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Abstract

The goal of this paper is to give a necessary and sufficient condition
for a multiple-conclusion consequence relation to be Post complete by
using proof/refutation systems.
Keywords. refutation systems, Post completeness, multiple-conclusion
logic.

1 Introduction

When we deal with the set L of propositional formulas valid in some struc-
tures, we are usually interested in laws and inference rules generating valid
formulas. However, we can also consider non-laws and refutation rules gen-
erating non-valid formulas. As a result, we have a pair S = (T ,F) of com-
plementary inference systems (T for L and F for −L), which can be called a
proof/refutation system. Such systems enable provability and refutability on
the propositional level. In a manner of speaking, we have two engines rather
than one.

The idea of syntactic refutability was introduced by  Lukasiewicz [3] (but
it was already known to Aristotle), and it is now used in computer science
(see e.g. [5], [2], [1]). For an introduction to refutation systems see [11].

In this paper we show that this method provides a natural characteriza-
tion of Post completeness.

Post completeness can be defined in a couple of ways. Here, in view of
possible generalizations, it is convenient to define it as follows. A logic (or a
logical theory1) L is Post complete iff L is consistent and L has no consistent
proper extension. This definition was adopted by (among others) McKinsey
[4] and Segerberg [8]. (Note that this definition is different from that in [9].)

1A logical theory is a set of formulas closed under a consequence relation.
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The fact that Classical Logic (that is, the set CL of Boolean laws) is Post
complete can be established by showing the following.

For any formula A 6∈ CL there is a substitution s such that
s(A)→ p ∈ CL, where p is a fixed propositional variable.

In other words, for every formula A
either A ∈ CL or A is refutable in the  Lukasiewicz refutation system:

Refutation axiom: p
Refutation rules:
(reverse substitution) s(A)/A, where s(A) is a substitution instance of A
(reverse modus ponens) B/A, where A→ B ∈ CL

Thus, if this refutation system is complete for CL, then CL is Post complete.
On the other hand, it can be shown that if CL is Post complete, then the
system is complete for CL. This fact suggests a close relationship between
Post completeness and syntactic refutability.

Post completeness is such a nice property. However, although there are
infinitely many Post complete logics (see [4], [8]), it seems that there is no
interesting standard non-classical logic that is Post complete. What happens
if the term logic is construed more generally? There are two possibilities.

(1) A logic is a consequence relation ` between finite sets of formulas and
formulas. Then the set L` = {A : ` A} of is theorems is a logical theory.
We now say that a logic ` is Post complete iff ` is consistent and has no
consistent proper extension. However, it turns out that ` is Post complete
iff L` is Post complete (see e.g. [6]), so that in this case nothing happens.

(2) A logic is a consequence relation à between finite sets of formulas (or
a multiple-conclusion consequence relation). Again, we say that à is Post
complete iff à is consistent and has no consistent proper extension. Then
the relation `= {X/A : X à A} (where X is a set of formulas and A is a
formula) is a logic in the sense defined in (1). Interestingly, the situation is
now dramatically different. For example, consider any non-classical logic L
that is not Post complete. Let àL= {X/Y : If X ⊆ L then Y ∩ L 6= ∅} (so
àL is the set of multiple-conclusion inferences preserving L). Then àL is

Post complete (cf. Corollary 3.4).
In this paper we give a necessary and sufficient condition (in terms of

proof/refutation systems) for a multiple-conclusion consequence relation to
be Post complete.
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2 Preliminaries

Let FOR be the set of formulas generated from the propositional variables
p, p1, p2, ... by standard connectives. By an inference we mean a pair X/A,
where X is a finite set of formulas and A ∈ FOR. And by a rule R we mean
a set of inferences. Note that if R,R′ are rules, then so is R ∪ R′, so that
a number of rules can be presented as a single rule. An inference system is
a pair (AX,RU), where AX is a set of formulas (axioms) and RU is a set
of rules. Since axioms A can be regarded as rules ∅/A, any inference system
can be presented as a rule.

A consequence relation is a relation ` between finite sets of formulas and
formulas satisfying the following conditions.

A ` A.
If X ` A then X ′ ` A, where X ⊆ X ′.
If X ` A and X,A ` B, then X ` B.

Every rule R determines a consequence relation `R defined as follows.
X `R A iff A is derivable from X by R, that is, there is a sequence

A1, ..., An such that An = A and each Ai is in X or is obtained by R.
We say that a set Z of formulas is closed under a rule R (or R preserves

Z) iff for all X/A ∈ R, if X ⊆ Z then A ∈ Z. We remark that if R preserves
Z, then so does `R.

A multiple-conclusion inference (or a sequent) is a pair X/Y , where X, Y
are finite sets of formulas. And a multiple-conclusion rule (or a sequent rule)
is a set of sequents.

A multiple-conclusion consequence relation is a relation à between finite
sets of formulas satisfying the fllowing conditons.

X à Y if X ∩ Y 6= ∅.
If X à Y then X ′ à Y ′, where X ⊆ X ′, Y ⊆ Y ′.
If X à A, Y and X,A à Y , then X à Y .

We say that à is consistent iff for no A both à A and A à. And we say
that à is complete iff for all A, either à A or A à. Since FOR 6= ∅, we
have: à is consistent iff ∅ 6 à ∅.

By an extension (proper extension) of a consequence relation à we mean
a consequence relation à′ such that à⊆ à′ ( à⊂ à′).
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Every sequent rule Σ determines a multiple-conclusion consequence rela-
tion àΣ defined as follows. X àΣ Y iff there is a finite sequence α1, .., αn

of sequents such that αn = X/Y and each αi is in Σ or is obtained from
preceding sequents by one of the following rules.

(R)
X/Y

where X ∩ Y 6= ∅

(M)
X/Y
X ′/Y ′

where X ⊆ X ′, Y ⊆ Y ′

(C)
X/A, Y X,A/Y

X/Y

3 Consequence Relations

Lemma 3.1 (Scott [7]) If a consequence relation à is Post complete, then
it is complete.

PROOF Assume that à is Post complete, but it is not complete. Since à
is consistent, there are finite sets X0, Y0 ⊆ FOR such that X0 6 à Y0. And
since à is not complete, there is A ∈ FOR such that both 6 à A and A 6 à.
We now use the technique introduced by Scott in the proof of Proposition
1.3 [7]. We define à0, à1 as follows.

X à0 Y iff X à A, Y
X à1 Y iff X,A à Y

for all finite X, Y ⊆ FOR. It is easy to check that à0, à1 are consequence
relations. Also, both à0 and à1 are proper consistent extensions of à.
Hence X0 à0 Y0 and X0 à1 Y0 (because à is Post complete). But then
X0 à Y0 (by C), which is a contradiction. QED

Lemma 3.2 Let à be a consistent consequence relation.
(i) If both à A for all A ∈ X and B à for all B ∈ Y , then X 6 à Y .
(ii) If à is complete and X 6 à Y , then both à A for all A ∈ X and

B à for all B ∈ Y .

PROOF (i) By induction on the number |X ∪ Y | of formulas in X ∪ Y .
(1) |X ∪ Y | = 0. Then X = Y = ∅, so X 6 à Y , and this is true.
(2) |X ∪ Y | > 0. Then, say, X 6= ∅. (If Y 6= ∅, the argument is similar.)

So there is a formula D ∈ X. Suppose that à A for all A ∈ X and B à for
all B ∈ Y , but X à Y . Then, in particular, à D, so X− à D, Y (by M),
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where X− = X − {D}. Also X−, D à Y . Hence X− à Y (by C). Since
|X− ∪ Y | < |X ∪ Y |, by the induction hypothesis, we get X− 6 à Y , which is
a contradiction.

(ii) Assume that à is complete and X 6 à Y , but either 6 à A for some
A ∈ X or B 6 à for some B ∈ Y . Then either A à for some A ∈ X or à B
for some B ∈ Y . Hence X à Y (by M), which is a contradiction. QED

Lemma 3.3 Let à be a consequence relation. If à is consistent and com-
plete, then it is Post complete.

PROOF Assume that à is consistent and complete, but it is not Post com-
plete. then there is a consistent relation à′ such that à⊂ à′, so there are
finite sets X, Y ⊆ FOR such that X à′ Y and X 6 à Y . Since à is complete
(by Lemma 3.2 (ii)), we have: à A for all A ∈ X and B à for all B ∈ Y ,
so
à′ A for all A ∈ X and B à′ for all B ∈ Y (because à⊆ à′).

Hence, by Lemma 3.2 (i), X 6 à′ Y , which is a contradiction. QED

Corollary 3.4 A consequence relation à is Post complete iff it is consistent
and complete.

PROOF From Lemma 3.1 and Lemma 3.3. QED

The following simple facts will be useful in Section 4.
Proposition 3.5 Let à be a consequence relation.

(i) If X à Ai for all 1 ≤ i ≤ n and X,A1, ..., An à Y , then X à Y .
(ii) If X à Ai for all 1 ≤ i ≤ n and A1, ..., An à Y , then X à Y .

PROOF (i) By induction on n.
(1) n = 1. Assume X à A1 and X,A1 à Y . Then X à A1, Y (by M),

so X à Y (by C).
(2) n > 1. Assume X à Ai for all 1 ≤ i ≤ n and X,A1, A2, ..., An à Y .

Then X,A2, ..., An à A1, Y (by M), so X,A2, ..., An à Y (by C). Also
X à Ai for all 2 ≤ i ≤ n. Hence, by the induction hypothesis, we get
X à Y .

(ii) Assume X à Ai for all 1 ≤ i ≤ n and A1, ..., An à Y . Then
X,A1, ..., An à Y (by M), so X à Y (by (i)). QED
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Proposition 3.6 Let à be a consequence relation.
(i) If X à Y,A1, ..., An and X,Ai à Y for all 1 ≤ i ≤ n, then X à Y .
(ii) If X à A1, ..., An and Ai à Y for all 1 ≤ i ≤ n, then X à Y .

PROOF (i) By induction on n.
(1) n = 1. Then this holds by C.
(2) n > 1. Assume X à Y,A1, ..., An and X,Ai à Y for all 1 ≤ i ≤ n.

Then X,A1 à Y,A2, ..., An and X à A1, Y, A2, ..., An (by M). Hence
X à Y,A2, ..., An (by C). Also X,B à Y for all B ∈ Y (by R). Therefore,
by the induction hypothesis, X à Y .

(ii) From (i). QED

Proposition 3.7 Let R be an inference rule.
(i) If X `R A then X àR A.
(ii) If X `R A and R′ = {B/Y : Y/B ∈ R}, then A àR′ X.

PROOF (i) Assume that X `R A. Then there is a derivation of A from X
by R, that is, a sequence A1, ..., An such that An = A and each Ai is in X
or is obtained by R. We show, by induction on n, that there is a sequence
α1, ..., αm such that αm = X/A and each αi is in R or is obtained by R,M,C
(so that X àR A).

(1) n = 1. Then A1 = A.
(Case 1) A ∈ X. Then α1 = X/A is obtained by R.
(Case 2) A is obtained by R. Then ∅/A ∈ R and α1 = ∅/A ∈ R.
(2) n > 1 and we assume that every shorter derivation of B from X by R

has a sequent derivation of X/B from R by R,M,C. We may also assume
that A 6∈ X (otherwise see (1)). Then A is obtained from some B1, ..., Bk ∈
{A1, ..., An−1} and B1, ..., Bk/A ∈ R. By the induction hypothesis, for every
1 ≤ i ≤ k, X/Bi is derivable from R by R,M,C. Hence, by Proposition 3.5
(ii), so is X/A, so that X àR A.

(ii) The proof is similar to that of (i). The important modification is the
following.

(Case 2) A is obtained from some B1, ..., Bk ∈ {A1, ..., An−1} and
B1, ..., Bk/A ∈ R. We have A/B1, ..., Bk ∈ R′. By the induction hypothesis,
for every 1 ≤ i ≤ k, Bi/X is derivable from R′ by R,M,C. Hence, by
Proposition 3.6 (ii), so is A/X, so that A àR′ X. QED
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4 Proof/Refutation Systems

Definition (i) A proof/refutation system for a set L ⊆ FOR is a pair

S = (T ,F)

of inference rules such that T preserves L and F preserves −L.
(ii) S is complete for L iff for every A ∈ FOR we have

`T A or `F A

(iii) The multiple-conclusion consequence relation determined by S is the
relation àΣ, where

Σ = T ∪ {A/X : X/A ∈ F}

Lemma 4.1 Let S be a complete proof/refutation system for L.
(i) A ∈ L iff `T A, and A 6∈ L if `F A.
(ii) àΣ preserves L.
(iii) àΣ is consistent.
(iv) A ∈ L iff àΣ A, and A 6∈ L iff A àΣ.
(v) àΣ is complete.

PROOF (i) Since T preserves L and F preserves −L, we have:
If `T A then A ∈ L, and if `F A then A 6∈ L.

We show that if A ∈ L then `T A, and if A 6∈ L then `F A.
Suppose that A ∈ L (A 6∈ L) but 6`T A (6`F A). Since S is complete, this

gives `F A (`T A), so A 6∈ L (A ∈ L), which is a contradiction.

(ii) This follows from the fact that Σ preserves L and this property is
preserved by R,M,C. (For example, to check M , assume that X, Y preserves
L. If X ′ ⊆ L, then X ⊆ L, so Y ∩ L 6= ∅, so Y ′ ∩ L 6= ∅, which means that
X ′/Y ′ preserves L.)

(iii) Suppose that àΣ A and A àΣ for some A ∈ FOR. Then ∅ à ∅,
which contradicts (ii).

(iv) We first show that
(∗) if A ∈ L then àΣ A, and if A 6∈ L then A àΣ.

Assume that A ∈ L (A 6∈ L). Then, by (i), we have `T A (`F A). Hence,
by Proposition 3.7, we get àT A (A àF ′), so àΣ A (A àΣ), as required.
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Now suppose that àΣ A (A àΣ) but A 6∈ L (A ∈ L). Then, by (∗),
A àΣ ( àΣ A), which contradicts (iii).

(v) For every A ∈ FOR we have either A ∈ L or A 6∈ L. Hence, by (iv),
either àΣ A or A àΣ. QED

Corollary 4.2 If S is a proof/refutation system that is consistent and com-
plete, then àΣ is Post complete.

PROOF From Lemma 3.3 and Lemma 4.1 (iii,v).

Lemma 4.3 If à is Post complete, then à= àΣ for some complete consis-
tent proof/refutation system S.

PROOF Assume that à is Post complete. Then à is complete (by Lemma
3.1). Let S = (T ,F), where
T = {∅/A : à A} and F = {∅/B : B à}.

We show that à= àΣ.
(1) àΣ⊆ à.

Indeed, by Lemma 3.2, we have:
(?) X à Y iff either A à for some A ∈ X or à B for some B ∈ Y .

Note that Σ satisfies (?) and the rules R,M,C preserve (?). For example,
to check C, assume that both X,A à Y and X à A, Y satisfy (?), but
X à Y does not. Then à B for all B ∈ X and D à for all D ∈ Y . Hence
A à and à A, which is impossible for à is consistent.

(2) à⊆ àΣ.
Indeed, Let X à Y . Then A à for some A ∈ X or à B for some B ∈ Y .
Thus, we have A àΣ or àΣ B. Hence X àΣ Y (by M), as required. QED

Theorem A consequence relation à is Post complete iff à is determined
by a proof/refutation system that is both consistent and complete.

PROOF From Corollary 4.2 and Lemma 4.3.

Remark Thus, Post complete logics and complete proof/refutation systems
are two sides of one coin. Of course, there are various kinds of proof/refutation
systems. The one given in the proof of Lemma 4.3 is rather trivial. Gen-
uine proof systems (enabling proof search) for standard logics are well-known.
And genuine refutation systems (enabling refutation search) are possible. For
example, such systems for standard modal logics (and for Classical Logic)
are given in [10, 12].
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