of the projection of 〈A, F 〉 onto 〈A/θ, F/θ〉.

The general theory of matrices has strong links with the model theory
of first-order logic, more precisely, with the model theory of equality-free
languages. In 1975 Bloom [31] made the observation that a finitary logic
in a language L can be treated as a universal strict Horn theory over the
first-order language LP without equality that is obtained by adjoining the
single, unary relation symbol P to the set of operation (function) symbols of
S. The terms of LP are thus the formulas of L, and the atomic formulas of
LP have the form Pϕ for ϕ an L-formula. If the logic is not finitary it can
be treated as a universal strict Horn theory in a suitable infinitary language.
The correspondence between finitary logics over L and universal strict Horn
theories over LP goes as follows.

Each formula ϕ of L can be translated into the atomic formula Pϕ of LP ,
and each rule 〈Γ, ϕ〉 with a finite Γ can be translated into the equality-free
universal strict basic Horn sentence tr

(

〈Γ, ϕ〉
)

over LP that is defined as
follows.

tr
(

〈∅ , ϕ〉
)

=
−→
∀xPϕ,

tr
(

〈{ϕ0, . . . , ϕn−1} , ϕ〉
)

=
−→
∀x

(

Pϕ0 ∧ . . . ∧ Pϕn−1→ Pϕ
)

,

where
−→
∀x represents the sequence of universal quantifiers for all variables

appearing in the appropriate formula, and ∧ and → are the classical propo-
sitional connectives of the first-order language LP . Then tr(S) is defined to
be the equality-free universal strict Horn theory axiomatized by the trans-
lations of all the pairs 〈Γ, ϕ〉 such that Γ `fin

S ϕ. If S is finitary, it is clear
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that the LP -structures coincide with the L-matrices, and that the models of
tr(S) are exactly the matrix models of S.

Conversely, for every equality-free universal strict Horn theory Σ over a
language L ∪ {P} with an arbitrary set of function symbols and a single,
unary relation symbol P , there is a unique finitary logic S over L whose
translation tr(S) coincides with Σ. This correspondence shows that the
theory of logical matrices for finitary logics can be identified with the model
theory of the equality-free universal strict Horn theories of the first-order
languages whose language contains, besides function symbols, exactly one
unary relation symbol. Thus results from the theory of implicative classes

(sometimes also called quasivarieties, extending the usual universal algebraic
term) can be applied to the theory of logical matrices. For example, an easy
adaptation of the ultraproduct proof of the compactness theorem for first-
order logic gives:

Theorem 3.1. A logic S is finitary iff the class of all its matrix models

ModS is closed under ultraproducts.

This result, due to Bloom [31], is an example of a so-called bridge theo-
rem, a theorem that relates a metalogical property with an “algebraic” one.
In this case the correspondence is between a metalogical property of S and
a property of its model class ModS. The bridge theorems that are often of
most interest for AAL relate metalogical properties of S to algebraic proper-
ties of its reduced model class Mod∗S or, of even more interest, to algebraic
properties of AlgS or Alg∗S. We discuss several results of this kind below.

A natural question in AAL is to find an algebraic characterization of
the classes of matrices ModSM and ModSf

M, where SM is the logic defined

by an arbitrary class of matrices M, and Sf
M is its finitary companion. By

“algebraic” here one usually has in mind a characterization in terms of the
natural algebraic “operators” that act on classes of matrices, in this case on
M, analogous to Birkhoff’s and Mal’cev’s algebraic characterizations respec-
tively of the variety and quasivariety generated by a class of algebras. In the
following result from [39] we use the operations HS and H

−1
S of taking images

and inverse images respectively under strict surjective homomorphisms, the
operation S of taking submatrices, and the operations P, PR, PRω1

and PU of
taking respectively, direct products, reduced products, reduced products by
an ω1-complete filter, and ultraproducts; all these constructions are assumed
to include closure under isomorphisms. A trivial matrix is a matrix whose
algebra is a trivial (one-element) algebra and whose designated element is
the unique element of the algebra.
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Theorem 3.2. Let M be a class of matrices in a countable language con-

taining a trivial matrix. Then:

1. ModSf
M = H

−1
S HS S PR(M) = H

−1
S HS S P PU(M).

2. ModSM = H
−1
S HS S PRω1

(M).

The analogous problem of characterizing the class of reduced matrix
models of the logics defined by a given class of reduced matrices is a more
natural one for AAL, and was solved in [26] using related but less familiar
class operators. For each operator O ∈ {S,P,PR,PRω1

,PU}, one considers
the operator O

∗ that, when applied to a class of matrices M, gives the class
of matrices isomorphic to the reduction of some member of the class O(M),
i.e., the composition of O with the “reduction” operator plus closure under
isomorphisms. Recall that the class of reduced matrix models of a logic S is
denoted by Mod∗S. Then:

Theorem 3.3. Let M be a class of reduced matrices in a countable language

containing a trivial matrix. Then:

1. Mod∗Sf
M = S

∗
P
∗

R(M) = S
∗

P
∗

P
∗

U(M).

2. Mod∗SM = S
∗

P
∗

Rω1
(M).

Other typical problems addressed in this area have to do with isolating
natural subclasses of M that define the same (finitary) logic as M. For exam-
ple, by the matrix analogue of the well-known Birkhoff Subdirect Represen-
tation Theorem of universal algebra we have that the class of all subdirectly
irreducible factors of the members of M defines the same finitary logic as
M. Another problem is the existence of a finite or recursive presentation of
the logic Sf

M, in a suitable proof system either of the so-called Hilbert style
or in the Gentzen style.

The close connection between the matrix model semantics of logics and
the model theory of equality-free universal strict Horn theories also has ram-
ifications in the other direction. In Section 4.3 we survey some work done in
the model theory of equality-free logic that was directly inspired by recent
work in AAL.

3.2. Protoalgebraic logics

For almost all logics considered in traditional algebraic logic the following
property holds for each theory Σ and each pair of formulas ϕ and ψ.

If for every formula δ with the variable x, δ(ϕ/x) ∈ Σ iff δ(ψ/x) ∈ Σ ,

then Σ ∪ {ϕ} `S ψ and Σ ∪ {ψ} `S ϕ. (3.4)
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In general, two formulas ϕ and ψ that satisfy the premiss of (3.4) are called
Σ-indiscernible [46]; in certain contexts and for the particular case where Σ
is the set of theorems of S this relation has been called synonymity [126].
Condition (3.4) says that Σ-indiscernible formulas are also Σ-interderivable.
The logics that satisfy it for all theories were called protoalgebraic by Blok
and Pigozzi in their 1986 paper [21] and have been extensively studied. In
[43] Czelakowski defined a class of logics by syntactical means that he called
non-pathological. They were shown to be all protoalgebraic in [21], and,
apart from some trivial examples, they included all known protoalgebraic
logics. Later it was shown that these trivial examples are in fact the only
protoalgebraic logics that did not meet Czelakowski’s criterion. The protoal-
gebraic logics include almost all those mentioned in Section 1.1, and they
constitute the main class of logics for which the advanced methods of uni-
versal algebra can be applied to their matrices to give strong and interesting
results.

By comparing the premiss of (3.4) with the expression (3.1) we see that
the relation of Σ-indiscernibility coincides with the Leibniz congruence re-
lation ΩΣ; hence a logic is protoalgebraic iff ΩΣ ⊆ ΛSΣ for each of its
theories Σ. Since

∼
ΩSΣ is the largest congruence below ΛSΣ, this inclusion

holds iff ΩΣ ⊆
∼
ΩSΣ; but by (3.2) it is always true that

∼
ΩSΣ ⊆ ΩΣ.

Therefore S is protoalgebraic iff
∼
ΩSΣ = ΩΣ for all Σ ∈ ThS. Hence for

protoalgebraic logics the Leibniz and the Suszko congruences coincide, and
each theory of a protoalgebraic logic contains all the information needed
to determine its Suszko congruence, which is therefore an intrinsic prop-
erty of the theory. As a consequence, the Lindenbaum-Tarski matrices are
intrinsically characterized; this turns out to be a fundamental property of
protoalgebraic logics. As an immediate consequence of the fact that Suszko
and Leibniz congruences coincide we get
Theorem 3.4. If S is a protoalgebraic logic then Alg S = Alg∗S.

Before the notion of protoalgebraicity was isolated and for sometime
after while it was thought that all interesting logics were protoalgebraic,
it was generally agreed that the proper generalization of the Lindenbaum-
Tarski process was reduction by the Leibniz congruence, and all attention
was focused on the class of Leibniz-reduced models of a logic S and the cor-
responding class of algebra reducts Alg∗S. Since almost all logics then under
study are actually protoalgebraic, in hindsight one understands that these
were the proper notions to consider. However, beginning in 1991 a num-
ber of interesting nonprotoalgebraic logics have been identified and studied
algebraically, and it has become clear that the right generalization of the
Lindenbaum-Tarski process is reduction by what we now call the Suszko
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congruence (or, as we see in Section 5, by the Tarski congruence applied to
generalized matrix models); moreover, the proper semantic classes to con-
sider are the Suszko-reduced models of S and AlgS.

Among the nonprotoalgebraic logics that have been recently studied from
the AAL perspective we find the conjunction-disjunction fragment of classi-
cal logic [80], the implication-less fragment of intuitionistic logic [23], positive
modal logic [96], Belnap’s four-valued logic [70], the weak version of system
R of relevance logic [78], and some subintuitionistic logics [36]. In some of
these cases (but not all: observe that Theorem 3.4 is not an equivalence)
the classes AlgS and Alg∗S are different, and it is the larger one Alg S that
is most naturally associated with the logic. This confirms the choice of the
Suszko congruence as the proper generalization of the Tarski-Lindenbaum
congruence. Research on the general theory of nonprotoalgebraic logics has
only recently begun. [47] and [73] are to our knowledge the only published
works with interesting general results on logics of this type. Nevertheless
there are several works in progress dealing with nonprotoalgebraic logics,
and any truly general theory of AAL has to encompass them.

The feature of protoalgebraic logics that seems most accountable for the
richness of their algebraic theory is the way so many metalogical properties,
as reflected in the algebraic properties of the Lindenbaum matrices, transfer
to arbitrary matrix models, in particular to Leibniz-reduced matrix models
and their algebra reducts. The following result by Czelakowski and Pigozzi,
see [46], is one transfer theorem of this kind.

Theorem 3.5. Let S be a finitary protoalgebraic logic. A property expressible

by a universal sentence of elementary lattice theory holds in the lattice ThS
of all S-theories iff it holds in all lattices FiSA of S-filters on arbitrary

algebras A.

One can obtain as particular cases of this theorem a number of classical
transfer theorems. For example, if the lattice of theories of a logic S is
distributive, then so is the lattice FiSA for every algebra A [42].

Another important feature of protoalgebraicity is its distinctive protean
nature; it can be characterized in many different and often surprising ways.
We consider one of the more interesting ones now that takes the form of
a generalization of the familiar deduction theorem of classical logic. In the
following definition Fmω denotes the set of assignments of formulas over L
to all the variables.

A logic S has the parameterized local deduction-detachment the-

orem (DDT ) if there is a family of sets of formulas E ⊆ P(Fm) such that
for all Γ ⊆ Fm and all ϕ,ψ ∈ Fm,
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Γ, ϕ `S ψ iff
(

∃∆(x, y, ~z) ∈ E
) (

∃~γ ∈ Fmω
) (

∀ δ ∈ ∆(ϕ,ψ,~γ)
)

Γ `S δ.

The following result can be found in [48].

Theorem 3.6. A logic S is protoalgebraic iff it has the parameterized local

DDT.

Thus all protoalgebraic logics possess this very weak form of the familiar
deduction theorem.

Transfer theorems become bridge theorems when the property of the
class of matrix models that the given metalogical property transfers to turns
out to be equivalent to a natural algebraic property in its own right. The
natural abstraction of the classical deduction theorem, and its localized ver-
sion, given in the following two definitions are two important metalogical
properties that have bridges to properties of the matrix models of this kind.
S has the local deduction-detachment theorem if it has the parame-

terized local DDT with an empty set of parameters, more precisely, if there
is a family of sets of formulas E ⊆ P(Fm) in two variables such that for all
Γ ⊆ Fm and all ϕ,ψ ∈ Fm,

Γ, ϕ `S ψ iff
(

∃∆(x, y) ∈ E
) (

∀ δ ∈ ∆(ϕ,ψ)
)

Γ `S δ.

Finally, S has the deduction-detachment theorem, or for emphasis
the global deduction-detachment theorem, if it has the local DDT such
that the set E consists of a single finite set of formulas, i.e., if there is a finite
set ∆(x, y) of formulas in two variables such that for all Γ ⊆ Fm and all
ϕ,ψ ∈ Fm,

Γ, ϕ `S ψ iff
(

∀ δ ∈ ∆(ϕ,ψ)
)

Γ `S δ.

If ∆ can be taken to be unitary, it is said that the logic has the uniterm

DDT ; the general case is referred to simply as the DDT or, for emphasis
if needed, as the multiterm DDT.

In the presence of protoalgebraicity equivalences can be established re-
spectively between the (non-parameterized) local and global deduction-de-
tachment theorems and analogues for matrices of the congruence-extension
and equationally definable principal congruence properties of universal alge-
bra.

An L-matrix 〈A, F 〉 is a submatrix of an L-matrix 〈B, G〉, in symbols
〈A, F 〉 ⊆ 〈B, G〉, if A ⊆ B (i.e., A is a subalgebra of B) and G ∩ A =
F . A class M of matrix models of a deductive system S is said to have
the S-filter-extension-property if, for all 〈A, F 〉, 〈B, G〉 ∈ M such that
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〈A, F 〉 ⊆ 〈B, G〉, and every F ′ ∈ FiS A such that F ⊆ F ′ and 〈A, F ′〉 ∈M,
there exists a G′ ∈ FiS B such that G ⊆ G′ , 〈B, G′〉 ∈M, and G′ ∩A = F ′.

Theorem 3.7 ([24, 44]). Let S be a finitary protoalgebraic logic. Then the

following statements are equivalent.

1. S has the local deduction-detachment theorem.

2. The class ModS has the S-filter-extension property.

3. The class Mod∗S has the S-filter-extension property.

A class M of matrix models of a deductive system S is said to have
formula-definable principal S-filters if there is a finite set ∆(x, y) =
{δi(x, y) : i < n} of formulas in two variables such that, for every 〈A, F 〉 ∈M

and every a ∈ A,

FiAS
(

F ∪ {a}
)

= {b ∈ A : ∀δ ∈ ∆, δA(a, b) ∈ F }.

Theorem 3.8 ([24]). Let S be a finitary protoalgebraic logic. Then the

following statements are equivalent.

1. S has the deduction-detachment theorem.

2. The class ModS has formula-definable principal S-filters.

3. The class Mod∗S has formula-definable principal S-filters.

The property of having formula-definable principal S-filters, and hence
by extension the DDT, has a purely lattice-theoretic characterization, which
we now describe.

A (dual) Brouwerian semilattice is an algebra A = 〈A, ∗A,∨A,>A〉
such that 〈A,∨A,>A〉 is a bounded (join-) semilattice, and, for a, b ∈ A,
a ∗A b is the smallest element c (with respect to the semilattice order) such
that a ≤ b ∨A c. Thus ∗A is a binary operation with the property that, for
all a, b, c ∈ A,

a ∗A b ≤ c iff a ≤ b ∨A c.

The operation ∗A is called (dual) relative pseudo-complementation.
Although it is not immediately obvious, the class of Brouwerian algebras can
be defined by identities alone and thus forms a variety.

For a finitary protoalgebraic logic S, ModS has formula-definable prin-
cipal S-filters iff the join-semilattice of the finitely axiomatizable theories of
S is dually Brouwerian iff, for every A, the join-semilattice of the finitely
generated S-filters of A is dually Brouwerian.

Combining this result with Theorem 3.8 we get:
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Theorem 3.9 ([43]). Let S be a finitary protoalgebraic logic. Then the

following statements are equivalent.

1. S has the deduction-detachment theorem.

2. The join-semilattice of the finitely axiomatizable theories of S is dually

Brouwerian.

3. For every A, the join-semilattice of the finitely generated S-filters of

A is dually Brouwerian.

This theorem combines a bridge theorem (the equivalence between 1
and 3) and a transfer theorem (the equivalence between 2 and 3). A brief
discussion of some elements of this theorem can be found in [29].

3.3. Algebraizable logics

In the 1989 monograph by Blok and Pigozzi Algebraizable Logics [23] the
concept of algebraizable logic was given a mathematically precise definition
for the first time. The idea underlying the definition is the following: a logic
is algebraizable if there exists a class of algebras related to the logic in the
same way as the class of Boolean algebras is related to classical propositional
logic. This relation can be expressed in more than one form. Blok and
Pigozzi chose the following one.

Given a class of algebras K of algebraic similarity type L, the equa-

tional consequence associated with K is the relation |=K between a set of
equations Γ≈∆ = {γi ≈ δi : i ∈ I} and a single equation equation ϕ ≈ ψ of
type L defined by:

Γ≈∆ |=K ϕ ≈ ψ iff for every A ∈ K and every h ∈ Hom(Fm,A),

if h(γi) = h(δi) for every i ∈ I, then h(ϕ) = h(ψ).

|=K is a substitution-invariant consequence relation in the sense of conditions
(C1’), (C2’), and (C6’) of Section 1.1, but with obvious changes in the later
due to the fact that it is on the set of L-equations rather than L-formulas
(see Section 4.1 below).

Let S be a logic over the language L. Let K be a class of algebras of
type L. The formulas of type L and the terms of the algebraic language of
type L are the same objects (or, if one prefers, can be identified). This is
crucial in connecting the consequence relation of the logic S with the equa-
tional consequence associated with K, and, more generally, in establishing
the connection between the properties of S and K. A set of L-equations
K(x)≈Λ(x) = {κj(x) ≈ λj(x) : j ∈ J} in at most one variable is said to
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be a faithful interpretation of S in |=K if for every Γ ⊆ Fm and every
ϕ ∈ Fm,

Γ `S ϕ iff K(Γ )≈Λ(Γ ) |=K K(ϕ)≈Λ(ϕ), (3.5)

where K(Γ )≈Λ(Γ ) = {κj(ψ) ≈ λj(ψ) : j ∈ J, ψ ∈ Γ } and K(ϕ)≈Λ(ϕ) =
{κj(ϕ) ≈ λj(ϕ) : j ∈ J}. When there is a faithful interpretation of a logic
S in the equational consequence |=K associated with a class of algebras K,
the class is called an algebraic semantics for the logic S.

A set of formulas E(x, y) = {εi(x, y) : i ∈ I} in at most two variables
is said to be a faithful interpretation of |=K in S if for every set of
equations Γ≈∆ and every equation ϕ ≈ ψ we have

Γ≈∆ |=K ϕ ≈ ψ iff E(Γ,∆) `S E(ϕ,ψ), (3.6)

where E(Γ,∆) = {εi(γ, δ) : γ ≈ δ ∈ Γ≈∆, i ∈ I} and E(ϕ,ψ) = {εi(ϕ,ψ) :
i ∈ I}. The two interpretations are said to be mutually inverse if

x a`S E
(

K(x), Λ(x)
)

and x ≈ y =||=K K
(

E(x, y)
)

≈Λ
(

E(x, y)
)

, (3.7)

where x a`S E
(

K(x), Λ(x)
)

is the conjunction of the entailments x `S
E

(

K(x), Λ(x)
)

and E
(

K(x), Λ(x)
)

`S x, and similarly for the other part
of (3.7). A logic S over a language L is algebraizable if there is a class
of algebras K of type L and a pair of faithful interpretations E(x, y) and
K(x)≈Λ(x), respectively, of |=K in S and conversely that are mutually in-
verse.

If the interpretations E(x, y) and K(x)≈Λ(x) are finite sets it is said that
the logic is finitely algebraizable. The notion of algebraizable logic intro-
duced by Blok and Pigozzi in [23] is actually what is now called finitely al-
gebraizable logic; moreover they considered exclusively finitary logics. They
did not consider the wider notion. It and its extension to possibly nonfinitary
consequences were considered by Herrmann [89, 90, 91] and by Czelakowski
[45]. Examples of algebraizable logics that are not finitely algebraizable can
be found in [91, 99].

If E(x, y) is a faithful interpretation of the equational consequence re-
lation of a class K of algebras in S, then it is not difficult to see that the
condition (1.8) defines, for each S-theory Σ a congruence relation ≡Σ on
the formula algebra satisfying (1.7). So every algebraizable logic S is equiv-
alential and hence protoalgebraic, and thus Alg S = Alg∗S.

If S is an algebraizable logic, then Alg S is the largest class K of algebras
such that there exists mutually inverse faithful interpretations between S
and |=K. It is called the equivalent algebraic semantics of S. If S is
finitely algebraizable then Alg S is always a quasivariety, and in fact this
property characterizes finitely algebraizable logics.



40 J.M. Font, R. Jansana, and D. Pigozzi

It turns out that to verify that S is algebraizable with equivalent alge-
braic semantics K it suffices only to show that there exists a faithful interpre-
tation K(x)≈Λ(x) of S in the equational consequence relation of K, and a
set of formulas E(x, y) in two variables such that x a`S E

(

K(x), Λ(x)
)

, i.e.,
it suffices to verify only (3.5) and the first equivalence of (3.7), because (3.6)
and the second equivalence of (3.7) are easily shown to be a consequence of
these two conditions. Symmetrically, it also suffices to verify only (3.6) and
the second equivalence of (3.7).

If AlgS is a variety then one says that S is strongly (finitely) alge-

braizable. Most of the best known logics are finitely algebraizable, and most
of these are strongly algebraizable. Rasiowa’s implicative logics, described
in Section 1.3, are all finitely algebraizable. The interpretations are defined
by the set of formulas E(x, y) = {x→ y , y → x} and the set of equations
K(x)≈Λ(x) = {x ≈ x→ x}. Since (x→ x)A = 1 in all A ∈ AlgS, condition
(3.5) becomes, informally,

Γ `S ϕ iff {γ ≈ 1 : γ ∈ Γ } |=AlgS ϕ ≈ 1, (3.8)

which is the familiar completeness/soundness theorem for S relative to the
class of matrices

{〈

A , {1}
〉

: A ∈ Alg S
}

. Thus condition (3.5) in the defi-
nition of algebraizability is a generalization of a common kind of complete-
ness/soundness condition (3.8), but the notion of algebraizability requires
more, namely, the reverse “completeness/soundness” condition (3.6), and
moreover, that the two interpretations be mutually inverse in the sense of
(3.7).

The implicative logics include almost all the familiar logics of classical al-
gebraic logic: the classical propositional calculus CPC and the intuitionistic
propositional calculus IPC, together with their various implication frag-
ments, are all strongly, finitely algebraizable. The equivalent algebraic se-
mantics of CPC and IPC are of course the varieties of Boolean and Heyting
algebras, respectively. The equivalent algebraic semantics of each fragment
of CPC or IPC that contains either → or ↔ is the class of all subalgebras
of the appropriate reducts of Boolean or Heyting algebras, respectively. In
particular, the equivalent algebraic semantics of the {∧,→}, the {∧,↔}, the
{→}, and the {↔} fragments are called the varieties of Brouwerian semilat-

tices, Skolem semilattices, Hilbert algebras, and equivalential algebras.

The two relevance logics R and RM are also algebraizable; in both
cases the faithful interpretation of the logic in the equational logic of the
equivalent algebraic semantics is defined by the same set of formulas E(x , y)
as for implicative logics, and the interpretation in the other direction is
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given by the set of equations
{

x ∧ (x → x) ≈ (x → x)
}

. In the case of
R, the theory of algebraizability facilitated the identification of the class
of R-algebras AlgR in [78]; this turns out to lie strictly between the class
of De Morgan semigroups and the class of De Morgan monoids (the latter
was formerly believed to be the proper algebraic counterpart of R). All
algebraizable logics are protoalgebraic, but there are many non-algebraizable
protoalgebraic logics, such as the local consequences associated with normal
modal logics (those which restrict the application of the necessitation rule
to theorems).

One important line of investigation in traditional algebraic logic has
been the connection between a particular metalogical property of a spe-
cific logic—which is almost always algebraizable—and an algebraic property
of its associated class of algebras; these are the most typical bridge results.
Once a connection is established results from one domain can be translated
to the other. Historically, the first results along this line had to do with
the equivalence between metalogical “interpolation” properties on one hand
and algebraic “amalgamation” properties on the other. The specific logics
considered were first-order predicate logic, the logics intermediate between
classical and intuitionistic propositional logic, and modal logics, and the
corresponding classes of algebras were respectively cylindric (or polyadic)
algebras, subvarieties of Heyting algebras, and varieties of modal algebras.
Later the connection between properties of definability, related to the Beth
definability theorem, and the property that epimorphisms (in the category-
theoretic sense) are surjective were studied. These investigations were for
the most part ad hoc and not part of a general theory of connections of this
kind, although historically their scope did become progressively wider. It
was not until the concept of an algebraizable logic became available that the
stage was set for the development of a general theory of the bridge theorems.
A new connection of this kind that AAL has brought to light is that between
the deduction theorem and the algebraic property of an algebra having its
principal congruences equationally definable. Indeed, the main motivation
underlying the theory of algebraizable logics developed by Blok and Pigozzi
was the need to establish a general context in which this connection can be
stated in a sharp, mathematically precise way. The goal, besides clarify-
ing the concept of algebraization, was to apply the large body of results in
universal algebra on the definability of principal congruences to the prob-
lem of the existence, and more importantly the nonexistence, of a deduction
theorem for a wide class of logics. The first significant bridge theorem es-
tablishing the connection between a metalogical and algebraic property that
was obtained in the context of algebraizable logics (due to Blok and Pigozzi
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[29]) is explained in the following.
Recall that a logic S has the (multiterm global) deduction-detachment

theorem (the DDT ) if there is a finite set ∆(x, y) of formulas in two variables
such that, for every Γ ⊆ Fm and all ϕ,ψ ∈ Fm,

Γ, ϕ `S ψ iff Γ `S ∆(ϕ,ψ), (3.9)

where ∆(ϕ,ψ) = {δ(ϕ,ψ) : δ(x, y) ∈ ∆(x, y)}. The set ∆ is called a
deduction-detachment set for S.

Recall also that Theorem 3.8 provides a bridge between the DDT for a
protoalgebraic logic and a “quasi-algebraic” property of its classes of ma-
trix models and reduced matrix models (the filter-extension property). For
algebraizable logics the bridge can be extended to the relative congruence-
extension property of the equivalent algebraic semantics.

A quasivariety K has equationally definable principal relative con-

gruences (EDPRC ) if there is a finite set of equations in at most four
variables {εi(x0, x1, y0, y1) ≈ δi(x0, x1, y0, y1) : i ≤ n} such that for every
algebra A ∈ K and all a, b, c, d ∈ A,

〈c, d〉 ∈ ΘA

K (a, b) iff ∀i ≤ n εA

i (a, b, c, d) = δA

i (a, b, c, d),

where ΘA

K (a, b) is the smallest congruence θ of A such that 〈a, b〉 ∈ θ and
A/θ ∈ K.

Theorem 3.10 ([29]). If S is a finitary and finitely algebraizable logic, then

S has a DDT iff its equivalent algebraic semantics, i.e., the quasivariety

AlgS, has EDPRC.

We now present a sampling of the large number of bridge results that
exist dealing with definability and interpolation results in AAL.

Let S be a logic and let P and R be disjoint sets of variables. Let
Γ = Γ (p, r) be a set of formulas with its variables either in P (those in the
sequence p) or in R (those in the sequence r). We say that Γ (p, r) defines

R explicitly in terms of P if for every r ∈ R there is a ϕr ∈ Fm with

variables in P such that 〈r, ϕr〉 ∈ Ω
(

Fi
(P∪R)
S (Γ )

)

, where Fi
(P∪R)
S denotes

S-filter generation in the subalgebra of Fm generated by P ∪ R. We say
that Γ (p, r) defines R implicitly in terms of P if for every set of variables
R′ disjoint from R and P of the same cardinality as R, it is the case that,
for every bijection f between R and R′, if r′ = f(r) for r ∈ R, then for every

r ∈ R, 〈r, r′〉 ∈ Ω
(

Fi
(P∪R∪R′)
S (Γ (p, r)∪ Γ (p, r′))

)

, where Fi
(P∪R∪R′)
S denotes

S-filter generation in the subalgebra of Fm generated by P ∪ R ∪ R ′. A
logic S has the Beth property if for all disjoint sets of variables P and R,
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each set of formulas Γ (p, r) that defines R implicitly in terms of P , defines
also R explicitly in terms of P .

A class of algebras K of the same similarity type has the property that the
epimorphisms are surjective, the property ES for short, if for all A,B ∈ K,
every epimorphism h ∈ Hom(A,B) is surjective. Recall that an algebraic ho-
momorphism h ∈ Hom(A,B) is an epimorphism (in the category-theoretic
sense) in K when for every C ∈ K and all g, g ′ ∈ Hom(B,C), if g ◦h = g′ ◦h
then g = g′.

Theorem 3.11. If S is an algebraizable logic, then S has the Beth property

iff AlgS has the property ES.

This theorem was first obtained by Hoogland [92] for the semantics-based
framework of Section 6.1. Its present form and its extension to equivalential
logics are joint work with Blok, see [93]. The study of algebraic forms of
Beth-like properties goes back to 1982 results by Németi in the context of
cylindric algebras, see [88, Theorem 5.6.10].

A logic S has the Craig interpolation property for consequence if
for every Γ ∪ {ϕ} ⊆ Fm such that Γ `S ϕ, there is Γ ′ ⊆ Fm with variables
in var(Γ ) ∩ var(ϕ) such that Γ `S Γ ′ and Γ ′ `S ϕ. A class of algebras
K of the same similarity type has the amalgamation property if for all
A,B,C ∈ K and all (isomorphic) embeddings f : C → A and g : C → B

there is a D ∈ K and (isomorphic) embeddings h : A→ D and t : B → D

such that h ◦ f = t ◦ g.

Theorem 3.12. If S is an algebraizable logic with the DDT, then S has the

Craig interpolation property for consequence iff AlgS has the amalgamation

property.

This particular theorem is due essentially to Czelakowski [41]. In [52]
there are many other versions for equivalential and algebraizable logics due
to Czelakowski and Pigozzi, using matrices instead of algebras; this paper
also contains many references to the extensive literature on the relationship
between interpolation properties (for logics) and amalgamation properties
(for classes of algebras or of matrices).

3.4. The Leibniz hierarchy

Neither the protoalgebraic nor the algebraizable logics were defined explicitly
in terms of the Leibniz operator, but it turns out that they can be charac-
terized this way. More precisely, they can be characterized in terms of the
way in which the Leibniz congruence of a filter of the logic can be explicitly
defined in terms of the filter and vice versa. This gives a informative way of
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classifying logics S by the degree to which they can be faithfully represented
by the equational logic of the S-algebras.

For an algebraizable logic S the following holds. Let E(x, y) and K(x)≈
Λ(x) be respectively the sets of formulas and of equations that define the
mutually inverse faithful interpretations involved in the definition of alge-
braizability. Let 〈A, F 〉 be a model of S and let ≡F be the relation on
A defined by the condition that a ≡F b iff, for every ε(x, y) ∈ E(x, y),
εA(a, b) ∈ F . It is not difficult to see that ≡F is a congruence relation on
A that is compatible with F (the special case for Lindenbaum models was
observed earlier). Thus ≡F ⊆ ΩAF by the definition of the Leibniz con-
gruence. For the reverse inclusion, assume 〈a, b〉 ∈ ΩAF . Then, for each
ε(x, y) ∈ E(x, y),

〈

εA(a, a) , εA(a, b)
〉

∈ ΩAF , and hence εA(a, b) ∈ ΩAF
by the compatibility of ΩAF with F and the fact that εA(a, a) ∈ F since
a ≡F a. Thus, for every model 〈A, F 〉 of S and all a, b ∈ A,

〈a, b〉 ∈ ΩAF iff EA(a, b) ⊆ F, (3.10)

where EA(a, b) = {εA(a, b) : ε(x, y) ∈ E(x, y)}. That is, the Leibniz con-
gruence is defined by the set E(x, y). Moreover, if 〈A, F 〉 is a reduced model
of S, then

F =
{

a ∈ A : κA(a) = λA(a) , ∀κ(x) ≈ λ(x) ∈ K(x)≈Λ(x)
}

; (3.11)

that is, the filter is defined by the equations in K(x)≈Λ(x).
In general, we say that a set of formulas E(x, y) in at most two variables

defines the Leibniz congruence of a matrix 〈A, F 〉 when (3.10) holds
for all a, b ∈ A, and we say that a set of equations K(x)≈Λ(x) in at most
one variable defines the filter of a matrix 〈A, F 〉 when (3.11) holds. The
algebraizable logics can be characterized as the logics for which there is a set
of formulas E(x, y) and a set of equations K(x)≈Λ(x) that define, respec-
tively, the Leibniz congruence of each model of the logic and the filter of each
reduced model. If the set E(x, y) is finite we have the finitely algebraizable
logics.

Each of these two definability conditions, taken separately, characterizes
an interesting type of protoalgebraic logic. The equivalential logics (al-
ready mentioned in Section 1.3) are the logics which have a set of formulas
E(x, y) that defines the Leibniz congruences of their models. The weakly

algebraizable logics are the protoalgebraic logics that have a set of equa-
tions K(x)≈Λ(x) that defines the filters of their reduced models; these logics
have been studied in [50, 73]. Among the equivalential logics there are the
finitely equivalential logics. They are the equivalential logics with a finite
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set E(x, y) of equivalence formulas. These three classes of logics together
with the algebraizable logics constitute the principal levels of the so-called
Leibniz or algebraic hierarchy of protoalgebraic logics.

The Leibniz congruences of models of arbitrary protoalgebraic logics are
also definable, albeit in a much weaker sense than for the logics higher up
in the Leibniz hierarchy. But, as in the case of the higher level logics, the
condition does serve to characterize protoalgebraic logics. Let E(x, y, u) be
a set of formulas where we fix two variables x and y and we consider the
others, represented in the sequence u, as parameters. It is said that E(x, y, u)
parametrically defines the Leibniz congruence of a matrix 〈A, F 〉 if,
for every pair a, b of elements of A,

〈a, b〉 ∈ ΩAF iff ∀ c ∈ A , EA(a, b, c) ⊆ F.

The protoalgebraic logics are exactly those logics that have a set of formulas
E(x, y, u) that parametrically defines the Leibniz congruences of their models
[26]; it is interesting to compare this with the characterization in terms of
the parameterized local deduction theorem given in Theorem 3.6.

Another way of characterizing the various levels of the Leibniz hierarchy
is by the degree to which the Leibniz operator ΩA preserves the order struc-
ture of the lattice of S-filters of an arbitrary algebra A. For proofs of the
various results collected in Theorems 3.13 to 3.16, and historical information
about them, see [46].

Theorem 3.13. Let S be a logic. Then:

1. S is protoalgebraic iff for every algebra A, ΩA is monotone on the set

of S-filters of A, i.e. if F,G ∈ FiSA and F ⊆ G, then ΩAF ⊆ ΩAG.

2. S is equivalential iff S is protoalgebraic and ΩA commutes with inverse

images by homomorphisms, that is, if for all algebras A and B, every

h ∈ Hom(A ,B), and every F ∈ FiSB, ΩAh
−1[F ] = h−1[ΩBF ].

3. S is finitely equivalential iff S is protoalgebraic and ΩA commutes with

unions of directed families of S-filters whose union is an S-filter, that

is, if for every algebra A and every family F ⊆ FiSA upwards directed

by inclusion such that
⋃

F ∈ FiSA, ΩA

(
⋃

F
)

=
⋃

{ΩAF : F ∈ F}.

4. S is weakly algebraizable iff S is protoalgebraic and for every algebra

A, ΩA is injective on the family of the S-filters of A.

5. S is algebraizable iff S is equivalential and for every algebra A, ΩA is

injective on the family of the S-filters of A.

6. S is finitely algebraizable iff S is finitely equivalential and for every

algebra A, ΩA is injective on the family of the S-filters of A.
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As a corollary we have the following lattice isomorphism characteriza-
tions of algebraizable and weakly algebraizable logics. Recall that for an
arbitrary algebra A, an (AlgS)-congruence of A is any θ ∈ Co A such that
A/θ ∈ Alg S.

Corollary 3.14. Let S be a logic. Then:

1. S is weakly algebraizable iff for every algebra A, ΩA is an isomor-

phism between the lattice of S-filters of A and the lattice of (Alg S)-
congruences of A.

2. S is algebraizable iff for every algebra A, ΩA is an isomorphism be-

tween the lattice of S-filters of A and the lattice of (Alg S)-congruences

of A that commutes with inverse images by homomorphisms.

3. S is finitely algebraizable iff for every algebra A, ΩA is an isomor-

phism between the lattice of S-filters of A and the lattice of (Alg S)-
congruences of A that commutes with unions of directed families of

S-filters whose union is an S-filter.

Theorem 3.13 and its corollary are particularly useful in applications to
specific logics or classes of algebras, especially for showing that a logic does
not belong at a certain level of the hierarchy. For example, an effective way
to show that a logic S is not weakly algebraizable is by finding an algebra
and two distinct S-filters with the same Leibniz congruence; the Leibniz
congruences are easy to construct if the algebra is of small (finite) cardinality.
This is done for several examples in Section 5.2 of [23]. Theorem 3.13 and its
corollary can also be used to show that a given class of algebras cannot be
the class of S-algebras for any logic S at a specific level of the hierarchy by
looking at the structure of the congruence lattice of selected members of the
class. This is done for the class of distributive lattices in [80], for the class of
pseudo-complemented lattices in [124], for the class of De Morgan algebras
in [70], and for the class of positive modal algebras in [96]. Finally, the
theorem and corollary constitute a starting point for a further abstraction
of the notion of algebraizability that focuses on its purely lattice theoretical

nature, such as [18]; see Section 4.1 and Theorem 6.3 in Section 6.2 below.

A third, quite different and more “model-theoretic”, way of characteriz-
ing the different classes of logics in the Leibniz hierarchy uses closure prop-
erties of their classes of reduced models under the matrix-class operators
considered in Section 3.1.

Theorem 3.15. Let S be a logic. Then:

1. S is protoalgebraic iff Mod∗ S is closed under subdirect products.

2. S is equivalential iff Mod∗ S is closed under submatrices and direct

products.
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3. S is finitely equivalential iff Mod∗ S is closed under submatrices, direct

products and ultraproducts, that is, is a quasivariety in the sense of

Mal’cev.

4. S is weakly algebraizable iff it is protoalgebraic and for every 〈A, F 〉 ∈
Mod∗ S, F is the least S-filter of A.

5. S is algebraizable iff it is equivalential and for every 〈A, F 〉 ∈Mod∗ S,
F is the least S-filter of A.

6. S is finitely algebraizable iff it is finitely equivalential and for every

〈A, F 〉 ∈Mod∗ S, F is the least S-filter of A.

The given definition of algebraizable logic fails to be intrinsic in the sense
that it requires a priori knowledge of a class K of algebra such that the logic
and the consequence |=K are mutually interpretable. But, as seen in Section
3.3, K can be taken to be the class of S-algebras for the logic S, and the
S-algebras can be defined strictly in terms of S via the Leibniz operator, so
intrinsic charaterizations of algebraizability do exist. Theorem 3.13 provides
a more direct intrinsic characterization of algebraizability in terms of the
Leibniz operator, and similarly for the other classes of the Leibniz hierarchy.

Of special interest among the intrinsic characterizations are those that
are “syntactical” in the sense that they refer only to intrinsic properties of
the consequence relation `S ; these characterizations are the most useful for
verifying where in the Leibniz hierarchy a specific logic actually lies. We
consider a number of characterizations of this kind.

Let E(x, y) be a set of formulas with at most two variables. It is said
that E(x, y) is a set of implication formulas for a logic S if

`S E(x, x) and x,E(x, y) `S y (E-Modus Ponens).

An implication set for S is said to be a set of equivalence formulas if
moreover

E(x, y) `S E(y, x), E(x, y) ∪E(y, z) `S E(x, z) and

E(x0, y0) ∪ . . . ∪E(xn−1, yn−1) `S E(λx0 . . . xn−1, λy0 . . . yn−1)

for every connective λ of the language of S, where n is its arity. It turns out
that a set of formulas E(x, y) is a set of equivalence formulas for a logic S
iff it defines the Leibniz congruences of the models of S.

Theorem 3.16. Let S be a logic. Then:

1. S is protoalgebraic iff it has a set of implication formulas.

2. S is equivalential iff it has a set of equivalence formulas.

3. S is finitely equivalential iff it has a finite set of equivalence formulas.
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4. S is algebraizable iff it has a set of equivalence formulas E(x, y) and

a set of equations in one variable K(x)≈Λ(x) such that they satisfy

x a`S E
(

K(x), Λ(x)
)

.

5. S is finitely algebraizable iff it has a finite set of equivalence formulas

E(x, y) and a set of equations in one variable K(x)≈Λ(x) such that

x a`S E
(

K(x), Λ(x)
)

.

The verification of each of these equivalences is straightforward in view
of the preceding characterizations. For example, the idea behind the proof of
part 4 is easy to explain: Recall that S is algebraizable iff there exists a class
K of algebras and a faithful interpretation E(x, y) of the equational conse-
quence relation of K in S, and a set K(x)≈Λ(x) of equations in one variable
such that x a`S E

(

K(x), Λ(x)
)

. But if E(x, y) is a set of equivalence formu-
las, then as previously observed E(x, y) defines Leibniz congruences, and it
follows from the definition of Alg S that E(x, y) is a faithful interpretation of
the equational consequence relation of AlgS in S. So taking K to be Alg S
we get one-half of the equivalence of 4; the other is straightforward.

Other relevant classes of logics have been considered in the hierarchy.
Each of the classes of weakly algebraizable, algebraizable and finitely al-
gebraizable logics contains a subclass of logics for which all the reduced
models have a unitary designated set, i.e., such that, if 〈A, F 〉 ∈ Mod∗S,
then F = {1} for some element 1 ∈ A. For these subclasses of logics the
qualifying term regularly is added to the name denoting the particular class
in the Leibniz hierarchy. In the algebraizable and finitely algebraizable cases
this property can be easily expressed syntactically by the so-called Gödel’s
rule or G-rule : the set of rules

{x , y } ` ε(x, y) for all ε ∈ E(x, y)

where E(x, y) is any set of equivalence formulas for the logic. All implicative
logics (see Section 1.3) are in fact regularly, finitely algebraizable, with 1 =
(x→ x)A in all A ∈ Alg S. See Section 4.4 for a discussion of the algebraic
investigations motivated by this kind of algebraizability. In a similar manner
the name of a class of logics is qualified by the term strongly to indicate that,
for those logics S in the class, AlgS is a variety. Finally, one can consider
the interaction between the Leibniz hierarchy and the classification of logics
according to Frege’s principles, as discussed in Section 2.1, that is, with
the classes of selfextensional and of Fregean logics. From what can be
discerned from the known examples, it seems selfextensionality is a property
that is independent of the different classes of the hierarchy, however this is
not so in the case of the Fregean property. This is evident from the next
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result, obtained independently by Font and Jansana [73] and by Czelakowski
and Pigozzi [46, 53].

Theorem 3.17.

1. Every protoalgebraic Fregean logic with theorems is regularly algebraiz-

able.

2. Every finitary and protoalgebraic Fregean logic with theorems is regu-

larly, finitely algebraizable.

3. Every finitary and protoalgebraic Fregean logic satisfying the uniterm

DDT or having a conjunction and theorems is strongly and regularly,

finitely algebraizable.

One should not confuse the term “finitely” when referring to equivalential
or algebraizable logics with the notion of a “finitary” logic. In fact, there are
finitary logics that are regularly algebraizable but not even finitely equivalen-
tial [55]; obviously their equivalent algebraic semantics are not quasivarieties.
Protoalgebraic Fregean logics are studied in more detail in [46, 53, 54].

Figure 1 shows the relative positions of some of the classes in the Leibniz
hierarchy.
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Figure 1. The main classes of logics in the Leibniz hierarchy. - means ⊆ , and the “f”
superscript means “for finitary logics”.



50 J.M. Font, R. Jansana, and D. Pigozzi

4. Extensions of the Core Theory

The core theory expounded in the previous section has been extended in
several directions. Some of these extensions, e.g., k-deductive systems and
Gentzen systems, are more-or-less straightforward, mathematically, but they
represent a conceptual advancement; in particular the extension to Gentzen
systems opened new perspectives on the study of the algebraization of logic in
a broad sense. Others, like the extension of the methods of AAL to the study
of equality-free logic, are, strictly speaking, beyond the scope of algebraic
logic, but they show the power of some of its methods and concepts. We
also discuss some recent research of a more purely algebraic character that
focuses on properties that distinguish those classes of algebras that arise as
the algebraic counterpart of a logic.

4.1. k-deductive systems and universal algebra

The motivation behind the study of deductive systems of higher dimension
is the desire to have a common framework for studying the logic of logical
equivalence, and more generally equational logic, and the logic of assertion.
Recall that a quasi-equation of an algebraic similarity type L is a formula
of the form

t0 ≈ s0 ∧ . . . ∧ tn−1 ≈ sn−1→ t ≈ s

where t0, s0, . . . , tn−1, sn−1, t, s are terms of L, and ∧ ,→ are the logical con-
nectives of first-order logic. A quasi-equation is valid in a class of algebras K,
i.e., a quasi-identity of K, if its universal closure is true in every member
of K. This is equivalent to saying that {t0 ≈ s0, . . . , tn−1 ≈ sn−1} |=K t ≈ s,
where |=K is the relation of equational consequence associated with K de-
fined in Section 3.3. The equations valid in a class of algebras K, i.e., the
identities of K, are the consequences of the empty set of equations under |=K.
Thus both the theories of identities and quasi-identities of a class of algebras
K are encompassed in the study of the equational consequence relation |=K.

The equational consequence |=K determined by K has the following prop-
erties, where Π and Φ are arbitrary sets of equations:

(E1) If ϕ ≈ ψ ∈ Π, then Π |=K ϕ ≈ ψ.

(E2) If for all ϕ ≈ ψ ∈ Φ, Π |=K ϕ ≈ ψ, and Φ |=K δ ≈ ε, then Π |=K δ ≈ ε.

(E3) If Π |=K ϕ ≈ ψ, then for every substitution σ, σ[Π] |=K σ(ϕ) ≈ σ(ψ).

(E4) |=K ϕ ≈ ϕ.

(E5) ϕ ≈ ψ |=K ψ ≈ ϕ.
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(E6) ϕ ≈ ψ ,ψ ≈ δ |=K ϕ ≈ δ.

(E7) ϕ1 ≈ ψ1 , . . . , ϕn ≈ ψn |=K fϕ1 . . . ϕn ≈ fψ1 . . . ψn , for every n-ary
operation symbol f .

Moreover, every relation between sets of equations and equations which sat-
isfies properties (E1)–(E7) is the equational consequence of some class of
algebras. Observe that the first three conditions are analogous to the condi-
tions (C1’), (C2’) and (C6’) in the definition of a logic. This suggests gen-
eralizing the definition of logic by replacing the formulas by ordered pairs of
formulas, which can be identified with equations. A 2-dimensional deduc-

tive system (or 2-deductive system for short) S in a language L is a pair
〈Fm,`2

S〉 where Fm is the algebra of formulas of L and `2
S is a substitution-

invariant consequence relation on the set Fm2, that is, a relation between
sets of pairs of formulas and pairs of formulas such that

(C21) 〈ϕ,ψ〉 ∈ Π, then Π `2
S 〈ϕ,ψ〉,

(C22) if for every 〈ϕ,ψ〉 ∈ Φ, Π `2
S 〈ϕ,ψ〉 and Φ `2

S 〈δ, ε〉, then Π `2
S 〈δ, ε〉,

(C26) if Π `2
S 〈ϕ,ψ〉, then for every substitution σ, σ[Π] `2

S 〈σ(ϕ), σ(ψ)〉.

If in addition the following condition holds,

(C23) if Π `2
S 〈ϕ,ψ〉, then there is a finite Π ′ ⊆ Π such that Π ′ `2

S 〈ϕ,ψ〉,

then the 2-deductive system is said to be finitary.

Logical-matrix semantics can be generalized to 2-deductive systems in a
natural way. A 2-matrix is pair 〈A, F 〉 where A is an algebra and F ⊆
A × A. A 2-matrix is a model of a 2-deductive system S if, for every
assignment h ∈ Hom(Fm,A), every Π ⊆ Fm2 and every 〈ϕ,ψ〉 ∈ Fm2

such that Π `2
S 〈ϕ,ψ〉 and h[Π] ⊆ F , it follows that

〈

h(ϕ), h(ψ)
〉

∈ F . In
this situation we say that F is an S-2-filter of A. The notion of Leibniz
congruence of a matrix generalizes easily to 2-matrices and 2-filters: the
Leibniz congruence of a 2-matrix 〈A, F 〉 is the largest congruence θ of A

such that

if 〈a0, b0〉, 〈a1, b1〉 ∈ θ and 〈a0, a1〉 ∈ F , then 〈b0, b1〉 ∈ F .

When this condition is fulfilled it is said that θ is compatible with F . Using
this notion the concepts of a protoalgebraic, equivalential, weakly equivalen-

tial and algebraizable 2-deductive system can be defined and the theory of
2-deductive systems can be developed in parallel with the theory of logics.

The equational consequence relations associated with classes of algebras
can be identified with extensions of the 2-deductive system presented by
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the axioms and rules corresponding to conditions (E4)–(E7), that is the
conditions

(E4′) `2
S 〈ϕ,ϕ〉.

(E5′) 〈ϕ,ψ〉 `2
S 〈ψ,ϕ〉.

(E6′) 〈ϕ,ψ〉, 〈ψ, δ〉 `2
S 〈ϕ, δ〉.

(E7′) {〈ϕ0, ψ0〉, . . . , 〈ϕn−1, ψn−1〉} `
2
S 〈fϕ0 . . . ϕn−1, fψ0 . . . ψn−1〉, for ev-

ery n-ary connective f .

Let us denote by EQL the least 2-deductive system in language L which
satisfies conditions (E4′)–(E7′); its models are exactly the 2-matrices 〈A, θ〉
such that θ is a congruence of A. Thus, the EQL-2-filters of an algebra A are
the congruences of A. It is easy to see that the Leibniz congruence of a model
〈A, θ〉 of EQL is precisely θ (i.e., ΩAθ = θ). Therefore, the reduced models
of EQL are the 2-matrices of the form 〈A, IdA〉 where IdA is the identity
relation on A, and, accordingly, they can be identified with their algebra
reducts. This implies that the equational consequence relations determined
by arbitrary classes of algebras correspond to the 2-deductive systems that
extend EQL. Furthermore, the equational consequence relations determined
by quasivarieties are the finitary 2-deductive systems that extend EQL, and
this establishes a correspondence between these systems and quasivarieties
that can be stated as follows.

1) A class of algebras K is a quasivariety iff there is a finitary 2-deductive
system extending EQL such that K is the class of algebra reducts of
the reduced models of S.

Conversely,

2) a 2-deductive system S is a finitary deductive system that extends
EQL iff there is a quasivariety K such that the class of the reduced
models of S is the class of 2-matrices {〈A, IdA〉 : A ∈ K}.

There is also a correspondence between varieties and finitary 2-deductive
systems which are axiomatic extensions of EQL. Indeed, if a variety K is
axiomatized by a set of equations Π, and S is the extension of EQL by the
axioms {〈ϕ,ψ〉 : ϕ ≈ ψ ∈ Π}, then S is finitary and its reduced models
are the 2-matrices 〈A, IdA〉 where A belongs to K. Conversely, given an
axiomatic extension of EQL by a set Γ of pairs of formulas, the class of
algebraic reducts of its reduced models is the variety axiomatized by the
equations ϕ ≈ ψ with 〈ϕ,ψ〉 ∈ Γ . Thus, the study of quasivarieties and
varieties correspond to the study of the finitary 2-deductive systems that
are extensions of EQL and of the axiomatic ones, respectively.
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From a mathematical point of view, the next step is obvious: for each nat-
ural number k > 0 the k-deductive systems, or k-dimensional deduc-

tive systems, are defined by replacing in the definition of 2-deductive sys-
tems the pairs of formulas by sequences of formulas of length k (k-sequences)
and making the other obvious changes. Then logics in the sense of Section 1.1
can be identified with the 1-deductive systems. Matrix semantics general-
izes in a natural way to k-deductive systems, and the notion of a congruence
of an algebra being compatible with a set of k-sequences of elements of its
domain is also defined naturally. This leads to a generalization of the Leib-
niz operator that operates on sets of k-formulas of an algebra. A theory of
k-deductive systems within the framework of AAL can be developed along
the lines described above; the basic elements of such a theory were worked
out by Blok and Pigozzi in [26].

The generalization to arbitrary finite dimensions provides a framework
for a common development of logics in the sense of the so-called assertional

logics of Section 1.1 (k = 1) and equational logic (k = 2). This in turn
provides a context in which the notion of algebraizability can be viewed
as a special case of a more general, symmetric relation between deductive
systems of different dimensions. More precisely, in [26, 29] algebraizability
appears as a particular case of the more general notion of equivalence be-

tween a k-deductive system and an m-deductive system that is given by the
appropriate generalizations of (3.5), (3.6) and (3.7). Since by definition the
equivalence is effected by syntactic transformations, one would expect that
metalogical properties that are characterized syntactically would automati-
cally transfer from a deductive system to each of its equivalent systems. The
(multiterm global) deduction-detachment theorem (DDT) for k-deductive
systems, which is a straightforward generalization of the DDT for logics, is
an example of a property of this kind.

Theorem 4.1 ([29]). The DDT is preserved under equivalence between k-
and m-deductive systems (in the case where both deductive systems are fini-

tary and the equivalence and interpretations are finite).

Many familiar metalogical properties of assertional logics (i.e., 1-deductive
systems) when applied to the extensions of the 2-deductive system EQL take
the form of a well-known algebraic property, and the DDT is of this kind.
In fact:

Theorem 4.2. A quasivariety K has EDPRC iff its associated 2-deductive

system |=K has the DDT (in its 2-dimensional form).
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Thus Theorem 3.10 turns out to be a corollary of these two more abstract
results, once algebraizability is defined as equivalence with a 2-deductive
system of the form |=K for some K.

Combining Theorem 4.2 with the 2-dimensional version of Theorem 3.9
(and using the fact that filters of the 2-deductive system |=K are K-congru-
ences) we have that K has EDPRC iff, for every A ∈ K, the join-semilattice
of finitely generated K-congruences of A is dually Brouwerian. Since it is
well known that any algebraic lattice whose join sub-semilattice of compact
elements is dually Brouwerian is distributive, we get:

Theorem 4.3. Let Q be a quasivariety of algebras. If Q has EDPRC then

Q is relatively-congruence-distributive.

The special case of this result for varieties was proved in [98]; it solved
a then open problem in universal algebra, and was one of the first exam-
ples of the kind of cross-fertilization between logic and algebra that AAL
stimulates. It is explained in [116] how, thanks to the introduction of the
technical notion of algebraizability, this purely algebraic theorem was ac-
tually developed with a logical intuition, now formalized as Theorem 3.10,
in mind. The relationship between the DDT and the EDPRC motivated a
series of papers [20, 19, 27, 28, 98] on varieties with equationally definable
principal congruences with important universal-algebraic content.

The much more abstract point of view has paved the way to further
extensions of the key idea of algebraizability and of the Leibniz hierarchy to
other domains, such as those described in Sections 4.2 and 6.2 below, and to
a lattice-theoretical abstraction [18] of the behaviour of the Leibniz operator
for algebraizable logics.

Finally, we mention that the more general notion of equivalence can also
be applied to two logics of the same dimension, in particular to assertional
(i.e., 1-dimensional) logics. It should not be confused with the more common
notion of definitional equivalence, where a change in language is involved. If
it is necessary to emphasize the distinction the AAL notion, which applies
only to logics in the same language, is referred to as deductive equivalence.
See [29] for more details and examples, and [87] for an integrated treatment
of the two notions in the context of AAL.

The theory of k-deductive systems applies ideas and techniques borrowed
from its two original sources, the theory of matrices of 1-dimensional logics
and universal algebra. As in the case k = 1, the protoalgebraic k-deductive
systems have the richest theory. At the same time several theorems of uni-
versal algebra turn out to be particular cases of more general theorems for
k-deductive systems. One of them is Mal’cev’s theorem characterizing the
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quasivariety generated by a class of algebras K as the class S PR(K); it is a
consequence of the version for 2-deductive systems of Theorem 3.3. Another
example is Birkhoff’s theorem on subdirect representation. Other theorems
of universal algebra can be obtained by simple arguments by specializing
more general results for protoalgebraic k-deductive systems to EQL, since the
latter 2-deductive system is clearly protoalgebraic. One result from universal
algebra that has motivated a particularly large amount of research in AAL
is Baker’s well-known finite basis theorem. It says that every congruence-
distributive variety of algebras (in a finite language) generated by a finite
set of finite algebras is finitely axiomatizable (finitely based). This is gen-
eralized in [114] to quasivarieties: every finitely-generated quasivariety (in
a finite language) that is relatively congruence-distributive is finitely based.
The matrix counterpart of congruence-distributivity is filter-distributivity

(the property that for each algebra A the lattice FiSA is distributive),
a property shared by a wide variety of logics, for instance, all those hav-
ing a disjunction or the DDT. After several progressive generalizations by
Czelakowski, Blok and Pigozzi, Pa lasińska [110] obtained the version below
for protoalgebraic k-deductive systems from which the original form follows
as a particular case; the result and some refinements and extensions are
included in her paper [112] in this volume.

Theorem 4.4. Every filter-distributive and protoalgebraic finitary k-deductive

system over a finite language that is defined by a finite set of finite matrices

is finitely presented.

In Section 4.3 similar generalizations of the well-known Jónsson’s lemma

are expounded. According to the previous remarks, parts of universal al-
gebra can be considered as a chapter of the theory of k-deductive systems.
Nevertheless, as usually happens, the historical process has been the other
way around: results of universal algebra have been generalized first to pro-
toalgebraic 1-deductive systems and subsequently, or sometimes simultane-
ously, to k-deductive systems. Universal algebra has been a constant source
of inspiration for the development of AAL, but, with some justification, it
can be claimed that a large part of universal algebra is encompassed by AAL.

4.2. Gentzen systems and their generalizations

The notion of Gentzen system was introduced into AAL by Torrens [134],
and by Rebagliato and Verdú in [123]. Its original purpose was to deal with
logics that are not algebraizable in the sense of Section 3.3, and possibly not
even protoalgebraic, but which nevertheless have a clear algebraic character.
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This applies for example to certain fragments of some algebraizable logics.
But although algebraizability in the strict sense of Section 3.3 is lost in
passing to the fragment, in some important cases it can be recovered in a
somewhat weakened sense by means of a Gentzen calculus.

A Gentzen system is the abstract notion that arises from considering the
relation between sets of sequents and sequents that can be defined by the
rules of a given Gentzen calculus. Roughly speaking Gentzen systems are in
the same relation to Gentzen calculi as logics, as defined in Section 1.1, are
in relation to their Hilbert-style presentations. They can also be viewed as
a generalization of the notion of a k-deductive system.

A sequent over a logical language L is a pair of finite sequences of
formulas of L, thus having the form

〈

〈ϕ0, . . . , ϕn−1〉, 〈ψ0, . . . , ψm−1〉
〉

. This
is frequently written in one of the two forms ϕ0, . . . , ϕn−1 ` ψ0, . . . , ψm−1

and ϕ0, . . . , ϕn−1 ⇒ ψ0, . . . , ψm−1, but we prefer to write it as

ϕ0, . . . , ϕn−1 B ψ0, . . . , ψm−1

in order to avoid misunderstandings. We will say that a sequent of this form
is of type (n,m). Some calculi apply only to sequents of certain types, for
example Gentzen’s calculus LJ for intuitionistic logic applies only to sequents
of types (n,m) with n ≥ 0 and m ≤ 1, but his calculus LK for classical logic
applies to arbitrary sequents.

We denote finite sequences of formulas by overlined lowercase Greek
letters (ϕ,ψ, etc.). We identify the sequences of length one with their
unique component, and denote concatenation of sequences by juxtaposition
(e.g., ξ, ϕ, ψ, ξ

′
). Sequents are written in the form ϕ B ψ. Finally, if ϕ =

〈ϕ0, . . . , ϕn−1〉 and σ is a substitution, then we put σϕ := 〈σϕ0, . . . , σϕn−1〉.
Consider a language L and a set Seq of sequents of L that is closed under
sequent types, that is, if it contains a sequent of type (n,m) then it con-
tains all the sequents of type (n,m). A Gentzen system on Seq is a pair
G = 〈Fm,`G〉, where `G is a substitution-invariant consequence relation on
the set Seq, that is, `G ⊆ P(Seq) × Seq and the following conditions corre-
sponding to (C21), (C22), and (C26) are satisfied for all subsets Π and Φ of
Seq.

(Cg1) If ϕB ψ ∈ Π, then Π `G ϕB ψ.

(Cg2) If for every ϕB ψ ∈ Φ, Π `G ϕB ψ and Φ ` δ B ε, then Π `G δ B ε.

(Cg6) If Π `G ϕB ψ, then for every substitution σ, σ[Π] `G σϕB σψ.

The Gentzen system is said to be finitary if

(Cg3) if Π `G ϕBψ, then there is a finite Π ′ ⊆ Π such that Π ′ `B ϕB ψ.
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The set of pairs (n,m) such that Seq has an element of type (n,m) will
be called the type of the Gentzen system and will be denoted by tp(G).

In addition to these conditions, certain so-called structural rules are
often imposed on a Gentzen system. We formulate just one, the rule of

weakening on the left, as an example of the form they take:

{ξ, ξ′ B ψ} `G ξ, ϕ, ξ′ B ψ.

This condition is assumed to hold for all finite sequences of formulas ξ, ξ ′, ψ
and every formula ϕ, such that the sequents ξ, ξ ′ B ψ and ξ, ϕ, ξ′ B ψ are of
admissible types. A Gentzen system that satisfies all the structural rules is
called structural ; otherwise, substructural.

The effect of all the structural rules, taken together, holding in a Gentzen
system G (of suitable type) is that the relation ` ⊆ Pω(Fm) × Fm defined
by the condition

{ϕ0, . . . , ϕn−1} ` ψ iff `G ϕ0, . . . , ϕn−1 B ψ (4.1)

coincides with the finite part `fin
S of a (unique) finitary logic S. Well-known

finitary logics are often defined by a structural Gentzen system in this way as
a useful alternative to a Hilbert-style presentation. The prime examples of
this phenomena are Gentzen calculi LK and LJ for classical and intuitionistic
propositional logic. Substructural Gentzen systems are also used to define
logics, but a different kind of logic from the deductive systems considered in
Section 1.1. Here S is viewed simply as a set of formulas that is invariant
under substitution, i.e., there is no primitive notion of consequence and
thus S is entirely determined by its theorems. However the language of S
normally has a connective → that can be viewed as taking on some of the
function of the missing consequence relation. The definition of a logic S of
this kind by a Gentzen system G takes the following form.

ϕ0 → (· · · → (ϕn−1 → ψ) · · · ) ∈ S iff `G ϕ0, . . . , ϕn−1 B ψ (4.2)

Logics S defined in this way are called substructural if G is substructural.
Examples of substructural logics are BCK logic, relevance logic and linear
logic. In each of these cases it turns out that there is an algebraizable de-
ductive system whose set of theorems coincides with the given logic; this is
shown in [23] for BCK and relevance logic, and it is not difficult to extend the
method used there to linear logic. Normally, the sole purpose of such a de-
ductive system is to generate the theorems of the substructural logic S, and
no special proof-theoretic meaning is attributed to its consequence relation;
for instance, in regard to the implicative connective → of S, this is reflected
in the fact that → can never constitute a singleton deduction-detachment
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system for the deductive system if S is truly substructural. Indeed sub-
structurality is not an intrinsic property of S but rather an atribute of the
Gentzen system that defines it. Hence any algebraic study of substructural
logics that is intended to take this property into account should properly
focus on the algebraization of the defining Gentzen systems.

In analogy with the case for deductive systems, Gentzen systems are
normally defined by specifying a subset of Seq as axioms and a set of pairs
〈Π,ϕBψ〉 ∈ Pω(Seq)×Seq as rules of inference. The consequence relation `G
is defined in terms of the axioms and rules of inference in the standard way.
The axioms and inference rules together is called a presentation of G; a
Gentzen system together with a presentation is called a Gentzen calculus.

The notion of logical matrix can be extended to obtain a semantics for
Gentzen systems. Let L be a language and let G be a Gentzen system on the
language L. Given an arbitrary set A let us consider the finite sequences of
elements of A and denote them by overlined small Latin letters (a, b, etc.).
We denote the pairs of these finite sequences by aBb. The type of a pair aBb
is the pair of natural numbers (n,m) where n is the length of a and m the
length of b. Given an algebra A of type L, an assignment h ∈ Hom(Fm,A)
and a sequence ϕ = 〈ϕ0, . . . , ϕn−1〉, we put hϕ :=

〈

h(ϕ0), . . . , h(ϕn−1)
〉

;
this sequence is the interpretation of ϕ in A by h. Given a sequent
ϕ B ψ, its interpretation in A by h is the pair hϕ B hψ. A G-matrix

for the type of G (the “G” here stands for “Gentzen”) is a pair 〈A,R〉
where R is a set of pairs of finite sequences of elements of A whose type
belongs tp(G). A G-matrix 〈A,R〉 of the type of G is a model of G if, for
every assignment h ∈ Hom(Fm,A), every set Π of sequents of G such that,
for all ε B δ ∈ Π, hε B hδ ∈ R, and every sequent ϕ B ψ of G such that
Π `G ϕ B ψ, we have hϕ B hψ ∈ R. The notion of a congruence relation
on an algebra A being compatible with a set R of pairs of finite sequences
of elements of A is defined just as in the case of sets of k-sequences. The
Leibniz congruence of a G-matrix 〈A,R〉 is the largest congruence on A

compatible with R. Using the Leibniz congruence the abstract algebraic
theory of logics and of k-deductive systems can be generalized in a natural
way to Gentzen systems. In particular the various classes of the Leibniz
hierarchy can be defined using, for instance, the characterizations found in
3.13; see [119, 122, 123]. Moreover, ordinary logics can be viewed as Gentzen
systems of type

{

(0, 1)
}

; more generally k-deductive systems can viewed as
Gentzen systems of type

{

(0, k)
}

. So this formalism provides a unified view
of the three notions of consequence involved in the algebraic treatment of
logical systems.
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The general notion of the equivalence of deductive systems of different
dimension that was discussed in Section 4.1 can be extended to Gentzen
systems of different types in a straightforward way. The interpretations
are based on translations of sequents into finite sets of equations and of
equations into finite sets of sequents. This gives a third way of expressing the
connection between a Gentzen system and a logic that can be an alternative
to (4.1) and (4.2), although in many cases the interpretation of the logic S
in a Gentzen system G given by (4.1) or (4.2) turns out to be one half of an
equivalence. Indeed, in the case of BCK logic, the interpretation described in
(4.2) is in part an equivalence between BCK logic and a certain substructural
Gentzen system with a very natural presentation; this is shown in [2].

It is natural to take a Gentzen system to be algebraizable if it is equiv-
alent to some extension of EQL, that is to a logic of the form 〈Fm , |=K〉
for some class K of algebras of type L. As mentioned above, part of the
motivation for considering Gentzen systems in the abstract algebraic the-
ory of logics is to try to classify the algebraic character of a logic S that
is not algebraizable or maybe not even protoalgebraic. One way to do this
is to find an algebraizable Gentzen system in which S can be faithfully
interpreted. The implication-less fragment IPL∗ of the intuitionistic propo-
sitional logic is a classic example of this kind. It was shown in [23] to be
nonprotoalgebraic, but a Gentzen calculus of type ωr {0} × {1} that faith-
fully interprets it was presented in [123] whose associated Gentzen system
was shown to be algebraizable with equivalent algebraic semantics the class
of pseudo-complemented distributive lattices. The relevant interpretations
are:

ϕ0, . . . , ϕn−1 B ψ −→ (ϕ0 ∧ . . . ∧ ϕn−1 ∧ ψ) ≈ (ϕ0 ∧ . . . ∧ ϕn−1) (4.3)

{δ B ε , εB δ} ←− δ ≈ ε (4.4)

The interpretation (4.4) is the one most commonly used for algebraizing
Gentzen systems that define selfextensional logics, as is the case here. If
we compare it with the one used for implicative logics (Section 3.3) we see
why Gentzen systems are useful in capturing the algebraic nature of logics
without an implication connective; the role of the missing implication is
played by the “entailment symbol” B.

Different Gentzen systems can have the same sequents as theorems, and
hence define the same logic, but have different behaviour regarding alge-
braizability. Similarly, different Gentzen calculi defining the same logic can
have different proof-theoretic properties. Gil and Rebagliato [82] have in-
vestigated the relationships between proof-theoretic properties of a Gentzen
calculus and the algebraic character of the Gentzen system it defines. One of
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the things they show is that any Gentzen system defined by a so-called regu-

lar Gentzen calculus that has the exchange rule (one of the structural rules)
is protoalgebraic iff it satisfies the cut rule (another well known structural
rule). The regularity assumption is a technical requirement that guarantees
the logical rules of the calculus have a certain “natural” form. Actually, the
systems that Gil and Rebagliato work with in [82] are slightly more general
than Gentzen systems. They work with the so-called m-sided Gentzen

systems (m ≥ 2). These are based on a generalization of the notion of
sequent to m-sided sequents, which are sequences of m finite sequences of
formulas, these being of varying length subject to possible restrictions; they
are denoted similarly to the following.

ϕ0
0, . . . , ϕ

0
k0
| ϕ1

0, . . . , ϕ
1
k1
| . . . | ϕm−1

0 , . . . , ϕm−1
km−1

.

Ordinary sequents are identified with 2-sided sequents. m-sided Gentzen
systems were introduced by Rousseau [125] in order to build proof systems
of Gentzen style for  Lukasiewicz’s finitely-valued logics, and have recently
re-appeared in connection with automated deduction issues, see [14].

More recent, but in the same vein, is the introduction of hypersequents.
They are finite sequences (of arbitrary length) of ordinary (i.e., 2-sided) se-
quents, and have been used to obtain proof systems for several kinds of logics:
intermediate, many-valued, fuzzy, substructural, computational. Proof sys-
tems based on hypersequents seem to show more flexibility and better proof-
theoretic behaviour than either the 2-sided or arbitrary m-sided Gentzen
calculi. See [13] for a survey and further references. It is clear that these
generalizations can also be treated algebraically in a similar (but notation-
ally more complicated) way as 2-sided Gentzen calculi. Both the idea of
algebraizability via mutually inverse interpretations to and from equational
logics, and the Leibniz hierarchy based on the notion of matrix, can be
generalized in a straightforward way so that sequents, m-sided sequents or
hypersequents play the role of formulas. Some works where this is done, at
varying levels of generality, are [1, 81, 83, 84].

It may seem that in each of the generalizations of the notion of algebraiz-
ability described in this section the theory has to be developed in extenso,
since the syntactical objects to which the extended notion of deductive sys-
tem is applied are different each time. However, there are more general and
comprehensive frameworks that cover all these cases as particular ones, and
hence can be used as the theoretical background on which to base a particular
application. One is based on the expression of all the preceding formalisms
in terms of (ordinary) first-order languages without equality, as is explained
in detail in the next section. The other is less dependent on grammatical



A Survey of Abstract Algebraic Logic 61

issues and concentrates on the lattice-theoretical aspect of algebraizability
as a special isomorphism between two lattices of theories (Corollary 3.14).
It has been developed by Blok and Jónsson [18] and it seems it may have a
wide range of applications.

4.3. Equality-free universal Horn logic

Bloom’s observation mentioned in Section 3.1 showing how to correlate fini-
tary logics with equality-free strict universal Horn theories can be extended
to the finitary k-deductive systems and also to Gentzen systems in a natural
way.

The finitary k-deductive systems over a language L are correlated with
the equality-free strict universal Horn theories over a first-order language
that contains, apart from the function symbols corresponding to the logi-
cal connectives of L, exactly one k-ary relation symbol P . A k-sequence
of formulas 〈ϕ0, . . . , ϕk−1〉 translates into the atomic formula Pϕ0 . . . ϕk−1,
and a rule

〈

{ϕ0, . . . , ϕn−1} , ϕ
〉

translates into the universal Horn formula
−→
∀x

(

Pϕ0 ∧ . . . ∧ Pϕn−1 → Pϕ
)

. k-matrices 〈A, F 〉 where F ⊆ Ak can be
identified with first-order structures.

The relation between finitary Gentzen systems and equality-free strict
universal Horn theories is established as follows. Let G be a finitary Gentzen
system over the language L. For every (n,m) in the type of G one in-
troduces an (n + m)-ary relation symbol R(n,m) and translates a sequent
〈ϕ0, . . . , ϕn−1〉B 〈ψ0, . . . , ψm−1〉 having type (n,m) into the atomic formula
R(n,m)ϕ0 . . . ϕn−1ψ0 . . . ψm−1; note that the use of ordered pairs to index the
relation symbols makes it possible to parse the atomic formulas into sequents
in a unambiguous way. Given a sequent ϕ B ψ we denote by tr(ϕ B ψ) its
translation. A sequent rule 〈Π,ϕ B ψ〉 where Π is a finite set of sequents
and ϕBψ is a sequent is translated into the universal closure of the formula

(

∧

εBδ∈Π

tr(εB δ)
)

→ tr(ϕB ψ)

when Π 6= ∅, and into the universal closure of tr(ϕ B ψ) when Π = ∅. The
formula so obtained is an equality-free strict universal Horn formula in the
similarity type LG = L ∪

{

R(n,m) : (n,m) ∈ tp(G)
}

. Thus, to each finitary
Gentzen system G corresponds an equality-free strict universal Horn theory.

The G-matrices for a Gentzen system G have to be modified in order to
obtain structures suitable as models—in the usual first-order logic sense—for
the equality-free strict universal Horn theory of G. The modification of a G-
matrix 〈A,R〉 for G consists, loosely speaking, in breaking up the set R into
its ‘type-homogeneous’ parts. One obtains the structure A =

〈

A, 〈RA

(n,m) :
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(n,m) ∈ tp(G)〉
〉

of similarity type LG , where RA

(n,m) is the set of sequences

〈a0, . . . , an−1, an, . . . , an+m−1〉 with
〈

〈a0, . . . , an−1〉, 〈an, . . . , an+m−1〉
〉

∈ R.

Obviously 〈A,R〉 and A =
〈

A, 〈RA

(n,m) : (n,m) ∈ tp(G)〉
〉

are essentially the
same entity and can be identified. Under this identification a Gentzen system
and its associated equality-free strict universal Horn theory have exactly the
same models. This correspondence is expounded in detail in [75].

The correspondence just described can be extended to the more compli-
cated extensions of the notion of Gentzen system described in the preceding
section. The basic “syntactic unit” of each of these extensions, finite se-
quences of finite sequences of formulas, finite sequences of finite sequences
of finite sequences of formulas, etc. translates into an atomic formula with a
relation symbol whose index reflects the logical type of the given syntactic
unit. Then each “rule” translates into a strict universal Horn formula in
the obvious way. The translation of the matrices appropriate for these gen-
eralized Gentzen systems is based on the idea that an ordinary assignment
h ∈ Hom(Fm,A) can be extended componentwise in a routinely way to
finite sequences of formulas, sequences of sequences of formulas, etc. The
interpretations of each of these linguistic constructs has the same structure
over the domain A of the algebra A, i.e., finite sequences of finite sequences of
elements, finite sequences of finite sequences of finite sequences of elements,
etc. Hence the matrices for more complicated systems can be presented as
structures for a first-order language whose algebraic part corresponds to the
logical language, and whose relation symbols are indexed according to the
structure of the “syntactic units” of the system (sequents, m-sided sequents,
hypersequents, etc.). Since the basic component of each of the generalized
Gentzen systems under consideration is a substitution-invariant (in a gen-
eralized sense) consequence relation on some set, the associated first-order
theory will always be an equality-free strict universal Horn theory.

Consideration of these correspondences awakened a renewed interest in
the model theory of equality-free languages beyond universal Horn theories
without equality. The basic tools used here turn out to be the same ones
used in the theory of k-deductive systems and Gentzen systems, namely the
notions of Leibniz congruence, reduced structures and strict homomorphisms
between first-order structures. A congruence of a first-order structure

A is a congruence relation θ on its algebraic part that is compatible with
each fundamental relation of A, i.e., for every n-ary relation symbol R,

if ∀i < n , 〈ai , bi〉 ∈ θ and 〈a0, . . . , an−1〉 ∈ R
A, then 〈b0, . . . , bn−1〉 ∈ R

A.

The Leibniz congruence ΩA of a first-order structure A is the largest
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congruence of A; A is reduced when ΩA = IdA, and the reduction of a
structure is its quotient by its Leibniz congruence. Finally, a strict homo-

morphism from a structure A for a first-order language into a structure B

for the same language is a function h : A → B that is an homomorphism
relative to the algebraic parts of A and B that in addition satisfies the
condition that, for every n-ary relation symbol R and all a0, . . . , an−1 ∈ A,

〈a0, . . . , an−1〉 ∈ R
A iff

〈

h(a0), . . . , h(an−1)
〉

∈ RB.

Using these definitions one obtains the operators HS and H
−1
S of forming

images and inverse images of structures by strict homomorphisms.

The matrix-model theory outlined above has motivated two distinct lines
of research in the model theory of equality-free first-order logic that have
gone considerably beyond strict universal Horn theories. One line, pursued in
the doctoral dissertation of Dellunde [56] and the related papers [35, 57, 58],
has investigated a number of the standard topics of first-order model theory
in an equality-free context. As examples of the kind of results obtained
(those that do not correspond to a result for Gentzen systems) we mention
an analogue of the Keisler-Shelah theorem and a characterization result from
[35].

Theorem 4.5. Two structures over the same language satisfy the same equa-

lity-free first-order sentences iff they have ultrapowers with isomorphic re-

ductions.

Theorem 4.6. A first-order sentence of an arbitrary language is logically

equivalent to an equality-free sentence iff it is preserved under HS and H
−1
S .

The other line, taken up in the doctoral dissertation of Elgueta [63] and
the related papers [49, 64, 65, 67] addresses questions of a more universal-
algebraic character for classes of structures definable in equality-free lan-
guages, such as the the existence of free structures and subdirect represen-
tation. The following theorem from [64] is typical of the type of results
obtained in this work. By a quasivariety in this context we mean the
model class of a strict universal Horn theory without equality; it is protoal-

gebraic if the corresponding Horn theory is protoalgebraic in the sense that
naturally generalizes the condition characterizing the protoalgebraic logics
given in Theorem 3.13, part 1. L is a relative subvariety of a quasivariety
K if it is the model class of an axiomatic extension of the Horn theory of K,
i.e., if it is the set of all structures in K that satisfy a fixed set of universal
closures of atomic formulas. For any M ⊆ K, VK(M) denotes the relative
subvariety of K generated by M.
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Theorem 4.7. Let L be a first-order language without equality and let K

be a protoalgebraic quasivariety of L-structures. Let M ⊆ K be such that

VK(M) is relatively filter-distributive. Then the relatively finitely subdirectly

irreducible reduced members of VK(M) belong to the class F
∗

K S
∗

P
∗

U

(

M∗
)

.

The operators S
∗ and P

∗

U denote respectively the closure under the oper-
ations of forming substructures and ultraproducts and then reducing by the
Leibniz congruence. F

∗

K represents closure under the operation of forming
“K-filter extensions” of a given structure and then reducing. See [64] for
details. This result is a generalization of the well-known Jónsson’s lemma

saying that if K is a class of algebras and the variety V(K) it generates is
congruence-distributive, then the subdirectly irreducible elements of V(K)
belong to H S PU(K). The classic result becomes a special case of the pre-
ceding theorem, which is the culmination of a series of generalizations by
Blok, Pigozzi, Czelakowski and Dziobiak.

4.4. Algebras of Logic

In traditional algebraic logic much effort has been spent investigating the
properties of algebras of a logical character without much regard for the
process by which they are identified or the exact nature of their connection
with a specific logic. Although the algebras can usually be associated in
some way with a specific assertional logic, i.e., a 1-deductive system in the
sense of Section 1.1, there are many situations in which the algebras under
investigation, while having a clear metalogical nature, are only loosely tied
if at all to a specific assertional logic. This is manifestly the case when
logical equivalence is taken as the primitive logical predicate, as in the early
history of algebraic logic discussed in the Introduction. But even in the
case where the perceived underlying logical content is clearly assertional in
nature, the connection with an actual assertional logic may not be clear.
The various kinds of lattices endowed with additional operations that have
been considered in the literature certainly fall in this category. As just one
important example of the situation just described we mention the work of
Monteiro and his students and collaborators ([38, 108, 109] is a small sample
of the work of this school). An example of a somewhat different kind can be
found in the work of the Barcelona group prior to the late 1980’s, such as
[79, 137], that centered around algebraic structures that can be characterized
by the existence of a closure system with a certain list of properties having
some logical “form”.

For the purposes of studying, in the widest possible context, the precise
connection that exists between assertional logic and the various algebras
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that have been considered under the rubric of algebraic logic, AAL pro-
vides the appropriate venue. The work in AAL has also stimulated interest
within universal algebra in quasivarieties, which historically have taken a
back seat to varieties. As we have seen, the natural equivalent algebraic
semantics for finitary, finitely algebraizable assertional logics are in general
quasivarieties. The consequence relation of a finitary, finitely algebraizable
logic is reflected in the quasi-identities of its equivalent algebraic semantics,
whereas the identities reflect only the theorems of the logic. One aspect
of this renewed interest is the search for generalizations to quasivarieties of
some important theorems of universal algebra obtained originally for vari-
eties, for example the generalizations of Baker’s finite basis theorem and
Jónsson’s lemma mentioned in Sections 4.1 and 4.3.

A question that can now receive a precise technical answer is: what is

an algebra of logic? If one interprets algebra of logic to be the equivalent
algebraic semantics K = Alg S of an algebraizable logic S, then the answer
is easy in view of the symmetry of the definition of the equivalence between
S and the equational consequence relation of K. Taking the dual of the
proof of part 4 of Theorem 3.16 (see the remarks following the statement of
the theorem) we have that K is the equivalent algebraic semantics of some
algebraizable logic S iff there is a faithful interpretation K(x)≈Λ(x) of S
in the equational consequence relation of K, and a set of formulas E(x, y)
in two variables such that the second equivalence of (3.7) holds. But it is
not difficult to see that, for any set of equations K(x)≈Λ(x), the formula
(3.5) that expresses the fact that K(x)≈Λ(x) is a faithful interpretation of
S in the equational consequence relation of K can be used to define a logic
S with this property (this only uses basic properties of equality). So the
second equivalence of (3.7) is the only condition that K must satisfy to be a
class of algebras of logic in the present sense. In the most interesting case,
where K is a quasivariety, the characterization that we have just outlined
takes the following form; see [46] for a detailed proof.

Theorem 4.8. A quasivariety K is the equivalent algebraic semantics of

some finitary and finitely algebraizable logic iff there exist a finite set E(x, y)
of formulas and a finite set K(x)≈Λ(x) of equations such that:

|=K K
(

E(x, x)
)

≈Λ
(

E(x, x)
)

and K
(

E(x, y)
)

≈Λ
(

E(x, y)
)

|=K x ≈ y

In this case, the logic is given by the expression (3.5).

This theorem is not particularly useful however in showing that a given
quasivariety is not a quasivariety of logic, i.e., it is not of the form Alg S for
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any finitary, finitely algebraizable logic S. For this purpose Corollary 3.14,
part 2 is better suited. According to this result, if we can verify that for
some algebra A the structure of the lattice CoKA of K-congruences of A

precludes it from being isomorphic (via the Leibniz operator ΩA) to any
lattice of the form FiSA for some S (and this computation can be feasible
if the algebra is small), then we know K is not of the form AlgS for any
finitary, finitely algebraizable logic S. The problem is that, although every
such logic has a unique equivalent quasivariety, a quasivariety of logic can
have many different equivalent logics.

As we have previously observed, for every quasivariety K and every fi-
nite system of equations K(x) ≈ Λ(x) in one variable, (3.5) defines a fini-
tary logic, denoted by S(K≈Λ,K), that is faithfully interpreted in |=K by
K(x)≈Λ(x); it is called the (K≈Λ)-assertional logic of K (a 1-dimensional
logic, as opposed to the equational logic of K, which is 2-dimensional).
Among all the assertional logics of K are those for which K is the equiv-
alent algebraic semantics, i.e., the second equivalence of (3.7) holds for some
E(x, y) and K(x)≈Λ(x). There may be several different assertional logics
with this property; for example, it turns out that a certain 3-valued paracon-
sistent logic first considered in [60] and the (→, ¬)-fragment of  Lukasiewicz’s
3-valued logic are both finitely algebraizable with the same equivalent qua-
sivariety (see [29]).

The notion of S(K≈Λ,K)-filter of an algebra can be viewed as a natural
common generalization of normal subgroups, ring ideals, and other general
notions of ideal in algebra. Indeed, taking K to be respectively the varieties
of groups and rings, the S

(

{x≈0},K
)

-filters of a group or ring A coincide
respectively with the normal subgroups or ideals of A. The basic elements
of a general theory of ideals based on the filters of the assertional logics of a
quasivariety are developed in [30].

Normal subgroups and ring ideals coincide with the 0-equivalence classes
of congruences. For a quasivariety K the connection between S

(

K≈Λ,K
)

-
filters and K-congruences is somewhat weaker. By the (K≈Λ)-class of a
K-congruence θ of A we mean the set

{

a ∈ A :
〈

κA(a) , λA(a)
〉

∈ θ , ∀κ(x) ≈ λ(x) ∈ K(x)≈Λ(x)
}

.

Note that the
(

{x≈0}
)

-class of a congruence θ on a group or ring is 0/θ.
In general, the (K≈Λ)-class of a K-congruence is a S(K≈Λ,K)-filter but
not conversely. The converse does hold however if K is a variety or if K is
(K≈Λ)-regular in the sense that each K-congruence is determined by its
(K≈Λ)-class.
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Theorem 4.9 ([30]). Let K be a quasivariety and K(x)≈Λ(x) a finite set

of equations in one variable. Then K is (K≈Λ)-regular iff S(K≈Λ,K) is

finitely algebraizable with K as its equivalent algebraic semantics.

In a Fregean (extensional) logic all theorems are logically equivalent since
they have the same truth value in any interpretation, and the same is true
of the familiar non-Fregean (intensional) logics, which are expansions of
Fregean logics. Each logic S of this kind that is protoalgebraic is finitely
algebraizable, and its equivalent quasivariety K is pointed in the sense that
there is a constant term that singles out a “distinguished” element in every
algebra of K. This distinguished element is the common value that all the
theorems of S take in the algebra. It can thus be represented by any chosen
theorem of S, which can then be taken to be the constant term of K. This
term and its interpretation are usually denoted by 1 (or sometimes 0). In
all the familiar cases S turns out to be the (x≈1)-assertional logic of K and
is (x≈1)-regular. These logics are paradigmatic for the regularly, finitely
algebraizable logics discussed in the remarks following Theorem 3.16.

In a more general context the assertional logic (without qualification)
of an arbitrary pointed quasivariety K is its (x≈1)-assertional logic, and it
(or rather its consequence relation) is denoted by `al

K . Hence it is defined
by the condition:

Γ `al
K ϕ iff {γ ≈ 1 : γ ∈ Γ } |=K ϕ ≈ 1. (4.5)

When compared with (3.5), this tells us that x≈1 is a faithful interpretation,
and K is an algebraic semantics for its own assertional logic `al

K . This logic
will be algebraizable (and K will be its equivalent algebraic semantics) if
(3.7) holds for some E(x, y).

A pointed quasivariety K is relatively point-regular if it is (x≈1)-
regular, that is, if each K-congruence θ is uniquely determined by its (x≈1)-
class 1/θ. By Theorem 4.9, then, K is the equivalent algebraic semantics of
its own assertional logic, which is finitary and finitely algebraizable, and the
mapping

θ 7−→ 1/θ , (4.6)

is the inverse mapping to the isomorphism ΩA : FiSA→ CoKA, if A ∈ K.

It turns out that for each algebraic similarity type with a distinguished
constant there is a one-to-one correspondence between finitary, regularly,
finitely algebraizable logics and relatively point-regular quasivarieties. In
addition, expression (4.6) can be viewed as an algebraic characterization
of the filters of the logic, and shows that the correspondence given by the
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Leibniz operator and its inverse can be characterized independently of its
logical origin or its logical significance.

An alternative general theory of ideals for pointed varieties, devoid of the
logical considerations that motivated the one described above, was initiated
in 1970’s by Ursini [135] and developed later in [5, 86]. Although Ursini
and his collaborators were concerned mainly with varieties, their theory
extends to quasivarieties without difficulty. It turns out that the theory
is particularly well-behaved when the pointed quasivariety is subtractive

[6, 7, 8, 136]; this means that there is a term s(x, y) in two variables such
that s(x, x) ≈ 1 and s(1, x) ≈ x are identities of the quasivariety.

Relatively point-regular quasivarieties and subtractive pointed quasiva-
rieties are incomparable in the sense that neither notion encompasses the
other. Blok and Raftery [30] consider a natural generalization of both, the
protoregular quasivarieties. A pointed quasivariety is protoregular if its
assertional logic is protoalgebraic. Protoregularity clearly generalizes both
relative point-regularity and subtractivity (

{

s(x, y)
}

is an implication set for
the assertional logic). The following are established in [30]. If K is a pointed
variety, then K is subtractive iff it is protoregular and, for each algebra in
K, the filters of the assertional logic and the ideals in the sense of Ursini are
the same. From the results in [50] it follows that the assertional logics of
protoregular quasivarieties coincide with regularly, weakly algebraizable and
finitary logics.

We have seen that the well-known universal algebraic notion of point-
regularity has a natural metalogical content. A natural question to ask is
if there is an analogous content to the better known notion of full regu-

larity, that is, the property that each K-congruence is determined by any
one of its equivalence classes. The paper [17] by Barbour and Raftery in
this volume explores one possible answer, which gives rise to the new notion
of parameterized algebraizability. In the process they generalize the notion
of assertional logic in order to encompass a wider class of logics intrinsi-
cally associated with a quasivariety, such as the so-called membership logic,
which is never protoalgebraic. They also study parameterized versions of
protoalgebraicity, of algebraic semantics, etc. These generalizations are by
no means straightforward, and constitute a good example of the kind of
interplay between logic and algebra that AAL has given rise to.

As previously observed, the protoalgebraic Fregean logics, and certain of
their expansions, are the paradigms for regularly, finitely algebraizable logics.
In this sense the equivalent quasivarieties of protoalgebraic Fregean logics
are paradigmatic for relatively point-regular quasivarieties, but not every
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relatively point-regular quasivariety is obtained this way; those that are are
called Fregean. Thus a relatively point-regular quasivariety is Fregean if its
assertional logic is Fregean. This notion, here defined solely in logical terms,
can be given a purely algebraic characterization as follows, see [53]:

Theorem 4.10. A relatively point-regular quasivariety K is Fregean iff it

has the following property. For every A ∈ K and all a, b ∈ A, if ΘK(a, 1) =
ΘK(b, 1) then a = b, where ΘK(c, d) is the K-congruence generated by the

pair 〈c, d〉.

An arbitrary pointed (but not necessarily point-regular) quasivariety that
satisfies the condition of the theorem is said to be congruence-orderable

(the term comes from the fact the quasi-ordering defined by a ≤ b iff
ΘK(a, 1) ⊆ ΘK(b, 1) is actually a partial ordering in this case).

Fregean relatively point-regular quasivarieties and, more generally, congru-
ence-orderable pointed quasivarieties have been studied by a number of
different authors, although most attention has been on varieties. Fregean
point-regular varieties were introduced in [115] and studied further, along
with Fregean relatively point-regular quasivarieties, in [46, 53, 54]

A relatively point-regular quasivariety K is strongly relatively point-

regular if every finitely generated relative congruence is principal and, in
fact, of the form ΘK(a, 1). Building on [34], Pigozzi [115] proves that a
strongly point-regular variety is Fregean iff it is (equationally definitionally
equivalent to) a variety of Brouwerian semilattices with possible additional
operations that preserve the congruences of the Brouwerian semilattice in a
natural way. This was the first of several “representation” results of this kind
for Fregean point-regular varieties. Idziak, S lomczyńska and Wroński [94]
prove that a congruence-permutable point-regular variety is Fregean iff it is
a variety of equivalential algebras (see Section 3.3) possibly with additional
congruence-preserving operations. They also showed that every Fregean
strongly point-regular variety is arithmetical. Agliano [3] shows that every
Fregean point-regular variety that has definable ({x≈1})-classes (i.e., sets
of the form 1/θ for every congruence θ) is a variety of Hilbert algebras
(see Section 3.3) with congruence-preserving operations. (However Agliano
formulates his result within the theory of ideals in the sense of Ursini). See
also [4].

Metalogical representation theorems closely related to the above alge-
braic representation theorems have also been obtained. It is proved in [53]
that every Fregean logic with the uniterm deduction-detachment theorem
(a single deduction-detachment formula) is definitionally equivalent to an
axiomatic extension S of an expansion of the (→)-fragment of CPL by new
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extensional connectives; for a new binary connective ∗ to be extensional,
for example, (x1 → y1) → (y1 → x1) → (x2 → y2) → (y2 → x2) →
(x1 ∗ y1)→ (x2 ∗ y2) must be a theorem of S (association of outer arrows is
assumed to the right). This is a metalogical analogue of the result of Agliano
mentioned above. Conversely, it is easy to see that every S of this kind is
Fregean with the uniterm deduction-detachment theorem. It is also proved
in [53] that every protoalgebraic Fregean deductive system with conjunc-
tion is definitionally equivalent to an axiomatic extension of an expansion of
the (→,∧)-fragment of IPC by new extensional connectives, and conversely.
This is the analogue of the result of [94]. See [54] for similar results involving
the multiterm DDT.

A systematic investigation of both Fregean and self-extensional nonpro-
toalgebraic logics can be found in [73]. A survey of some of these results and
earlier ones can be found in [69]. Analogous, but necessary weaker, versions
of two of the representation theorems mentioned above for arbitrary self-
extensional deductive systems with the uniterm DDT and with conjunction
are obtained in [73].

Of considerable interest in AAL is the problem of isolating the abstract
properties of the familiar algebraizable logics that account for their almost
universal strong (finite) algebraizability, i.e., the fact that the algebraic coun-
terparts of most of them are varieties. As a sample of the kind of results
that have been obtained along this line we mention the following (see [46,
Chapter 6] for proofs).

Theorem 4.11.

1. Every strongly point-regular Fregean quasivariety is in fact a variety

and has EDPC (see Section 3.3).

2. A quasivariety of Skolem lattices has the relative congruence-extension

property iff it is a variety.

A novel viewpoint in examining the role of conjunction in Fregean vari-
eties is adopted in [111]. Here the relation between the quasivariety of BCK
algebras, which is relatively point-regular but not Fregean, and the sequent
calculus LBCK defining BCK logic is studied. By combining algebraic and
proof-theoretical techniques it is shown that the fact that LBCK is obtained
by deleting the rule of contraction from the usual sequent calculus LJ for
intuitionistic logic (a Fregean logic whose equivalent algebraic semantics is
the Fregean variety of Heyting algebras) is directly related to the loss of the
Fregean property. In this situation the metalogical and algebraic proper-
ties of conjunction in intuitionistic logic and in Heyting algebras are split
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between the lattice operation of conjunction and a new operation, called
fusion, which is residuated with respect to the implication.

5. Generalized Matrix Semantics and Full Models

As we mentioned in Section 3.1 the class of algebras Alg∗S, that is obtained
from the classical matrix semantics for a logic S by reducing by the Leibniz
congruence, does not necessarily coincide with the canonical class Alg S.
The paradigm here because of its simplicity is the conjunction-disjunction
fragment of classical logic (or of intuitionistic logic: they coincide). In this
case Alg S is the class of distributive lattices while Alg∗S is a proper subclass
of the class of distributive lattices, characterized in [80]; other examples are
found in [70, 78, 96].

The tool we used to define the canonical class AlgS of algebras of a
logic is the Suszko congruence. According to expression (3.2), the Suszko
congruence relative to a logic S of a matrix 〈A, F 〉 ∈ ModS depends not
only on F but also on the family of all S-filters of A that include F :

[

F
)

S
= {G ∈ FiSA : F ⊆ G} (5.1)

This collection of S-filters is a closure system (or closed-set system) on
A, that is, a family of subsets of A containing A and closed under intersec-
tions of arbitrary nonempty subfamilies. A closure system is inductive if
it is closed under unions of subfamilies that are upwards directed by inclu-
sion. For most purposes it is useful to think of the Suszko congruence as a
function of the family of matrices

{

〈A, G〉 : G ∈
[

F
)

S

}

, or equivalently of

the pair
〈

A ,
[

F
)

S

〉

, rather than as a function of the single matrix 〈A, F 〉.
In general, objects of the form A = 〈A , C〉, where A is an algebra and C
is an inductive closure system on the domain of A are called generalized

matrices, or g-matrices for short. For every finitary logic S, the structure
〈Fm, ThS〉 is, for instance, a generalized matrix, as are all structures of the
form 〈A ,FiSA〉. Generalized matrices appeared under this name for the
first time in [140], and are called abstract logics in [33] and related pa-
pers, and in many papers of the algebraic logic group in Barcelona published
before the mid-nineties, including [73].

In [73] a general theory of the algebraization of propositional logics is
built around the central idea of using generalized matrices both as models
for finitary logics and as models of Gentzen systems, thus establishing a
bridge between the algebraic studies of these two notions. In particular,
this includes another “canonical” way to associate a class of algebras with
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a given finitary logic S, which uses the notion of the Tarski congruence of
a g-matrix (to be defined later). The class of algebras obtained is exactly
AlgS, the same as the class obtained by using the Suszko congruence.

Generalized matrices can also be presented in terms of consequence op-
erations (also called closure operators). Given a closure system C on a set
A, its associated consequence operation CloC on A is defined by

CloC(X) =
⋂

{F ∈ C : X ⊆ F },

for each X ⊆ A. This operation satisfies Tarski’s axioms of Section 1.1, in
particular it is finitary (or algebraic). Moreover, given a finitary consequence
operation C on A, the family CC of the C-closed subsets of A (i.e., those
X ⊆ A such that C(X) = X) is an inductive closure system on A, and
hence the pair 〈A , CC〉 is a g-matrix. These two correspondences are inverse
to one another. The consequence operation of the g-matrix 〈Fm, ThS〉 of
a finitary logic S is clearly the consequence operation determined by the
consequence relation of S.

A g-matrix A = 〈A, C〉 is said to be a generalized model, g-model

for short, of a finitary logic S if every element of C is an S-filter of A.
Equivalently, A = 〈A, C〉 is a g-model of S iff its associated consequence
operation is a model of the consequence operation of S in the following
sense. For all Γ ∪ {ϕ} ⊆ Fm,

if Γ `S ϕ then h(ϕ) ∈ CloC
(

h[Γ ]
)

for every h ∈ Hom(Fm,A). (5.2)

The g-matrix 〈Fm, ThS〉 is obviously one of the g-models of S. The class
of g-models of S will be denoted by GModS. For g-matrices we have the
notion of completeness of a logic relative to a class of g-matrices analogous
to the notion of completeness of a logic relative to a class of matrices. In
this sense every logic is complete relative to GModS.

Many concepts and constructions of the general theory of matrices have
a natural counterpart in the theory of g-matrices. Given a g-matrix A =
〈A, C〉, its Tarski congruence, which is denoted by

∼
ΩAC or by

∼
ΩA, is the

largest congruence of A compatible with every element of C; it is easy to see
that

∼
ΩAC =

⋂

F∈C

ΩA(F ). (5.3)

The function
∼
ΩA is the Tarski operator of A. Observe that, like the

Leibniz congruence ΩAF of a matrix 〈A , F 〉, the Tarski congruence
∼
ΩAC

of a g-matrix is intrinsic to the g-matrix 〈A , C〉, while its Suszko congru-
ence

∼
ΩA

S F is not. The precise relationship between the Tarski and the
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Suszko congruences is the following. If 〈A , F 〉 is a matrix model of S then
〈

A ,
[

F
)

S

〉

is a g-model of S and

∼
ΩA

[

F
)

S
=

∼
Ω

A

S F. (5.4)

This justifies the choice of notation. The Suszko congruences appear as par-
ticular cases of the Tarski congruence, namely those of the closure systems
of the form (5.1) for some F ∈ FiSA.

A g-matrix A = 〈A, C〉 is said to be reduced if its Tarski congruence is
the identity. The class of reduced g-models of a logic S will be denoted by
GMod∗S. It turns out that the class of algebra reducts of the members of
GMod∗S is AlgS and that S is complete relative to the class GMod∗S.

A strict homomorphism from a g-matrix A = 〈A, C〉 to a g-matrix
B = 〈B,D〉 is an h ∈ Hom(A ,B) such that C =

{

h−1[F ] : F ∈ D
}

. The
bijective strict homomorphisms are called isomorphisms and the surjective
strict homomorphisms are called bilogical morphisms after [33]. Two g-
matrices A and B are said to be bilogically morphic if there are bilogical
morphisms from both A and B to the same g-matrix; in particular, A and
B are bilogically morphic if there is a bilogical morphism from either one to
the other. We see later that this is an equivalence relation. In AAL, and in
logic without equality in general, the relation of being bilogically morphic
plays much the same role that the isomorphism relation plays in logic with
equality.

Given a g-matrix A = 〈A, C〉, its reduction is the g-matrix A∗ =
〈

A/
∼
Ω(A) , C/

∼
ΩA

〉

, where A/
∼
ΩA is the quotient algebra and C/

∼
ΩA =

{

F/
∼
ΩA : F ∈ C

}

. A reduced g-matrix is isomorphic to its reduction, so
every reduction is reduced. The projection homomorphism π : A→ A/

∼
ΩA

is a bilogical morphism from A onto A∗. It follows that two g-matrices are
bilogically morphic iff their reductions are isomorphic, and hence that being
bilogically morphic is an equivalence relation.

The fundamental notion introduced in [73] is that of full g-model of a
finitary logic. The class of full g-models of a logic is a natural subclass of the
class of all g-models of a logic that has been useful in revealing interesting
connections between the algebraic theory of logics and that of the Gentzen
systems defining them. It has proved to be especially useful in the study
of the algebraic theory of nonprotoalgebraic logics; among other things it
has led to a new notion of algebraizability that is applicable to logics of this
kind. During the 1980’s, before the concept of full g-model emerged and
its theory was developed, the algebraic logic group in Barcelona studied in
detail the algebraic theory of several specific logics using g-matrices; [79] is
a representative example of this work. The class of g-matrices that played
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the key role in each of these investigations turned out to be exactly the class
of full g-models. This early work was the source for the concept of full g-
model and an inspiration to the later development of the concept (see [73]
for historical and bibliographical references).

A g-matrix A = 〈A, C〉 is a basic full g-model of a finitary logic S
when C = FiSA, and it is a full g-model of S if it is bilogically morphic
to a basic full g-model of S. In [73] it is proved that A is a full g-model iff
there is a bilogical morphism from A onto a basic full g-model. Moreover,
the reduction of every full g-model is a basic full g-model. In the metatheory
of a logic S the basic full g-models clearly play an important role and by
extension so do all full g-models. The class of all full g-models of a logic
S is denoted by FGModS. Every logic is complete relative to the class
FGModS, and also relative to the class FGMod∗S of the reduced full g-
models of S. The class of algebra reducts of FGMod∗S is Alg S, so the
latter can be characterized by:

A ∈ AlgS iff 〈A ,FiSA〉 ∈ FGMod∗S. (5.5)

An important property of the full g-models of a logic is given in the
following theorem generalizing the lattice isomorphism characterizations of
weakly algebraizable and algebraizable logics (Corollary 3.14); a noteworthy
fact is the absence of any restricting assumptions on the logic, other than
that it be finitary. The full g-models 〈A , C〉 of a logic S on the same algebra
A can be identified with their closure system reduct C. The family of these
closure systems ordered by inclusion forms a lattice: the lattice of full g-
models of S with the same underlying algebra A.

Theorem 5.1 ([73]). For every finitary logic S and every algebra A, the

Tarski operator
∼
ΩA is a dual isomorphism between the lattice of full g-models

of S on A and the lattice of the (Alg S)-congruences of A.

The relation between the semantics of full g-models and the logical matrix
semantics in the case of finitary protoalgebraic logics is as follows. If S is a
finitary protoalgebraic logic and A is any algebra, an S-filter F of A is said
to be a Leibniz filter if it is the smallest among all S-filters of A whose
Leibniz congruence coincides with ΩAF (such a smallest filter always exists
by protoalgebraicity). Weakly algebraizable logics can be characterized as
the protoalgebraic logics S with the property that for every algebra all its S-
filters are Leibniz filters. Leibniz filters are studied in [74, 97] and also appear
in [73] although not under this name. They can be used to characterize the
full g-models of finitary protoalgebraic logics in a way that also yields a
characterization of finitary protoalgebraic logics.
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Theorem 5.2. If S is a finitary logic, then S is protoalgebraic iff the full g-

models of S are the g-models of S of the form
〈

A ,
[

F
)

S

〉

where F is Leibniz.

Moreover, if S is protoalgebraic, for each full g-model
〈

A,
[

F
)

S

〉

of S,

(5.4) becomes
∼
ΩA

[

F
)

S
= ΩAF . Clearly, if S is in addition weakly alge-

braizable then the full g-models of S are exactly all the g-models
〈

A ,
[

F
)

S

〉

where F is an arbitrary S-filter. Thus, the isomorphism theorem (Corollary
3.14) that characterizes weakly algebraizable and algebraizable logics can be
obtained from Theorem 5.1.

One of the most interesting aspects of g-matrices is how they can be used
in completely natural ways both as models of finitary logics and as models
of Gentzen systems. This double nature allows one to tie the algebraic
theory of logics to that of Gentzen systems. We proceed to explain the
situation. The Gentzen systems that define logics in the most natural way
are those that satisfy all the structural Gentzen rules; as in Section 4.2 we
call them structural Gentzen systems. In fact we will be interested only in
the structural Gentzen systems whose type is either the set {(n, 1) : n ∈ ω}
or the set {(n, 1) : n ≥ 1} (see Section 4.2). From now on the expression
Gentzen system will be used to refer to these kind of Gentzen systems
without further qualification. Given a Gentzen system G, the logic SG defined
by G is the finitary logic determined by the derivable sequents of G as in
(4.1): Γ `SG

ϕ iff ∅Bϕ is derivable or there are ϕ0, . . . , ϕn−1 ∈ Γ such that
ϕ0, . . . , ϕn−1 Bϕ is derivable. It is not difficult to see that the same finitary
logic can be the logic of more than one Gentzen system. An interesting issue
then is to find natural criteria for selecting one of these Gentzen systems
among all others. The full g-models lead to one such criterion of an algebraic
character.

A g-matrix A = 〈A, C〉 is a model of a Gentzen system G if, for every
assignment h ∈ Hom(Fm,A), every set {ϕi B ψi : i ∈ I} of sequents and
every sequent ϕB ψ such that {ϕi B ψi : i ∈ I} `G ϕB ψ,

if h(ψi) ∈ CloC
(

h(ϕi)
)

for all i ∈ I , then h(ϕ) ∈ CloC
(

h(ϕ)
)

.

Comparing this with (5.2) we see almost immediately that, if a g-matrix is a
model of a Gentzen system G, then it is a g-model of the associated finitary
logic SG .

Generalized matrices admit a relational presentation. For each g-matrix
A = 〈A , C〉 the relation RA between finite sequences and individual elements
of A is defined as follows.

〈

〈a0, . . . , an−1〉 , an

〉

∈ RA iff an ∈ CloC
(

{a0, . . . , an−1}
)

.



76 J.M. Font, R. Jansana, and D. Pigozzi

Note that 〈A ,RA〉 is a G-matrix of type {(n, 1) : n ≥ 1} in the sense of
Section 4.2. A is a model of a Gentzen system G iff the G-matrix 〈A ,RA〉 is
a model of G (see Section 4.2). If we apply to 〈A ,RA〉 the process described
in Section 4.3 we obtain a structure of a suitable first-order language without
equality that can be viewed as a first-order representation of the models of
the Gentzen system G. This duality in the presentation of g-matrices has
been exploited in [75, 76]; some results are mentioned below.

In order to connect the algebraic theory of logics with that of Gentzen
systems through the full g-models we say that a finitary logic S has a fully

adequate Gentzen system if the class of its full g-models is the class
of models of some Gentzen system. (In case S does not have theorems, a
technical adjustment in the definition is required, but this can be disregarded
for the purpose of this survey.) If a fully adequate Gentzen system G for S
exists, it is clearly unique, and S can be recovered from it in the sense that
{ϕ0, . . . , ϕn−1} `S ψ iff the sequent `G ϕ0, . . . , ϕn−1 B ψ is derivable in G.
The property of having a fully adequate Gentzen system seems to be related
to a number of different issues in AAL. For instance, [75] gives:

Theorem 5.3. A finitary logic has a fully adequate Gentzen system iff the

class of first-order structures corresponding to its full g-models is closed un-

der S and PR.

A different characterization, of more restricted application, is obtained
in [76]:

Theorem 5.4. A finitary weakly algebraizable logic has a fully adequate

Gentzen system iff it satisfies the multiterm DDT.

The existence of a fully adequate Gentzen system leads to a new notion
of algebraizability for logics. A finitary logic is G-algebraizable if it has a
fully adequate Gentzen system that is algebraizable (in the sense of Section
4.2). If S is a finitary logic that is G-algebraizable, then the associated fully
adequate and algebraizable Gentzen system is unique and its equivalent alge-
braic semantics coincides with AlgS. This new concept is not an extension
of the notion of algebraizable logic, as there are algebraizable logics that
are not G-algebraizable and vice versa, but it allows one to establish a very
strong link between the G-algebraizable logics and their associated class of
algebras Alg S. Observe that if G is the fully adequate Gentzen system for
a logic S then (5.5) becomes:

A ∈ Alg S iff 〈A ,FiSA〉 is a reduced model of G. (5.6)

Being a model of a Gentzen system amounts to being a model of any Gentzen
calculus that defines it, and S will satisfy all the rules of this calculus. Hence
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the interesting problem is to find Gentzen calculi for G that give some insight
into the structure of the algebras in Alg S via the properties of the closure
system of the S-filters on them. The best results have been obtained for
logics S such that the S-filters on the S-algebras form a closure system
intrinsically associated with the algebraic structure. For instance, in many
cases where the algebras in Alg S have a lattice reduct, the set of S-filters
in these algebras is the set of their lattice filters.

In a sense that we hope further research will make more precise, one can
say that G-algebraizable logics are those logics whose class of S-algebras is
determined by the properties of the logic that can be formulated by Gentzen-
style rules, and the Gentzen system defined by these rules is algebraizable.
There is considerable empirical evidence supporting this view in the analysis
of examples, and in some partial results of [73] of a more general nature
concerning selfextensional logics, a class that includes protoalgebraic logics
as well as nonprotoalgebraic logics.

The first papers, prior to the present conceptual framework developed
in [73], in which Gentzen-style rules and g-matrices are exploited for this
purpose are [80, 123]. Among other logics, the disjunction-conjunction frag-
ment of CPL (or of IPL) is treated; let us denote it by S∨∧. It is the
simplest natural example of a G-algebraizable logic. The following results
are obtained.

1. AlgS∨∧ is the class of distributive lattices, and the S∨∧-filters on a
distributive lattice are its ordinary (lattice) filters.

2. S∨∧ is G-algebraizable, and its fully adequate Gentzen system is defined
by the calculus consisting of all structural rules plus the usual Gentzen
rules for disjunction and conjunction in LJ.

3. The equivalent algebraic semantics of this Gentzen system is the class
of distributive lattices, and the translations that establish the equiv-
alence of the Gentzen system and the equational logic of distributive
lattices are those given in (4.3) and (4.4).

4. An algebra A is a distributive lattice (that is, it belongs to Alg S∨∧) iff
there is an inductive closure system C on A satisfying, for all a , b ∈ A
and all X ⊆ A:

CloC
(

{a ∧ b}
)

= CloC
(

{a , b}
)

. (5.7)

CloC
(

X ∪ {a ∨ b}
)

= CloC
(

X ∪ {a}
)

∩ CloC
(

X ∪ {b}
)

. (5.8)

CloC
(

{a}
)

= CloC
(

{b}
)

implies a = b. (5.9)
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In particular, (5.7)–(5.9) hold in every reduced full g-model A = 〈A, C〉
of S∨∧.

Conditions similar to these are called Tarski-style conditions by Wójcicki
[142] and are the direct translation of the property of being a model of the
Gentzen-style rules mentioned in item 2 above. In other cases this trans-
lation can be more complicated and involve a number of different aspects
of the closure operator or the closure system, such as having a basis with
certain properties, etc. These results have motivated considerable interest
in trying to find characterizations of the full g-models of various logics that
are interesting for either metalogical, algebraic or topological reasons; see
for example [70, 77, 78, 95, 96]. A summary of the earliest contributions in
the area can be found in Chapter 5 of [73].

Condition (5.9) is another manifestation of the Frege principle. The
notion of the Frege relation of a logic can be naturally generalized to g-
matrices. Given a g-matrix A = 〈A, C〉, its Frege relation, denoted by
ΛA, is defined by:

〈a, b〉 ∈ ΛA iff CloC
(

{a}
)

= CloC
(

{b}
)

.

It is easy to check that
∼
ΩA is the largest congruence of A included in ΛA. A

g-matrix A has the congruence property when its Frege relation is a con-
gruence, or equivalently when

∼
ΩA = ΛA; thus a logic S is selfextensional

iff, when presented as the g-matrix 〈Fm , ThS〉, it has the congruence prop-
erty. It is easy to see that a g-matrix A = 〈A, C〉 satisfies condition (5.9) iff
it has the congruence property and is reduced. Thus, since all reduced full
g-models of the logic S∨∧ satisfy condition (5.9) (by item 4 above), they all
have the congruence property. Thus all full g-models of S∨∧ have the con-
gruence property since the latter is preserved under bilogical morphisms. So
S∨∧ is selfextentional and the congruence property transfers from the logic to
its full g-models. From (5.7) and (5.8) we also have that the basic properties
of “conjunction” and “disjunction” also transfer in this way. Thus for the
properties of congruence, conjunction and disjunction, the so-called transfer
problem has a positive solution for S∨∧. The transfer problem for a given
metalogical property is to find general conditions under which the property
is guaranteed to transfer from the logic to its full g-models; this has turned
out to be an important problem in AAL. A binary connective ∧ is said to
be a conjunction for a logic or a g-matrix when condition (5.7) is satisfied
by the associated consequence operation. A partial solution to the transfer
problem for the congruence property is contained in the following result.

Theorem 5.5 ([73]). Let S be a selfextensional finitary logic S with either

a conjunction or the uniterm DDT. Then:
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1. The Frege relation of its full g-models is a congruence, i.e., the con-

gruence property transfers to full g-models.

2. S is G-algebraizable, i.e., S has an algebraizable fully adequate Gentzen

system whose equivalent algebraic semantics is AlgS.

3. AlgS is the variety generated by the class of the Lindenbaum-Tarski

algebras of S.

Part 3 of this theorem, when applied to finitary and finitely algebraizable
logics, explains why so many algebraizable logics have a variety as their
equivalent algebraic semantics when the general theory only guarantees that
it is a quasivariety: it is in large part a consequence of the Frege Principle,
which is reflected in the fact that most of the logics of classical algebraic
logic are selfextentional. But some additional property, like the existence
of a conjunction or the uniterm DDT, is also needed. It can be shown
that a variety is of the form AlgS for an S satisfying the assumptions in
the previous theorem iff it has a semilattice reduct or a Hilbert-algebra
reduct. A similar description of the varieties appearing when ‘selfextensional’
is replaced by ‘Fregean’ in the above theorem is obtained in [53, 54]. Several
related problems left open in [73] have been recently solved by Babyonyshev
[15] and independently by Bou [32]. Among other things it has been proved
that neither the congruence property nor that of being Fregean transfer in
general.

6. Extensions to More Complex Notions of Logic

All the work in AAL discussed so far builds on the formalization of the
intuitive notion of a logic as a deductive system, that is as a pair S =
〈Fm,`S〉 where only the language (Fm) and the consequence relation (`S)
play a role. Thus, the process of algebraizing a logic S depends entirely on its
consequence relation `S regardless of the particular way the latter is defined.
In particular, semantical considerations influence the process only indirectly.
For some purposes however this “consequence-based” conception of logic is
oversimplified as there are important aspects of the algebraization process
that cannot be captured by consideration of the consequence relation only.
For these the underlying semantics of the logic must also be taken directly
into account by including an abstract notion of model in the formalization.
By taking logic to be a pair 〈Fm,`S〉 we bind ourself to a single, fixed
language, and there are many who would view this as another source of
oversimplification. From this point of view any proper notion of logic should
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be able to deal with different presentations of essentially the same logic in
different languages.

In this section we discuss two approaches to AAL designed to overcome
such oversimplifications. The origin of the first can be traced back to the
theory of relations developed by De Morgan, Peirce, Schröder, and Tarski
(mentioned briefly in the Introduction); a closer ancestor is the algebraiza-
tion of the first-order predicate logic that leads to cylindric and polyadic
algebras. The second approach focuses on arguably the most important as-
pect of a logic from the standpoint of AAL, its substitutional invariance. It
is embodied here in the notion of a logic as a category, more precisely in the
category-theoretic notion of a institution. It also incorporates the viewpoint
that a logic should be invariant under certain linguistic transformations, such
as the selection of the primitive logical connectives. These two approaches
can be described respectively as “semantics-based” and “categorical” and
are briefly described in Sections 6.1 and 6.2 below, where due references are
given. An ambitious program that attempts to incorporate both of them,
together with the consequence-based approach into one coherent theory of
AAL, has been initiated by Diskin [59]. Here again category theory provides
the basic framework and some methods of abstract model theory are used.
We will not discuss this program further.

In both the semantics-based and categorical approaches a substitution-
invariant consequence relation is naturally associated with the logic, and
hence the Lindenbaum-Tarski process is an integral part of the algebraiza-
tion. Consequently, most of the notions of the previous sections (e.g. pro-
toalgebraizability, algebraizability, etc.) also apply in the more complex
environments of the present section.

6.1. The semantics-based approach

This approach has been under continuous development since Andréka’s 1973
Ph. D. dissertation [9] on the algebraization of first-order logic, and has its
roots in the even earlier work on cylindric and relation algebras previously
mentioned. Special cylindric algebras arise directly from first-order logic in
two ways. One is by means of the familiar Lindenbaum-Tarski process. Since
the sentential part of the logic is classical, the relation ≡Σ associated with
a first-order theory Σ as in (1.6) is a congruence on the formula algebra (of
first-order formulas) and the quotient algebra is a cylindric algebra of (sets
of) formulas specifically associated with the theory Σ; it is the free algebra
of the equational theory of cylindric algebras that is naturally associated
with Σ. It is a Boolean algebra that has been enriched by unary operations
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corresponding to the quantifications ∃vi and by constants corresponding to
the atomic formulas vi ≈ vj . A cylindric algebra can also be obtained from
every model (in the first-order sense) of Σ. Let A be such a model. To each
first-order formula ϕ is associated the set ϕA of all ω-sequences of elements of
A (the domain of A) that satisfy ϕ in A, that is, ϕA =

{

a ∈ Aω : A |= ϕ [a]
}

.
The set {ϕA : ϕ a formula} has the structure of a cylindric algebra of sets
of a special kind. It is a model of the equational theory associated with Σ.

AAL in this context had its origins in the investigation of the relation
between logical properties of first-order theories and algebraic properties
of the corresponding varieties of cylindric algebras. The algebraic form of
certain versions of the Beth definability property for a first-order theory Σ
can only be formulated in terms of the special cylindric-set algebras in the
variety associated with Σ that are obtained from the models of Σ in the
way indicated above. It is thus essential to incorporate an abstract notion
of model in the formalization of the notion of logic that underlies AAL in
this context. The article [11] is an excellent and detailed exposition of this
approach; we survey only the essential features and the connections with the
rest of this survey of AAL.

A semantics-based logic is a four-tuple L = 〈Fm ,M ,mng , |=〉 where
Fm is a formula algebra of some logical language L over some set of vari-
ables; M is a class called the class of models; mng is a function that assigns
to each model A ∈ M a function mngA with domain Fm and unspecified
range, called the meaning function of A; and |= ⊆ M × Fm is a binary
relation called the validity relation ; moreover, the following conditions
hold.

(1) L satisfies Frege’s principle of compositionality in the sense that the
meaning of a formula does not change if a subformula is replaced by
one with the same meaning; i.e., mngA is a homomorphism, and hence
its range mngA[Fm] is an L-algebra, called the meaning algebra of
A.

(2) L has the semantical substitution property : For every substitution σ in
Fm and every A ∈M there is a B ∈M such that mngB = mngA ◦ σ.
This is equivalent to saying that for every A ∈ M and every h ∈
Hom

(

Fm ,mngA[Fm]
)

there is some B ∈M such that h = mngB. For
some purposes one needs the enhanced semantical substitution prop-

erty, which requires B to satisfy the additional condition: A |= σ(ϕ)
iff B |= ϕ for all ϕ ∈ Fm, see [72].

(3) The validity of a formula in a model depends only on its meaning in

that model, that is, if mngA(ϕ) = mngA(ψ) then A |= ϕ iff A |= ψ.
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In some quarters the meaning function is interpreted as the intensional as-
pect of the semantics, and the validity relation as its extensional side. The
imposition of connections of different kinds between these two elements gives
rise to various interesting classes of logics.

For some purposes an independent consequence relation (denoted as `) is
adjoined to the data that constitutes the logic; this is intended to represent
a proof system for the logic. In most cases however this coincides with the
consequence relation defined from the validity relation in the natural way.

Two classes of algebras are associated with each logic L in this context.
The first class reflects the special role of the models and consists of their
meaning algebras:

Algm(L) =
{

mngA[Fm] : A ∈M
}

(6.1)

Notice that this class need not be closed under isomorphisms. These are
the “concrete” algebras that arise directly from the models of L.

The more abstract algebras of L are obtained by a semantical variant
of Lindenbaum-Tarski process in which the formula algebra is factored by
an equivalence relation associated with an arbitrary class of models. More
precisely, two formulas are taken to be equivalent modulo a subclass K of
M if they have the same meaning in each member of K. We take:

Alg(L) = I
(

{Fm/∼K : K ⊆M}
)

(6.2)

where ϕ ∼K ψ iff mngA(ϕ) = mngA(ψ) for all A ∈ K; note that ∼K is a
congruence on Fm because the meaning function is a homomorphism. The
algebras of the form Fm/∼K are called in this framework the “Lindenbaum-
Tarski algebras” of L.

Referring again to first-order logic, the paradigm for a semantics-based
logics, we see that the logical language L of a semantics-based logic is in-
tended to abstract the logical connectives of first-order logic, that is the sen-
tential connectives, quantifications, and equalities between variables. The
extralogical predicates of a first-order language on the other hand are ab-
stracted by the variables (which in this context should be thought of as
sentential variables rather than individual variables); more properly, the
variables are intended to abstract the atomic formulas from which the ex-
tralogical predicates are indirectly extracted. (The details of this process
in the special case of the semantics-based logic associated with cylindric
algebras are given in Appendix C of [23].)

The concept of first-order logic as a collection of logics, one for each choice
of extralogical predicate symbols, has its abstract analogue in the notion of
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a general semantics-based logic. This is a function L = 〈LP : P ∈ C〉
where C is some class of sets, containing at least one of each cardinality.
For each P ∈ C, LP is a semantics-based logic, in the preceding sense,
and Fm

P is the formula algebra of a fixed, common language L over the
set of variables P (the abstraction of the atomic formulas of a first-order
language). In addition the various component logics are related by some
natural compatibility conditions that abstract the transformations between
first-order languages over different sets of predicate symbols that are induced
by defining the predicates of one as formulas in the other: Each mapping
from P to Fm

Q, besides extending to a unique homomorphism from Fm
P

to Fm
Q, also induces a mapping between the models of LQ and those of LP

that commutes with the meaning functions in a natural way. In particular,
if P,Q ∈ C have the same cardinality, there is an isomorphism between
Fm

P and Fm
Q that commutes with mng and with |=, and if P ⊆ Q, then

every model of LP extends to a model of LQ and every model of LQ restricts
to a model of LP in natural ways. The associated algebras of a general
semantics-based logic L are defined as follows.

Algm L =
⋃

P∈C

Algm LP and AlgL =
⋃

P∈C

AlgLP .

In [10, 11] several examples of well-known sentential and first-order logics
are presented as general semantics-based logics, and it is checked that AlgL

always is the expected class of algebras. Moreover the following fundamental
theorem is proved.

Theorem 6.1. Let L be a general semantics-based logic. Then AlgL =
S P Algm L.

This is important in that it gives a uniform and purely algebraic way of
obtaining the class AlgL, the abstract or general algebraic counterpart of L,
from the class Algm L of the concrete algebras arising from the specific se-
mantical presentation of L; it also confirms that in turn AlgL is independent
of such presentation.

Some connections with the consequence-based approach to AAL can be
readily established, even in the case of a specific (non-general) semantics-
based logic L, if the semantical substitution property is taken in its enhanced
form. First, the validity relation naturally engenders a consequence relation:
Γ |=L ϕ iff ϕ is valid in all models in M in which all formulas of Γ are valid.
Then SL = 〈Fm , |=L〉 is a consequence-based logic (deductive system) in the
sense of Section 1.1 (substitution-invariance is assured by the enhanced se-
mantical substitution property), and we can apply to it the theory developed
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in the preceding sections. Accordingly one can say that L is protoalgebraic,

equivalential, algebraizable, etc., when SL has the property. Secondly, each
model of L gives rise to a logical matrix in a natural way: if A ∈ M, then
the theory of A is defined as the set Th(A) = {ϕ ∈ Fm : A |= ϕ}, and the
meaning matrix of A is the matrix MA =

〈

mngA[Fm] , mngA

[

Th(A)
]〉

. If
one considers its Leibniz reduction M∗

A
then one can prove results like the

following.

Theorem 6.2. Let L be a semantics-based logic and A ,B two of its models.

Then A and B are elementarily equivalent (i.e., they have the same

theory) iff there is an isomorphism h between the reduced matrices M∗

A
and

M∗

B
that commutes with the meaning functions, i.e., such that mngB =

h ◦mngA.

If L is one of the presentations of first-order logic (with a specific set of
predicate symbols) that fits the schema of a semantics-based logic, then this
theorem provides a way of investigating elementary equivalence algebraically.

A similar process can be followed in dealing with a general semantics-
based logic L. For most purposes it is sufficient to work with the logic LP for
a a fixed denumerable P ; for instance one defines the associated deductive
system SL to be SLP for such a P , and a general semantics-based logic is
called protoalgebraic, equivalential, algebraizable, etc. when SLP has the
property; it can be shown that this is independent of the choice of P .

Starting from a consequence-based logic S in the sense of Section 1.1,
one can associate with it a general semantics-based logic using its matrix
semantics in the following way. For each cardinal κ ≥ 2, we put Lκ

S =
〈Fm

κ ,Mκ ,mngκ , |=κ〉, where:

- Fm
κ is the formula algebra of type L over a set of variables of cardi-

nality κ.

- Mκ :=
{

〈A , F , h〉 : 〈A , F 〉 ∈Mod∗S and h ∈ Hom(Fm
κ ,A)

}

.

- mngκ
〈A ,F ,h〉(ϕ) := h(ϕ).

- 〈A , F , h〉 |=κ ϕ iff h(ϕ) ∈ F .

In [72] it is shown that LS = 〈Lκ
S : κ ≥ 2〉 is a general semantics-based logic,

that its associated consequence-based logic SLS
coincides with S, and that

the class AlgLS coincides with Alg S. It is clear that the reverse process
cannot yield parallel results by its nature: if we start from a particular
general semantics-based logic L, then we may lose information in passing
to SL since the reduced matrix semantics LSL

of the latter need bear no
relation to the original semantics of the former.
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The kind of general properties that have been studied for these semantics-
based logics include soundness and completeness, compactness relative to
consequence or to satisfiability, finite axiomatizability, decidability, the re-
lation between interpolation and amalgamation, and the relation between
Beth-like properties and conditions on surjectivity of epimorphisms in sev-
eral senses, etc. Since every consequence-based logic can be interpreted in
a natural way as a semantics-based logic, essentially everything that can be
done with the former can be transported to the latter. Conversely, a large
part of the theory of a semantics-based logic depends only on its associ-
ated consequence relation, and hence can be formulated entirely in terms
of the associated consequence-based logic. Generally speaking, most of the
examples that were originally studied within the semantics-based framework
correspond to algebraizable consequence-based logics. See [11, 72] for details.

6.2. The categorial approach

All the logics we have considered so far have had as their basic syntactical
elements formulas (or finite sequences of formulas) that are constructed re-
cursively from a fixed set of logical connectives and (sentential) variables, or
atomic formulas, in the familiar way. A minor generalization allows for the
set of atomic formulas to be varied, as for example in the case of general
semantics-based logics considered in Section 6.1 (a similar generalization was
made in [52]). These generalizations still keep the logical language, i.e., the
set of logical connectives, fixed. However, the informal notion of logic is not
bound so rigidly to the language in which it is formalized: when considering
the different formalizations of, say, classical logic, by taking different sets of
primitive connectives, one actually thinks of them as different presentations

of the same logic. This viewpoint calls for a notion of logic that incorpo-
rates a variety of languages together with mappings between them induced
by certain translations of one language into another. Another problem with
restricting the languages to essentially sentential languages is the awkward-
ness this introduces in the algebraization of quantifier logics. The first-order
predicate logic, in its standard formalization, cannot be algebraized by the
methods discussed so far because it fails to be substitution-invariant. To
be so, it must be first reformulated as a substitution-invariant logic in the
sense of Section 1.1, and this entails its radical transformation into what
is essentially a sentential logic (see Appendix C of [23] for more details).
Finally, recent developments in the formal languages of computation have
led to even greater levels of generalization and to the consideration of cat-
egory theory as the appropriate framework for the kind of AAL that seems
to emerge from these considerations.
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One proposal in this direction is the theory of institutions, which was
created by Goguen and Burstall [85] to formalize the relationship between
language and semantics at a more abstract level than abstract model the-
ory. An institution is a four-tuple 〈SIGN , sen ,Mod , |=〉 where SIGN is
a category whose objects are called signatures, sen : SIGN → SET is a
functor associating with each signature L a corresponding set sen(L) of L-
sentences, Mod : SIGN → CATop is a contravariant functor assigning to
each signature L a category whose objects are called L-models, and |= is a
function, called L-satisfaction, that assigns to each signature L in SIGN

a binary relation |=L between the objects of Mod(L) and the members of
sen(L); L-satisfaction is required only to satisfy the condition that, for each
arrow f : L → L′ in SIGN, each object M ′ of Mod(L′) and each ϕ ∈ sen(L),
M ′ |=L′ sen(f)(ϕ) iff Mod(f)(M ′) |=L ϕ.

The reader can check that this is very similar to the notion of a general
semantics-based logic, without the intensional component represented by
the meaning functions, and with the formula algebras Fm

P , with P ∈ C,
together with the homomorphisms between them replaced by an abstract
category.

The closely related notion of a π-institution has been proposed by
Fiadeiro and Sernadas [68]. It is a triple I = 〈SIGN , sen ,`〉 where SIGN

and sen are the same as for institutions, and ` is a function associating with
each signature L a relation `L ⊆ P

(

sen(L)
)

× sen(L), called L-closure or
L-entailment, such that:

(1) `L is a consequence relation on sen(L) in the sense of Section 1.1.

(2) For each arrow f : L → L′ in SIGN the following holds: If Γ `L ϕ
then sen(f)[Γ ] `L′ sen(f)(ϕ).

This second condition is an abstract version of substitution-invariance: the
entailment is required to be “invariant” not only under substitutions within
the same language, but also under “changes of primitive connectives”.

Observe that in this definition nothing is assumed about the nature
of the “sentences” of a signature. In this way substructural consequence-
based logics can be handled in a natural way by taking the L-sentences
to be L-sequents rather than the ordinary formulas, and then taking the
L-entailment relation to be the consequence relation of a Gentzen system
adequate for the logic that fails to satisfy all the structural rules. The π-
institutions were independently introduced by Meseguer [106] who called
them entailment systems; by gluing together an institution and an entail-
ment system he obtained a more general notion of logic.
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However, only the simplest part of the formalism is needed in order to
develop an adequate categorical abstract algebraic logic.

Voutsadakis, in the paper [139] in this volume, generalizes the notion
of equivalence between deductive systems of different dimension (discussed
briefly in Section 4.1) to institutions, and in the process obtains a general-
ization of the notion of algebraizability in terms of an abstract version of
the Leibniz operator. We only summarize the main ideas here.

As in the case of semantics-based logics, each institution defines in a
natural way, via the satisfaction relation, a consequence relation satisfying
the conditions of a π-institution. Voutsadakis develops his theory within
the framework of π-institutions and then extends it to general institutions
using this construction. He characterizes equivalence between π-institutions
by abstracting the following lattice-theoretic characterization of the finite
algebraizability of consequence-based logics found in [23, Theorem 3.7]:

Theorem 6.3. Let S be a finitary logic and K a quasivariety. Then S is al-

gebraizable and has K as its equivalent algebraic semantics iff there exists an

isomorphism between the lattice ThS and the lattice CoKFm that commutes

with substitutions (in an appropriate sense).

The isomorphism, if it exists, is unique and coincides of course with the
Leibniz operator Ω on the formula algebra. From the point of view of Sec-
tion 4.1, the K-congruences of the formula algebra coincide with the theories
of the equational logic associated with K. This is the manner in which the
equivalence of deductive systems of different dimension is characterized in
[29], and it seems suitable for categorical abstraction. Thus Voutsadakis is
led to study the category of theories of a π-institution (which are signature-
dependent) and the corresponding theory functor that assigns to each signa-
ture its family of theories and transforms each arrow of SIGN into an arrow
of theories. Most of the hard work in [139] is done in studying the functors
between categories of theories that play the role of the Leibniz operator and
its inverse. Several notions of deductive equivalence between π-institutions
are introduced, in terms of functors between signatures and natural transfor-
mations of the theory functors satisfying certain conditions that generalize
(3.5), (3.6) and (3.7) in categorical terms; the natural transformations play
the role of the faithful interpretations used to define algebraizability in Sec-
tion 3.3, while the functors between signatures incorporate the new feature
of change of logical language.

In the main theorem of [139], Voutsadakis proves that two so-called term
institutions are deductively equivalent iff there exists a signature-respecting
adjoint equivalence between their respective categories of theories that com-
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mutes with substitutions. Roughly speaking, for an institution, the term

property is a categorical analogue of the absolutely free nature of ordinary
formula algebras; this condition seems to be required in order to generalize
the notion of algebraizability given in Section 3.3. At this point the reader
should have at least some idea what the notions of signature-respecting and
substitution mean; the precise definitions can be found in [139].

The research is continued in [138], where the restricted notion of an
algebraic institution is developed; it is more abstract than the institution
normally associated with the 2-deductive system corresponding to the equa-
tional consequence of a class of algebras; the greater abstraction is needed in
order to algebraize institutions associated with more exotic logics. Then, al-
gebraizable institutions are naturally defined as those deductively equivalent
to an algebraic institution. Voutsadakis works out in detail the algebraiza-
tion of several kinds of logics, from ordinary sentential logics to equational
logic and first-order logics, without having to transform the latter into sen-
tential logics in an artificial way. As proof of the wider applicability of this
framework, an institution is described which is not so-to-speak “linguisti-
cally based”, but diagram-based: its signature objects are graphs, and the
sentences of a given signature are the arrows of the category freely generated
by the graph corresponding to the signature; this institution is shown to be
algebraizable.
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[109] Monteiro, A., ‘Sur les algèbres de Heyting simétriques’, Portugal. Math. 39

(1980)), 1–237.
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