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Abstract. Working in a fixed Grothendieck topos Sh(C,JC) we generalize L∞,ω

to allow our languages and formulas to make explicit reference to Sh(C,JC). We
likewise generalize the notion of model. We then show how to encode these general-
ized structures by models of a related sentence of L∞,ω in the category of sets and
functions. Use this encoding we prove analogs of several results concerning L∞,ω,
such as the downward Löwenheim-Skolem theorem, the completeness theorem and
Barwise compactness.

1. Introduction

A remarkable fact about Lω1,ω(L) is that several important theorems which are true
of first order model theory have analogs for the model theory of countable fragments
of Lω1,ω. Examples of such theorems include (what we call) the directed embedding
theorem, i.e. if all maps in a directed system preserves a fragment of formulas then so
do the maps in the limit, the downward Löwenheim-Skolem theorem, the completeness
theorem and Barwise’s compactness theorem.

One of the most significant discoveries of categorical logic is that the operations of
L∞,ω(L) can be described categorically. This observation allows us to study models of
sentences of L∞,ω(L) in categories other than the category of sets and functions. One
class of categories which are especially well suited to interpret sentences of L∞,ω(L)
are Grothendieck toposes. However, while it make sense to study the model theory
of L∞,ω(L) in a Grothendieck topos, this model theory can behave very differently
than model theory in the category of sets and functions (for example, in general it
will be intuitionistic and need not satisfy the law of excluded middle).

A natural question to ask is: “If we fix a Grothendieck topos, which results about
the model theory of Lω1,ω(L) in the category of sets and functions have analogs for
the model theory of Lω1,ω(L) in our fixed Grothendieck topos?” In this paper we
provide a partial answer to this question by proving analogs of each of the theorems
mentioned so far. Further, as we are fixing the Grothendieck topos in which we are
working, we will be able to prove our theorems for a wider class of formulas and
sentences than just Lω1,ω(L). Specifically we will be able to prove our analogs for
formulas and sentences which makes explicit use of our chosen Grothendieck topos in
their definitions. We call these sheaf formulas and sheaf sentences respectively and we
call the resulting structures sheaf models. As we will see in Section 2.3 our concept
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of a sheaf formula will not only subsume the notion of a formula of L∞,ω(L), but will
also subsume Kripke-Joyal semantics (for models in a Grothendieck topos).

Our collection of sheaf formulas will generalize L∞,ω(L) in two ways. First, as
we have fixed the category our models will live it, our sheaf languages will be able
to make explicit reference to objects in this category. For example, our language
will be allowed to have generalized constants, i.e. constants which are interpreted by
generalized elements in L-structure.

The second way in which sheaf formulas will be more general than formulas of
L∞,ω(L) has to do with connectives. We can then think of the subobject classifier,
Ω, of our fixed Grothendieck topos as a sheaf of truth values. An interpretation of
a sheaf formula (in an L structure) will then take one of two forms. Either it will
be a map between (the interpretation of) two sorts or it will be a map from (the
interpretation of) a sort to Ω. We will then be allowed to build new sheaf formulas of
the later type from a finite number of other sheaf formulas of the later type, by use
of a connective, i.e. a map from Ωn to Ω. This is done in a similar manner to how
in continuous logic (see [4]) we consider [0,1] as a metric space of truth values and
connectives are maps between [0,1]n and [0,1].

We will prove the analogs of the previously mentioned theorems of Lω1,ω(L) by
first constructing an encoding of sheaf L-structures by models in Set of a theory in
L∞,ω(L) (where L is constructed from L). We will then define an interpretation of
sheaf formulas and sheaf sentences by sentences of L∞,ω(L) in such a way that a sheaf
model satisfies a sheaf sentence if and only if the corresponding encoded L-structure
satisfies the corresponding encoded sentence of L∞,ω(L). With this encoding in hand
we will proceed to show how various theorems about L∞,ω(L) can be translated into
theorems about sheaf L-structures, sheaf formulas and sheaf sentences.

One of the main difficulties which we will have to over come in order to define our
encodings is the non-first order nature of being a sheaves. We will avoid this difficulty
by working in a category, Sh∗(C,JC), which is an absolute version of the category
of sheaves on the (weak) site (C,JC). As we will see, the class of objects and the
class of morphisms in Sh∗(C,JC) can be defined by sentences of L∞,ω(L). There is
however one subtlety in dealing with Sh∗(C,JC) that is worth mentioning. While
the morphisms can be described by a sentence of L∞,ω(L), that sentence will need to
have access to a linear order of order type ∣JC ∣+. For some of our results this poses
a problem as on its face it will prohibit us from directly using results which hold for
Lω1,ω(L) but not for L∞,ω(L) (in the category of sets). As such it will be important
to keep track of the order type of this linear ordering and showing that in many cases
it suffices for this linear ordering to be countable.

1.1. Outline. We begin this paper in Section 2.1 with a review of the relationship
between weak sites and sites as well as a review of the definition of Sh∗(C,JC).
In particular we show how sites can be constructed form weak sites and how this
construction can be mirrored in the construction of the sheafification of a separated
presheaf by iterating a particular functor associated to a weak site. We also introduce
the important notion of the closure of a subpresheaf in another presheaf. In Section
2.2 we then introduce the notions of sheaf languages and sheaf models before, in
Section 2.3, introducing the notions of sheaf formulas and sheaf sentences.



MODEL THEORY OF L∞,ω IN A FIXED GROTHENDIECK TOPOS 3

In Section 3 we give our encodings. These encodings will be constructed by means
of what we call components. A component consists of a language and a Π2-theory in
that language. In Section 3.1 we give the basic components, i.e. those from which the
other components will be built. In Section 3.2 we then, using the basic components,
define components which encode the elements of sheaf languages and sheaf models.
Finally, in Section 3.3 we define the components which capture the notion of when a
formula is equivalent to a function/relation in our sheaf language and the components
which allow us to build arbitrary sheaf sentences from simpler ones. With these in
hand we prove the desired relationship between encoded formulas and sentences and
encoded models.

Once we have finished defining our encodings we will prove, in Section 4, our main
results. In Section 4.1 we will show that sheaf formulas and sheaf sentences are
preserved under directed limits, in Section 4.2 we will prove a downward Löwenheim-
Skolem theorem, in Secion 4.3 we will prove a completeness theorem and in Section
4.4 we will prove an analog of Barwise’s compactness theorem.

1.2. Background. In this paper we will assume Zermelo-Fraenkel Set Theory with
the Axiom of Choice (ZFC) as our ambient theory and we will assume all results take
place in a fixed model of ZFC which we refer to as Set. We also abuse notation and
use Set for the category of sets and functions in this ambient model of ZFC as well.
By an admissible set relative to a language ⟨∈,⋯⟩ we mean a transitive set V such
that (V, ∈, . . . ) is a model of Kripke-Platek set theory (KP) relative to a ⟨∈, . . .⟩. If ϕ
is in the language of set theory and V is an admissible set then by ϕV we mean the
formula where all quantifiers in ϕ are bound by V . When V0, V1 ⊧ KP, we will also
use V0 ≺n V1 to signify that V0 is an Σn elementary substructure of V1. If X is a set
we denote its transitive closure by tc(X).

If C is a category we will denote its collection of objects by obj(C), its collection
of morphisms by mor(C), the collection of morphisms from c to d by C[c, d] and the
collection of morphisms with codomain d by C[−, d]. We will assume all categories
have distinguished finite limits. For c ∈ obj(C), !c ∶ c→ 1 will be the unique map from
c to the terminal object. All categories will be locally small.

If C is a small category we let Presh(C) be the category of presheaves on C. If A
is a presheaf on C we let x ∈ A be shorthand for the statement x ∈ ⋃c∈obj(C)A(c) and
we let dom(x) ∈ obj(C) be such that x ∈ A(dom(x)). We will also assume for every
presheaf A that if c, d ∈ obj(C) with c ≠ d then A(c)∩A(d) = ∅. We loose no generality
by this assumption, but it will simplify the presentation. If A,B are presheaves we
let A ⊆ B mean the obvious thing and if f ∶ A → B is a map of presheaves we let
ran(f) = {y ∈ B ∶ (∃x ∈ A)f(x) = y}. We let ∣A∣ ∶= ∣⋃c∈C A(c)∣

If (C,JC) is a site let Sep(C,JC) be the category of separated presheaves on (C,JC)
and Sheaf(C,JC) be the category of sheaves on (C,JC). We let i ∶ Sheaf(C,JC) →
Sheaf(C,JC) be the inclusion map and a ∶ Sheaf(C,JC)→ Sep(C,JC) be the sheafifi-
cation functor. Whenever A ⊆ B with A,B ∈ obj(Sep(C,JC)), we will assume a(A) ⊆
a(B). While we may not be able to do this simultaneously for all of Sep(C,JC), for
any set of separated presheaves we can choose a specific sheafification which makes
this true. As such there is no loss of generality in this assumption, and we make it
as it will greatly simplify the presentation.



MODEL THEORY OF L∞,ω IN A FIXED GROTHENDIECK TOPOS 4

By a first order language we mean a language with sorts, relations on the sorts
and functions between the sorts which is intended to be interpreted in Set. We will
assume the collection of sorts of a first order language is closed under taking finite
strings (where ⟨S1, . . . , Sn⟩ will be interpreted as the product of the interpretations of
S1, . . . , Sn) If L0 ⊆ L1 are first order languages andM is an L1 structure,M∣L0 is the
structure obtained from M by restricting to the language L0.

If T ∈ L∞,ω(L) is a sentence then we let ⊢ T denote the statement that there exists
an (infinitary) proof of T . We define the complexity of a formula ϕ ∈ L∞,ω(L) as
the least κ such that ϕ ∈ Lκ+,ω(L).

Suppose L is a first order language with S ∈ L a sort and E ∈ L is a relation of
type S. Further suppose ϕ,ψ ∈ L∞,ω(L) with ψ(⋅) a formula with a free variable of
type S and which doesn’t have E(⋅) as a subformula. We then we denote the result
of replacing all occurrences E(⋅) in ϕ by ψ(⋅) by ϕ[ψ(⋅)/E(⋅)]. Similarly if L0,L1 are
copies of the same language and L0 ⊆ L∗, then we denote the language obtained by
replacing L0 by L1 in L∗ by L∗[L1/L0].

For more information on background definitions or results not mentioned here the
reader is referred to such standard texts as [3] of [6] for set theory, [8] for category
theory, [9] for the theory of sheaves, and [5] or [7] for model theory.

2. Sheaf Models

In this section we will introduce our notion of a sheaf language, a sheaf model, a
sheaf formula and a sheaf sentence. These are the analogs of first order languages,
models in Set, and formulas and sentences in L∞,ω, except that they will take into
account the fact that we are working in a fixed background Grothendieck topos.

2.1. Grothendieck Topoi. Before we begin it is worth recalling some definitions
which will be important later.

Definition 2.1. A weak site is a pair (C,JC) where C is a small category and JC
is a function which takes an object c of C and returns a collection of sieves on c such
that:

● (Identity) C[−, c] ∈ JC(c).
● (Base Change) If I ∈ JC(c) and f ∶ d→ c then f∗I ∶= {g ∶ f ○ g ∈ I} ∈ JC(d).

We call JC(c) the covering sieves of A and we let ∣JC ∣ = ∣⋃c∈obj(C) JC(c)∣ be the size
of JC.

For the rest of the paper we will work with a fixed weak site (C,JC).
Definition 2.2. A site is a weak site (C,JC) satisfying

● (Local Character) Let I ∈ JC(A) and let K be any sieve on c. If (∀d ∈
obj(C))(∀f ∈ I(d))f∗K ∈ JC(d) then K ∈ JC(c).

The relationship between a weak site and a site is similar to the relationship between
a basis for a topological space and a topological space. Being a basis for a topological
space is an absolute property while being a topological space is not absolute. Similarly,
being a weak site is an absolute property while being a site is not absolute. Further,
just as for each basis there is a smallest topological space which contains it, for
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each weak site (C,JC) there is a smallest site which contains it. The smallest site
containing (C,JC) can be built as the fixed point of an inductive definition.

Definition 2.3. If (C,JC) is a weak site then for each c ∈ obj(C) we define the
collection of sieves JαC(c) by induction on α:

● J1
C(c) = {I ∶ (∃I ′ ∈ JC(c))I ′ ⊆ I}.

● Jω⋅γC (c) = ⋃β<ω⋅γ JβC(c).
● Jα+1

C (c) = {I ∶ (∃I ′ ∈ JC(c))(∀f ∈ I ′)f∗I ∈ JαC(dom(f))}.

As JαC is non-decreasing in α, there is some ordinal such that JαC = Jα+1
C . We let JORD

C

be such a JαC.

It is easily checked that (C,JORD
C ) is the smallest site containing (C,JC) (see [1]).

If I ∈ JORD
C (c) then we define the level of I to be the least α such that I ∈ JαC(c).

This fine grained analysis of the construction of the smallest site containing a weak
site is important as it will allow us to give a fine grained analysis of the sheafification
functor.

Definition 2.4. Let F ∶ Cop → Set be a presheaf on C. If c ∈ obj(C) and I ∈ JC(c), a
compatible collection of elements (for I) is a collection ⟨(bi, i) ∶ i ∈ I⟩ such that

● For each d ∈ obj(C), (∀i ∈ I(d)) bi ∈ F (d).
● For each d, d′ ∈ obj(C), (∀i′ ∈ C[d′, d])bi○i′ = F (i′)(bi)

If there is an b ∈ F (d) such that F (i)(b) = bi for all i ∈ I then we say ⟨(bi, i) ∶ i ∈ I⟩
covers b.

Definition 2.5. Let F ∶ Cop → Set is a presheaf. We say F is separated for (C,JC)
if every compatible collection of elements of F covers at most one element of F . We
say F is a sheaf for (C,JC) if every compatible collection of elements covers exactly
one element of F . We let Sep(C,JC) be the full subcategory of Presh(C) whose
objects are separated presheaves for (C,JC) and Sheaf(C,JC) be the full subcategory
of Presh(C) whose objects are sheaves for (C,JC).

It is not hard to show (see [1]) that Sep(C,JC) = Sep(C,JORD
C ) and that Sheaf(C,JC) =

Sheaf(C,JORD
C ). We have chosen to deal with weak sites instead of sites as there are

weak sites which are of size κ but for which the minimal site containing them, in any
model of set theory, is of size 2κ. This distinction between sites and weak sites will
be important when we want to define the notion of a size of a structure.

If we start with a separated presheaf F for (C,JC) we can build its sheafification
a(F ) in stages that mirror the way in which (C,JORD

C ) was built from (C,JC).
Definition 2.6. We define the functors aα ∶ Sep(C,JC) → Sep(C,JC) by induction
on α as follows:

● a0 = id.
● a1(A) = {b ∈ a(A) ∶ (∃I ∈ JC(dom(b)))(∀f ∈ I)a(A)(f)(b) ∈ A(dom(f))}.
● aω⋅γ(A) = ⋃β<ω⋅γ aβ(A).
● aα+1(A) = a1(aα(A)).

For a map f ∶ A→ B we let aα(f) ∶ aα(A)→ aα(B) be the unique map of presheaves
such that (∀x ∈ A)f(x) = aα(f)(x).
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For any separated presheaf A we have aα(A) ⊆ aβ(A) whenever α < β. Further, if
aα(A) = aα+1(A) then aα(A) = a(A), although the first α for which this will happen
depends on A.

The presheaves aα(A) can be thought of as building a(A) by adding, one layer at a
time, all compatible collections of elements for all I ∈ JC(c), c ∈ obj(C). In particular
it is easy to check that b ∈ aα(A)(c) if and only if {g ∶ a(A)(g)(b) ∈ A} ∈ JαC(c).

One of the difficulties with working with categories of sheaves is that the property
of being a sheaf is a second order property (and in particular is not absolute). Our
first step towards dealing with this issue is to define a stand in for sheafification of
subobjects.

Definition 2.7. Suppose A ⊆ B are separated presheaves for (C,JC). We define the
closure of A in B to be a(A) ∩B. We say that A is closed in B if a(A) ∩B = A.
A particularly important case will be where a(A) ∩B = B in which case we say that
A covers B.

The intuition is that a subpresheaf A is closed in B if every compatible collection
of elements of A which covers an element in B is already in A. Note that a(A) ∩B
captures this notion because by our convention, if A ⊆ B then a(A) ⊆ a(B). The
following is also immediate.

Lemma 2.8. If A ⊆ B then A is closed in B if and only if for all c ∈ obj(C), all
I ∈ JC(c) and all b ∈ B(c), [⋀f∈I B(f)(b) ∈ A(c)] → b ∈ A(c). i.e. if and only if
a1(A) ∩B = a0(A) ∩B = A.

We define the level of A in B to be the smallest α such that aα(A)∩B = aα+1 ∩B.
The level of a subpresheaf A in B can be thought the number of times we need to
iteratively add in elements of B, which come from compatible collections of elements
of A, before we stabilize. We can think of closure of A in B as a stand in for the
sheafification A which doesn’t require us to add compatible collections of elements
which we don’t already have in front of us (and hence isn’t second order).

Lemma 2.9. Suppose B′ ⊆ B and A′ = A∩B′. Then [aα(A)∩B]∩B′ = aα(A′)∩B′.

Proof. This is because [aα(A)∩B]∩B′ = aα(A)∩B′ = aα(A∩B′)∩B′ = aα(A′)∩B′. �

This tells us that taking the closure of a subpresheaf A in B is a local property.
We now give two results which show that, in some sense, the level of a subpresheaf
can’t be too large.

Proposition 2.10. Suppose V is an admissible set with (C,JC) ∈ V and suppose
A,B ∈ obj(Sep(C,JC))V with A ⊆ B. Then

(1) For every α ∈ ORD(V ), aα(A) ∩B ∈ V .
(2) The function FV which takes an α ∈ ORD(V ) and returns aα(A) ∩B ∈ V is

uniformly ∆1-definable over V .
(3) aORD(V )(A) ∩B = a(A) ∩B.

Proof. (1) follows immediately from (2) and the fact that V is admissible. To see that
(2) holds define the function function G(x,Y ) as follows. If either x /∈ ORD(V ) or Y
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is not a function with domain x then G(x,Y ) ∶= ∅. Otherwise, if x = ∅, G(x,Y ) ∶= A,
if x is a limit ordinal then G(x,Y ) ∶= ⋃z∈x Y (z) and if x = α + 1 then

G(x,Y ) ∶= {b ∈ ⋃
c∈obj(C)

B(c) ∶ (∃I ∈ JC(c))(∀f ∈ I) B(f)(b) ∈ Y (α)}.

It is then easily checked that G is ∆1 definable over V and that FV is obtained from
G using transfinite recursion. Hence as V is admissible FV is ∆1 over V .

To show (3) holds it suffices to show that for all x ∈ aORD(V )+1(A) ∩ B that x ∈
aORD(V )(A) ∩ B, or equivalently that there is an α(x) ∈ ORD(V ) such that x ∈
aα(x)(A) ∩B.

Let x ∈ aORD(V )+1(A)∩B. We then have there is some I ∈ JC(dom(x)) such that for
all g ∈ I, B(g)(x) ∈ aORD(V )(A)∩B. Then, as aORD(V )(A)∩B = ⋃α∈ORD(V ) aα(A)∩B
the following holds:

(V, ∈) ⊧ ⋁
I∈JC(c)

⋀
g∈I

(∃α) Sg(x) ∈ aα(A)(X) ∩B.

This is a Σ1-formula and hence, as V satisfies Σ1 reflection, there is a V ∗ ∈ V with
(C,JC) ∈ V ∗ such that

(V ∗, ∈) ⊧ ⋁
I∈JC(c)

⋀
g∈I

(∃α) Sg(x) ∈ aα(A)(X) ∩B.

But then there is an I ∈ JC(X) such that ⋀g∈I(∃β < ORD(V ∗))Sg(x) ∈ aβ(A) ∩B.
Hence if α(x) = ORD(V ∗) + 1 we must have x ∈ aα(x)(A) ∩B with α(x) ∈ ORD(V ).

�

Proposition 2.11. Suppose V is an admissible set (with respect to some language)
and V ⊧“There is a Σ1-definable well-ordering”. Further suppose (C,JC) ∈ V and
V ⊧ ∣κ∣ > ∣JC ∣. If A,B ∈ obj(Sep(C,JC)) ∩ V then aκ(A) ∩B = a(A) ∩B.

Proof. Let x ∈ [a(A) ∩B] and let V0 ≺1 V with V0 ∈ V a Σ1-elementary substructure
such that {x,A,B, tc({C,JC})} ∈ V0 and V ⊧ ∣V0∣ = ∣JC ∣. Note that we can find such
a substructure as V has a Σ1-definable well-ordering. Now let i ∶ V0 → V ∗

0 be the
transitive collapsing map. Then {i, V ∗

0 } ∈ V .
We have by Proposition 2.10 that there is some α ∈ ORD(V ) such that x ∈ aα(A)∩

B. Hence there must be some α∗ ∈ ORD(V ∗
0 ) such that i(x) ∈ aα

∗(i(A))∩ i(B). But
we also have that the inverse of the transitive collapse gives injections iA ∶ i(A) → A
and iB ∶ i(B) → B. Let A′ be the image of i(A) under iA and let B′ be the image
of i(B) under iB. We then have x ∈ aα

∗(A′) ∩ B′. By Lemma 2.9 we also have
aα

∗(A′) ∩B′ = [aα∗(A) ∩B] ∩B′ and so x ∈ aα
∗(A) ∩B.

But by construction we have α∗ ∈ V ∗
0 and V ⊧ ∣V ∗

0 ∣ = ∣JC ∣ and so α∗ < κ. Hence for
all x ∈ a(A) ∩B there is some α(x) < κ with x ∈ aα(x)(A) ∩B. But this then implies
aκ(A) ∩B = aκ+1(A) ∩B and so aκ(A) ∩B = a(A) ∩B.

�

Proposition 2.10 and Proposition 2.11 give as a sense of how many times we need
to repeatedly apply a1 before things stabilize. These will be important when we
want to encode the notion of the closure of a subpresheaf in another presheaf, and in
particular these lemmas will provide limits on how complex that coding needs to be.
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We now turn to the definition of the category in which we will work. As being a
sheaf is a second order property, we will want to use a category which is equivalent to
Sheaf(C,JC), but where the objects and morphisms can be described in a first order
manner.

Definition 2.12. Let Sh∗(C,JC) be such that:

(a) The objects of Sh∗(C,JC) are the separated presheaves for (C,JC).
(b) The morphisms of Sh∗(C,JC)[D,R] are the pairs ⟨f, d⟩ where:

– d ⊆D and d covers D.
– f ∶ d⇒ R is a map of separated presheaves.

(c) ⟨g, d∗⟩ ○ ⟨f, d⟩ = ⟨g ○ f, f−1(d∗)⟩ when ⟨f, d⟩ ∶D →D∗, and ⟨g, d∗⟩ ∶D∗ → R.
(d) If X ∈ obj(Sh∗(C,JC)) then the identity on X is idX = ⟨X,X, idX⟩.

It is worth pointing out that while we will treat Sh∗(C,JC) as if it was a category,
composition may not be associative and so Sh∗(C,JC) may not be a category. How-
ever, there is a category closely related to Sh∗(C,JC) which is in fact equivalent to
Sheaf(C,JC).

Definition 2.13. For all ⟨f, df ⟩, ⟨g, dg⟩ ∈ Sh∗(C,JC)[D,R] we say ⟨f, df ⟩ is equiv-
alent to ⟨g, dg⟩, which we write as ⟨f, df ⟩ ≡ ⟨g, dg⟩, if (∀x ∈ df ∩ dg)f(x) = g(x).
We define Sh(C,JC) ∶= Sh∗(C,JC)/≡ and we let q ∶ Sh∗(C,JC) → Sh(C,JC) be the
quotient map.

In what follows we will often prefer to work with Sh∗(C,JC) instead of Sh(C,JC)
as it will allow us to avoid having to use equivalence classes of morphisms. As such
we will abuse notation and refer a structure in Sh∗(C,JC) as having a property when
its image under q has that property in Sh(C,JC). For example, we define a product
in Sh∗(C,JC) to be a diagram whose image under q is a product in Sh(C,JC).

We say a map ⟨f, d⟩ ∶ D → R is total if d = D, i.e. if f is actually a map
of presheaves between D and R. Note that it is not the case that every map is
equivalent to a total one. Rather there is an inclusion of categories ι ∶ Sep(C,JC) →
Sh∗(C,JC) where ι(A) = A for all separated presheaves and ι(f) = ⟨f,D⟩ for all map
f ∈ Sep(C,JC)[D,R]. Notice that a map is total if and only if it is in the image of ι.

Lemma 2.14. There is an equivalence of categories: j ∶ Sh(C,JC) → Sheaf(C,JC)
where j ○ q ○ ι = a.

Proof. See [1]. �

As j ○ q ○ ι = a and as sheafification preserves finite limits, we can assume without
loss of generality that in Sh∗(C,JC) the limit of any finite diagram consisting of total
maps also consists of total maps. In particular we can assume that the distinguished
product of any finite collection of objects consists of total maps.

Now that we have our category Sh(C,JC) we can make precise the sense in which
the closed subpresheaves represent the subobjects of that separated presheaf (in
Sh(C,JC)).

Lemma 2.15. Suppose B ∈ obj(Sh∗(C,JC)), A ⊆ B and X is the subobject of B in
Sh∗(C,JC) containing ⟨inA,A⟩ ∶ A→ B. Then the following are equivalent:
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(1) A is closed in B.
(2) If ⟨f,A′⟩ ∈ X then f ∶ A′ → B factors through inA (as a map of separated

presheaves).

Further every subobject contains a (necessarily) unique map of the form ⟨inA,A⟩ with
A closed in B.

Proof. First notice that since any such f in (2) must be a monic (in the category of
separated presheaves) we can assume without loss of generality that f is actually an
inclusion and that A′ ⊆ B.

(1) implies (2): Suppose A is closed in B. Then, as ⟨inA′ ,A′⟩ and ⟨inA,A⟩ are in

the same subobject of Sh∗(C,JC), we must have a(A′) = a(A) ⊆ a(B). Hence as A
is closed, we have A′ ⊆ a(A′) ∩B = a(A) ∩B = A.

¬ (1) implies ¬ (2): Let A′ = a(A) ∩ B and hence A ⊊ A′. Then j ○ q(A) = a(A) =
a(A′) = j ○ q(A′) and so ⟨inA,A⟩ and ⟨inA′ ,A′⟩ are in the same subobject of B. But
⟨inA′ ,A′⟩ does not factor through ⟨inA,A⟩ and so (2) does not hold. �

We will end this subsection with a discussion of what we mean when we say an
object of Sh∗(C,JC) has size κ. It turns out that there are several different notions
of what it means to be of size κ. We consider two of these notions here. These two
notions, along with two others relating to the natural number object, are studied in
[2] and we refer the interested reader to [2] for a more thorough discussion of the
virtues and problems surrounding each of these notions of size.

Definition 2.16. We say that A ∈ obj(Sh∗(C,JC)) is of pure size κ if ∣j ○ q(A)∣ =
∣a(A)∣ = κ (i.e. the sheafification of A has size κ, as a presheaf).

From a set theoretic point of view the notion of the pure size sheaf is a natural
notion. One major drawback though of using pure size is that there are separated
presheaves which have size κ but whose sheafification has pure size 2κ (in any model
of set theory).

Definition 2.17. We say that A ∈ obj(Sh∗(C,JC)) is κ-generated if there is an
A∗ ∈ obj(Sh∗(C,JC)) such that ⟨A∗,A, in⟩ ≡ ⟨A,A, id⟩ in Sh∗(C,JC) and ∣A∗∣ ≤ κ.

An object A ∈ obj(Sh∗(C,JC)) is κ-generated if it can be covered by a subpresheaf
of size at most κ. We have the following relationship between the generated size and
pure size of an object of Sh∗(C,JC).

Lemma 2.18. Suppose A ∈ obj(Sh∗(C,JC)) is κ-generated and ∣mor(C)∣ = γ. Then
there is a ζ with ζ ≤ κγ such that A is of pure size ζ.

Proof. Without loss of generality we can assume ∣A∣ ≤ κ. Now for every x ∈ a(A) let
x∗ ∶ ∣mor(C)∣→ A∪{∗} be such that x∗(f) = a(A)(f)(x) if this is well-defined and in
A and ∗ otherwise. As a(A) is separated we have x∗ = y∗ if and only if x = y. Hence
∣a(A)∣ ≤ κγ. �

Lemma 2.18, in general, cannot be improved upon.



MODEL THEORY OF L∞,ω IN A FIXED GROTHENDIECK TOPOS 10

Example 2.19. Let C be the category with two objects c, d and let the only non-
identity maps be {fi ∶ i ∈ γ} ⊆ C[c, d]. Let the only non-total sieve in JC be {fi ∶ i ∈
γ} ∈ JC(d). It is then immediate that if A ∈ Sh∗(C,JC) and ∣A(c)∣ = κ then the pure
size of A is κγ.

2.2. Sheaf Languages and Sheaf Models. Now that we have defined Sh∗(C,JC)
we can define our notion of sheaf languages and sheaf models. As with first order
languages, we will have sorts, functions and relations. However, because we have
fixed a Grothendieck topos in which our models will live, we are able expand the
language to take this into account. Specifically in usual first order languages if S is
a sort then a constant of type S is realized as an element of the realization of S, i.e.
as a map from the terminal object into the realization of S. In our sheaf languages
though we will be able to include generalized constants of type S which are functions
whose interpretations are generalized elements of the realization of S, i.e. maps from
an arbitrary fixed objects in our Grothendieck topos into the realization of S. We
will also allow sorts which are, essentially, arbitrary finite combinations of sorts from
our language and objects in our Grothendieck topos.

Before we give our definition of a sheaf language though, we will fix for the rest of
the paper a single, distinguished, copy of the subobject classifier of Sh∗(C,JC) which
we denote by Ω.

Definition 2.20. A sheaf language L consists of the following:

● A collection of sorts, SL, which will always be closed under finite sequences.
● A collection of object sorts, OL, along with a function rL ∶ OL → obj(Sh∗(C,JC))−

Ω. We assume that no sort in OL is a sequence of other sorts.
● A collection of function symbols, FL, each of which has a domain and

codomain which is a sort. We assume FL has, for each collection of sorts
S1, . . . , Sn, projection functions πj ∶ ⟨S1, . . . , Sn⟩→ Sj.

● A collection of relation symbols, RL, where to each relation symbol we as-
sociate a sort which is its type. We will often say the domain of a relation is
its type and its codomain is Ω. We assume RL has, for each sort S, a relation
=S of type ⟨S,S⟩.

From now on L and its variants will always represent sheaf languages.
Each sort A ∈ OL will be interpreted in all L-structures by the object rL(A). In

the case where the Grothendieck topos is Set, and hence where every object is the
colimit of terminal objects, a map f ∶ A×S → B×T with A,B ∈ OL can be interpreted
as a sequence of maps ⟨fa ∶ S → T s.t. a ∈ rL(A)⟩ and ⟨f∗a ∶ S → rL(B) s.t. a ∈ rL(A)⟩.
Hence in the special case where our Grothendieck topos is Set, our notion of a sheaf
language is equivalent to the classical notion of a language with the added ability for
maps to take values in a fixed set as opposed to a sort.

Definition 2.21. We say a sheaf language L is κ-generated if

● SL is of size at most κ.
● Each sort S ∈ OL, rL(S) is κ-generated.

We define the pure size of L similarly.

We now give our notion of an L-structure.
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Definition 2.22. An L-structure M consists of the following:

● For each S ∈ SL an object SM of Sh∗(C,JC) such that:
– If S = ⟨S1, . . . , Sn⟩ then SM = ∏i≤n S

M
i is the product of the sequence as

presheaves.
– If S ∈ OL then SM = rL(S).

● For each function symbol f ∶ S → T a map fM ∶ SM → TM in Sh∗(C,JC) such
that:

– If πj is a projection function then πMj ∶ ∏i≤n S
M
i → SMj is image under ι

of the corresponding projection map in Sep(C,JC).
● For each relation symbol R of sort S a pair (RMs ,RM) where:

– RM ∶ SM → Ω.
– RMs ⊆ SM where RMs is closed in SM.
– For all x ∈ SM, RM(x) ∶= {f ∈ C[−,dom(x)] ∶ SM(f)(x) ∈ RMs }.
and
– For each relation symbol =S, (=S)Ms ∶= {(x,x) ∶ x ∈ SM} ⊆ SM × SM.

Note if M is an L-structure and if S = ⟨S1, . . . , Sn⟩ ∈ SL then ⟨SM, ⟨πMi ∶ i ≤ n⟩⟩
is the distinguished product of SM1 , . . . , SMn in Sh∗(C,JC) (as we have assumed all
distinguished products are total). Also notice by Lemma 2.15 if R ∈ RL is of type
S then either element of the pair (RMs ,RM) determines the other uniquely (and
determines a unique subobject of SM). While it will often be easier to deal with RMs ,
there will be situations, such as when dealing with connectives, when we will need
RM. As such we have required the realization of a relation symbol to contain both.

There is a subtle point worth mentioning, even though it will not play an important
role in what follows. As our language determines, for some sorts, the objects which
interpret those sorts, there are languages for which there are no L-structures. For
example, suppose A,B ∈ obj(Sh∗(C,JC)) are such that Sh∗(C,JC)[A,B] = ∅, e.g.
if B is a proper closed subset of A (and hence determines an element of a proper
subobject). If our language requires there to be a function whose domain is A and
whose codomain is B, then for that language there would be no L-structures.

One way in which we could avoid this dilemma would be to only allow the sorts in
OL to be in the domain of function symbols. However we have chosen not to do this
as it limits the languages which we can consider and none of our results are harmed
by the possibility that our language might not have any structures.

We now give three important definitions.

Definition 2.23. Suppose L0 ⊆ L1 are sheaf languages and M is an L1-structure.
We define the restriction of M to L0, written M∣L0, to be the unique L0-structure
such that:

● SM = SM∣L0 for all S ∈ SL0.
● fM = fM∣L0 for all f ∈ FL0.

● RMs = RM∣L0
s for all R ∈ RL0.

We say that an L1-structure M is an expansion of an L0-structure N (to L1) if
N =M∣L0.

Definition 2.24. We say an L-structure is κ-generated if
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● L is κ-generated.
● Each sort SM is κ-generated.

We define the pure size of an L-structure similarly.

Definition 2.25. Suppose M,N are L-structures. An L-homomorphism α from
M to N , α ∶M→ N , is a collection of maps ⟨αS ∶ S ∈ SL⟩ in Sh∗(C,JC) such that

● For each S ∈ SL, αS ∶ SM → SN .
● For each S ∈ OL, αS = idSM.
● For each f ∶ S → T in FL we have αT ○ fM ≡ fN ○ αS.
● For each R ∈ RL of type S, we have RM ≡ RN ○ αS.

We say two L-homomorphisms α0, α1 ∶M → N are equivalent, written α0 ≡ α1,
if for each sort S ∈ SL, α0

S ≡ α1
S.

We call an L-homomorphism from M to N an inclusion if each component is an
inclusion. We say thatM is an L-substructure of N , writtenM ⊆ N , if there is an
inclusion from M to N , i.e. the inclusion maps ⟨inS ∶ SM → SN s.t. S ∈ SL⟩ form an
L-homomorphism.

We define composition of L-homomorphisms in the obvious way (i.e. component
wise). We define the identity L-homomorphisms, idN , on an L-structure N to be the
homomorphism which is the identity in each component. We also say α ∶M→ N and
β ∶M → N are inverse L-isomorphisms if α ○ β ≡ idN and β ○ α ≡ idM. In other
words α and β are inverse L-isomorphisms if for each sort S ∈ SL, q(αS) and q(βS)
are inverses in Sh(C,JC).

An important property of L-homomorphisms is that they are absolute.

Lemma 2.26. Suppose M,N are L-structures and for each S ∈ SL, αS ∶ SM → SN .
Further suppose V is a admissible set with {(C,JC),M,N ,L, ⟨αS ∶ S ∈ SL⟩} ∈ V . Then
V ⊧“α is an L-homomorphism” if and only if Set ⊧“α is an L-homomorphism”.

Proof. First observe that by Proposition 2.10 we have that if {⟨f, df ⟩,D,R} ∈ V
with ⟨f, df ⟩ ∈ Sh∗(C,JC)[D,R] (in Set) then ⟨f, df ⟩ ∈ Sh∗(C,JC)[D,R]V as {x ∈
D ∶ (∃α){f ∈ mor(C) ∶ Df(x) ∈ df} ∈ JαC}V = D. Hence we have M and N are
L-structures in V and αS ∶ SM → SN for each S ∈ SL.

The result then follows from the fact that composition in Sh∗(C,JC) is absolute
and ΩV ⊆ Ω. �

We now show how to transform any directed diagram into one where all maps are
total and the size of the resulting structures don’t change too much. We can extend
the notion of a total map to models by saying that an L-structure M is total if
every function symbol is interpreted as a total map, or equivalently, if every sort and
function symbol are in the image of ι. Similarly we say that a directed system of
L-homomorphisms is total if all components are, or if equivalently it is the image
under ι of a directed system in Sep(C,JC).
Proposition 2.27. Suppose ⟨I,⪯⟩ is a partial order such that every pair of elements
has an upper bound. Further suppose D ∶= ⟨{Mi ∶ i ∈ I},{αi,j ∶ Mi → Mj, i ⪯ j}⟩
is a directed system of L-structures and L-homomorphisms. Then there is a directed
system D0 = ⟨{Ni ∶ i ∈ I},{βi,j ∶ Ni → Nj, i ⪯ j}⟩ such that:
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(1) For each i ∈ I, Mi is an L-substructure of Ni with inclusion maps ini ∶Mi →
Ni which are isomorphisms (in Sh∗(C,JC)).

(2) For all i, j ∈ I with i ⪯ j, βi,j ○ ini = inj ○αi,j. In other words D0 is isomorphic,
as a directed system, to D.

(3) D0 is total, i.e. there is a directed system D∗
0 = ⟨{N ∗

i ∶ i ∈ I},{βi,j,∗ ∶ N ∗
i →

N ∗
j , i ⪯ j}⟩ in Sep(C,JC) with D0 = ι[D∗

0].
(4) If ⟨N ∗

+ , ⟨βi,∗ ∶ N ∗
i → N ∗

+ , i ∈ I⟩⟩ is the directed limit of D∗
0 in Sep(C,JC) then

⟨ι(N ∗
+ ), ⟨ι(βi,∗) ∶ i ∈ I⟩⟩ is a directed limit of D0 in Sh∗(C,JC). Let N+ = ι(N ∗

+ )
(5) ⋃S∈SL ∣SN+ ∣ + ∣L∣ = ⋃S∈SL ⋃i∈I ∣SMi ∣ + ∣L∣.

Proof. We will first show that it suffices to restrict our attention to when αi,j and all
interpretations of functions are total.

Let VS be such that VS ≺n Set (for some sufficiently large n), tc({D,L}) ∈ VS and
∣VS ∣ = ⋃S∈SL ⋃i∈I ∣SMi ∣. Let t ∶ VS → V c

S be the transitive collapse of VS. Working
inside V c

S we can let D∗
0 be the result of applying i ○ j ○ q to each component of D,

i.e. of first mapping each component to Sheaf(C,JC) and then mapping the result
to Sep(C,JC) via the inclusion of categories, i. We then let D0 = ι(D∗

0) (and in
particular (3) follows by definition)

As j ○ q ○ ι(A) = a(A) for any separated presheaf, we then have inclusion maps
ini ∶ Mi → Ni for each i ∈ I. Further, by Lemma 2.14 we have (q ○ ι) ○ i ○ j ∶
Sh(C,JC) → Sh(C,JC) is isomorphic to the identity functor. Hence the inclusion
maps form an isomorphism of directed systems and (2) follows.

As j ○ q ○ ι = a, a preserves limits and j ○ q is an equivalence of categories, we have
that ι preserves limits as well. Hence (4) holds.

Lastly we have that ⋃S∈SL ∣SN+ ∣ + ∣L∣ = ⋃S∈SL ⋃i∈I ∣SNi ∣ + ∣L∣ which further equals

⋃S∈SL ⋃i∈I ∣a(SMi)V cS ∣ + ∣L∣. But as ∣V c
S ∣ = ⋃S∈SL ⋃i∈I ∣SMi ∣ + ∣L∣ we have that (5) holds

as well.
�

The method used in the proof of Proposition 2.27, of working inside a transitive
collapse and then observing that the result has the properties we want and isn’t to
large (as the transitive collapse is of fixed size) is one which we will use several times
in Section 4.

It is worth pointing out that if α as an L-homomorphism then αS must preserve
=S for each sort S and hence αS must be a monic. This observation, along with
Proposition 2.27 shows that we can replace any L-homomorphism by an isomorphic
one (in the obvious sense) which in an inclusion.

2.3. Sheaf Formulas and Sheaf Sentences. Now that we have our notion of a
sheaf language and a sheaf structure we can define our notion of a sheaf formula.
Each sheaf formula will be interpreted in a structure as either a map between the
realization of two sorts, or a map from the realization of a sort to the subobject
classifier. We want the latter collection of sheaf formulas to be closed under the
basic logical operations of ∀, ∃, as well as the infinitary ⋁ and ⋀. In addition to
these operations we will also want our sheaf formulas to be closed under all finitary
connectives from our fixed Grothendieck topos. Such a finitary connective is a map
from some finite power of the subobject classifier to the subobject classifier.
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In the category Set, all connectives between {⊺,�}n and {⊺,�} can be built from
the standard connectives ∧,∨,¬. Hence in the category of Set, there is no difference
between requiring the collection of formulas to be closed under {∧,∨,¬} and requiring
the collection of formulas to be closed under all connectives between {⊺,�}n and {⊺,�}
for all finite n. This however is a peculiarity of the category Set and in a general
Grothendiek topos it need not be the case that all maps of the form Ωn to Ω can be
generated from the maps {∧,∨,¬}.

Definition 2.28. We define the collection Forκ+,ω(L) of partial sheaf formulas
over L (of complexity at most κ) to be the smallest collection where:

(L) FL ∪ RL ⊆ Forκ+,ω(L).
(0) If A,B ∈ OL and α ∶ rL(A) → rL(B) then ⟨0, α⟩ ∈ Forκ+,ω(L) with domain A

and codomain B.
(1) If f, g ∈ Forκ+,ω(L) and codom(f) = dom(g) then ⟨1, g, f⟩ ∈ Forκ+,ω(L), with

domain dom(f) and codomain codom(g). We abbreviate ⟨1, g, f⟩ by g ○ f .
(2) If {fi ∶ i ≤ n} ⊆ Forκ+,ω(L) all with the same domain and such that {codom(fi) ∶

i ≤ n} ⊆ SL, then ⟨2, fi ∶ i ≤ n⟩ ∈ Forκ+,ω(L) with domain dom(fi) and codomain
⟨codom(f1), . . . , codom(fn)⟩. We abbreviate ⟨2, fi ∶ i ≤ n⟩ as ∏i≤n fi.

(3) If {fi ∶ i ≤ n} ⊆ Forκ+,ω(L) each with the same domain and each with codomain
Ω, and if X ⊆ Ω with β ∶ Xn → X then ⟨3, β,X, fi ∶ i ≤ n⟩ ∈ Forκ+,ω(L),
with domain dom(fi) and codomain Ω. We abbreviate ⟨3, β,X, fi ∶ i ≤ n⟩ as
β ○X ∏i≤n fi and we call X the confines of β ○X ∏i≤n fi.

(4,5) If ∣K ∣ ≤ κ and {fi ∶ i ∈K} ⊆ Forκ+,ω(L) all with the same domain and all with
codomain Ω then ⟨4, fi ∶ i ∈K⟩, ⟨5, fi ∶ i ∈K⟩ ∈ Forκ+,ω(L) with domain dom(fi)
and codomain Ω. We abbreviate ⟨4, fi ∶ i ∈ K⟩ as ⋁i∈K fi and ⟨5, fi ∶ i ∈ K⟩ as
⋀i∈K fi.

(6,7) If f, g ∈ Forκ+,ω(L) with same domain, codom(f) = Ω and the codom(g) ∈ SL
then ⟨6, f, g⟩, ⟨7, f, g⟩ ∈ Forκ+,ω(L) with domain dom(f) and codomain Ω. We
abbreviated ⟨6, f, g⟩ as (∀g)f and ⟨7, f, g⟩ as (∃g)f .

We let For∞,ω(L) = ⋃κ∈ORD Forκ+,ω(L)
Definition 2.29. For ψ0, ψ1 ∈ Forκ+,ω(L) we say ψ0 is a subformula of ψ1, written
ψ0 ⪯ ψ1, if ψ0 ∈ tc(ψ1). We will also abuse notation and say ⟨X,β⟩ ⪯ ψ if β○X∏i≤n fi ⪯
ψ for some ⟨fi ∶ i ≤ n⟩. Note that ⪯ is well-founded.

With the exception of (3), each item from Definition 2.28 has a self explanatory
interpretation. We call a map Xn → X where X ⊆ Ω a partial connective and
formulas from Definition 2.28 (3) are meant to interpret partial connectives. Note
that as Ω is injective, every partial connective is the restriction of a connective to its
confines.

Notice the domain of every formula is a sort and the codomain is either a sort or Ω.
In particular connectives are not themselves formulas. Given a sheaf L-structure and
a sheaf formula ϕ, we will want to be able to expand our sheaf structure so that ϕ is
named, i.e. so that ϕ is equivalent to a function or relation in the language. In order
to do this we will want to simultaneously name every subformula of ϕ. However, if we
had allowed connectives to be formulas, in any formula which contains a connective
we would need a sort isomorphic to Ω. This would pose a problem though as there
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are weak sites of size κ for which the subobject classifier Ω is not of generated size
less than 2κ. In this situation, if we allowed connectives to be formulas, any structure
which had a named connective would itself have to be of generated size at least 2κ

(even though the weak site itself was only of size κ). We solve this problem by dealing
with partial connectives instead of with connectives. The cost however is that not all
sheaf formulas will be interpretable in all sheaf models.

Definition 2.30. We define ⊑ to be the smallest partial order on For∞,ω(L) such
that:

● ⟨3, β0,X, fi ∶ i ≤ n⟩ ⊑ ⟨3, β1, Y, gi ∶ i ≤ n⟩ if and only if X ⊆ Y , β0 = β1∣X and
fi ⊑ gi for each i ≤ n.

● Otherwise ⟨a0, b0
i ∶ i ≤ ζ0⟩ ⊑ ⟨a1, b1

i ∶ i ≤ ζ1⟩ if and only if a0 = a1, ζ0 = ζ1 and for
each i ≤ ζ0, b0

i ⊑ b1
i .

We say a formula is total if it is maximal in ⊑.

Intuitively ϕ0 ⊑ ϕ1 if ϕ0 and ϕ1 are built from simpler formulas in exactly the same
way, except whenever there is a partial connective the domain of that connective in
ϕ1 contains the domain in ϕ0 and both connectives take the same values when they
are both defined.

The following is then immediate

Lemma 2.31. For every ψ there is a total ψ′ with ψ ⊑ ψ′. Further a formula ψ is
total if and only if whenever ⟨3, β,X, ⟨fi ∶ i ≤ n⟩⟩ ⪯ ψ, X = Ω

Proof. This follows immediately from the fact that Ω is injective and hence any partial
map Xn →X ⊆ Ω can be extended to a map Ωn → Ω. �

Now that we have our notion of sheaf formula we want to describe how to interpret
a sheaf formula in a sheaf model. Unfortunately though not all sheaf formula will
be interpretable in all sheaf models. In particular if we try and compose a partial
connective with a formula which takes values outside of the confines of the partial
connective, then we run into problems. We will deal with this issue by allowing some
interpretations take the special value of ⇑.
Definition 2.32. Suppose M is an L-structure. For each ϕ ∈ Forκ+,ω(L) we define
ϕM ∶ dom(ϕ)M → codom(ϕ)M by induction along ⪯. Notice, that as a base case we
have already defined ϕM when ϕ ∈ RL ∪ FL.

Next, if there is a ψ ⪯ ϕ such that ψM =⇑ then ϕM =⇑. Otherwise we have the
following:

● If ⟨0, α⟩ ∈ Forκ+,ω(L) then ⟨0, α⟩M = α.
● If f ○ g ∈ Forκ+,ω(L) then (f ○ g)M = gM ○ fM.
● If ∏i≤n fi ∈ Forκ+,ω(L) then [∏i≤n fi]M is a morphism g from dom(fi)M to
∏i≤n codom(fi)M such that πMj ○ g = fMj for each j ≤ n.

● If β ○X∏i≤n fi ∈ Forκ+,ω(L) then [β ○X∏i≤n fi]M = β ○∏i≤n f
M
i if ran(fMi ) ⊆X

for each i ≤ n and ⇑ otherwise.
● If {fi ∶ i ∈ I} ⊆ Forκ+,ω(L) then [⋁i∈I fi]M = ⋁i∈I fMi and [⋀i∈I fi]M = ⋀i∈I fMi .
● If (∀g)f, (∃g)f ∈ Forκ+,ω(L) then [(∀g)f]M = (∀gM)fM and [(∃g)f]M =

(∃gM)fM
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We say ϕ is legal for M if ϕM ≠⇑.

We then have the following relationship between ⊑ and being legal.

Lemma 2.33. Let M be a sheaf model and let ϕ0 ⊑ ϕ1. Then

(a) If ϕ0 is legal for M then ϕ1 is legal for M.
(b) If ϕM0 is legal for M then ϕM0 = ϕM1 .
(c) If ϕ0 is total then it is legal for all L-structures.

Proof. (a), (b) follow by an easy induction on ⪯. For (c) notice by Lemma 2.31 that
if ϕ0 is total then every connective has confines Ω. �

It will often be useful to have a formula be equivalent to a function or relation in
our language.

Definition 2.34. Suppose ϕ ∈ Forκ+,ω(L) and Hϕ ∈ FL ∪ RL with dom(ϕ) = dom(Hϕ)
and codom(ϕ) = codom(Hϕ). If ϕ is legal for an L-structure M and ϕM ≡ HMϕ then
we say Hϕ is a name for ϕ (in M).

We then have the following easy connection between names for formulas and ho-
momorphisms which preserve formulas.

Lemma 2.35. Suppose A ⊆ Forκ+,ω(L), SL = SLA and [FLA − FL] ∪ [RLA − RL] = {Hϕ ∶
ϕ ∈ A} where dom(Hϕ) = dom(ϕ) and codom(Hϕ) = codom(ϕ).

Then for any L-structure M for which each ϕ ∈ A is legal, there is a unique expan-
sion MA to LA where Hϕ names ϕ for each ϕ ∈ A.

Definition 2.36. Suppose M,N are L-structures, α ∶M→ N and ϕ ∶ S → T is legal
for both M and N . We say that α preserves ϕ if:

● αT ○ ϕM ≡ ϕN ○ αS if T ∈ SL.
● ϕM ≡ ϕN ○ αS if T = Ω.

The following is then immediate.

Lemma 2.37. Suppose M,N are L-structures and A ⊆ Forκ+,ω(L) with each ϕ ∈ A
legal for both M and N . Then an L-homomorphism α ∶ M → N preserves every
formula in A if and only if α ∶MA → NA is also an LA-homomorphism.

We have shown how to interpret sheaf formulas in an L-structures. However these
interpretations don’t provide us with any statements whose truth value we can exter-
nally evaluate (i.e. in Set and not in the Sh(C,JC)). The notion of a sheaf sentence
will provide us with statements about L-structures which will either be true or false
(in our model Set of ZFC).

Definition 2.38. We let Senκ+,ω(L) be the smallest collection such that:

● If f, g ∈ Forκ+,ω(L) with dom(f) = dom(g) and codom(f) = codom(g) then
⟨9, f, g⟩ ∈ Senκ+,ω(L). We abbreviate ⟨9, f, g⟩ as f ≡ g. We call these basic
sentences

● If T ∈ Senκ+,ω(L) then so is ⟨10, T ⟩. We abbreviate ⟨10, T ⟩ as ¬̌T .
● If ∣K ∣ ≤ κ and {Ti ∶ i ∈ K} ⊆ Senκ+,ω(L) then ⟨11, Ti ∶ i ∈ K⟩, ⟨12, ⟨Ti ∶ i ∈ K⟩⟩ ∈

Senκ+,ω(L). We abbreviate ⟨11, ⟨Ti ∶ i ∈K⟩⟩ by ⋁̌i∈KTi and ⟨12, ⟨Ti ∶ i ∈K⟩⟩ by

⋀̌i∈KTi.
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We let Sen∞,ω(L) = ⋃κ∈ORD Senκ+,ω(L).

The intuition is that a basic sentence determines whether or not two formulas are
interpreted by equivalent maps. Arbitrary sentences are then boolean combinations
of basic ones.

Definition 2.39. If T0 ∈ Senκ+,ω(L) ∪ Forκ+,ω(L) and T1 ∈ Senκ+,ω(L) we say T0 ⪯ T1

if T0 ∈ tc(T1). In this case we say that T0 is a subsentence or subformula of T1 (as
appropriate). We also define a fragment to be a subset of For∞,ω(L) ∪ Sen∞,ω(L)
which is closed under ⪯.

Now that we have our collection of sentences we will want to define when an L-
structure satisfies a sentence. We define this by induction.

Definition 2.40. Suppose T ∈ Senκ+,ω(L). If there is a formulas ϕ ⪯ T such that ϕ
is not legal for M then T is not legal for M and M /⊧ T . If however T is legal for
M then we define M ⊧ T by induction as follows:

● M ⊧ f ≡ g if and only if fM ≡ gM.
● M ⊧ ¬̌T if and only if M /⊧ T (and T is legal for M).
● M ⊧ ⋁̌i∈ITi if there is some i ∈ I such that M ⊧ Ti
● M ⊧ ⋀̌i∈ITi if M ⊧ Ti for each i ∈ I.

It is worth taking a second to discuss the difference between ⋀ and ⋀̌ and ⋁ and
⋁̌. We can think of formulas with codomain Ω as functions which takes a structure
and returns an internal subsets of given sort, i.e. subobjects of the sort. Then ⋀ and
⋁ are the (internal) operations inherited from the corresponding lattice operations
on Ω. In a similar vein we can think of a sentence as a function from structures to
{⊺,�}, the subobject classifier of Set. In this way a sentence represents an external
subset of structures. Then ⋀̌ and ⋁̌ are then the (external) operations inherited from
the corresponding lattice operations on {⊺,�}.

There is a particular class of sentences which will play an important role in Section
4. We say a sentence T ∈ Senκ+,ω(L) is simple if for each ϕ ∈ Forκ+,ω(L), ϕ ⪯ T implies
ϕ ∈ FL ∪ RL. In other words a sentence is simple if it does not make any mention of
any of the operations used in constructing the formulas of the language. Note that
simple sentences are legal for all L-structures.

Lemma 2.41. For each T ∈ Senκ+,ω(L) let P (T ) = {ϕ ∈ Forκ+,ω(L) ∶ ϕ ⪯ T}. Then
for each NT = ⟨Hϕ ∶ ϕ ∈ P (T )⟩ with NT ∩P (T ) = ∅ there is a basic sentence TNT such
that if NT names all elements of P (T ) in M then M ⊧ T if and only if M ⊧ TNT .

Proof. TNT is obtained from T by replacing all occurrences of f ≡ g ⪯ T with Hf ≡Hg

for any f, g ∈ P (T ). �

Lemma 2.41 tells us that we can reduce the satisfaction relation for sentences to
the satisfaction relation for simple sentences when all subformulas are named. This
will be very important when we want to apply our encodings in Section 4.

We now end this section by considering how our sheaf languages, sheaf formulas
and sheaf models related to the Kripke-Joyal semantics for the Mitchell-Bénabou
language (see [9]). First recall that if ϕ ∈ L∞,ω(L) is of type A (where A is an object of
Sh(C,JC)) then the Mitchel-Bénabou language allows us to associate to ϕ a subobject
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{x ∶ ϕ(x)} ⊆ A. If α ∶ U → A is then a generalized element of A the Kripke-Joyal
semantics says that U forces ϕ(α), U ⊩ ϕ(α), if and only if ran(α) ⊆ {x ∶ ϕ(x)}.

In particular we have U ⊩ ϕ(α) if and only if α factors through the subobject
{x ∶ ϕ(x)}. But if ϕ∗ ∶ A → Ω is the map corresponding to the subobject {x ∶ ϕ(x)},
then U ⊩ ϕ(α) if and only if ϕ∗ ○ α factors through ⊺ ∶ 1→ Ω, i.e. ϕ∗ ○ α ≡ ⊺○!U .

Now suppose S ∈ SL, U∗ ∈ OL with rL(U∗) = U , and M is an L-structure such that
SM = A. Next let ϕ(x) be the formula in For∞,ω(L) with domain S and codomain Ω
which is constructed in the same fashion as ϕ(x). Then ϕM(x) is a map from A to Ω
which has the same interpretation as the formulas ϕ(x) (from the Mitchell-Bénabou
language of Sh(C,JC)). Further, if α ∶ U∗ → S is any function symbol in L then
U ⊩ ϕ(αM) if and only if M ⊧ ϕ ○ α ≡ ⊺○!U .

In this way we see that the (analog of) Kripke-Joyal semantics for the Mitchell-
Bénabou language is subsumed by our notion of a sheaf formula.

3. Representations and Components

In Section 4 we will prove analogs of the directed embedding theorem, the downward
Löwenheim-Skolem theorem, a completeness theorem as well as an analog of Barwise’s
compactness theorem. We will do this by showing that each of these theorems can be
reduced to the corresponding theorem on structures in the category of sets. In order
make this reduction we will need to do three things.

(1) For each sheaf language L we need to find an encoding of L by a first order
language Enc(L) and a for each sheaf L-structure M an encoding of M by a
Enc(L)-structure Enc(M).

(2) For each fragment A of L formulas and each {Hϕ ∈ FL ∪ RL ∶ ϕ ∈ A} we will
need a sentence of L∞,ω(Enc(L)) which holds of Enc(M) if and only if for
each ϕ ∈ A, Hϕ is a name for ϕ in M.

(3) For each simple sentence T we will need an encoding of T by a sentence
⟪T⟫ ∈ L∞,ω(Enc(L)) where ⟪T⟫ holds of Enc(M) if and only if M ⊧ T .

We will accomplish these three goals by defining components which can be realized
in a Set-model.

A component is a pair consisting of a language along with a Π2-theory in the
language, which is required to be satisfied for the component to be realized. We will
combine these components to build the necessary encodings. Note the fact that all
theories are Π2 will be important for proving directed embeddings theorem (Theorem
4.1).

Definition 3.1. A component, C(P ) consists of a pair ⟨Lan[C(P )],Th[C(P )]⟩
where

● Lan[C(P )] is a language.
● Th[C(P )] ⊆ L∞,ω(Lan[C(P )]) is a Π2 theory.

If M is an L-structure we say C(P ) is realized in M if Lan[C(P )] ⊆ L and
M ⊧ Th[C(P )]. We also say a component C(P0) is contained in a component C(P1),
written C(P0) ⊆ C(P1) if Lan[C(P0)] ⊆ Lan[C(P1)] and ⊢ Th[C(P1)]→ Th[C(P0)].

We will often abuse notation and use C(P ) to refer to both Lan[C(P )] and Th[C(P )]
when no confusion will arise. For example, if L0,L1 are two copies of a language
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and L0 ⊆ L1 we will write C(P )[L0/L1] for the component ⟨(Lan[C(P )] − L0) ∪
L1,Th[C(P )][L0/L1]⟩. We also will write M ⊧ C(P ) for M ⊧ Th[C(P )], and
X ∈ C(P ) for X ∈ Lan[C(P )], etc.

Each component which we introduce will be intended to encode some part of a
sheaf language, sheaf model, sheaf formula, or sheaf sentence. As we introduce these
components we will also explain how they are related to what they are intended to
encode. This relationship will often take the form of a ∆0-definable surjection or
bijection. When this is the case we will abuse notation and refer to the map which
takes models of a component and returns what it represents by Rep. We will likewise
abuse notation and refer to its inverse, i.e. the map which takes some part of our
sheaf structure and returns a model of a component which encodes it, by Enc. In this
case we say that Rep(M) is the representation ofM and Enc(A) is the encoding
of A.

While we will always state explicitly which component a symbol represents, we will
find that by the end of the paper the notation can get a little unwieldy. To help
visually signal what is going on we will use the following convention. If some part
of the language of the component is not contained in any other component then we

will place two dots, as in [̈], over the name. Usually fundamental components, from
which others components will be built, will be of this form.

If the component consists purely of other components which collectively satisfy
some extra sentences and if the component has an explicit name describing it, then
we place four dots, as in

....
[] , over the name of the component. If however the com-

ponent consists purely of other components which collectively satisfy some extra sen-
tences and the purpose of the component is to express the relationship between these
other components then we place the description of the components within two angled
brackets like ⟪⟫.

We break this section into three parts. In Section 3.1 we define our basic compo-
nents. These are the components from which everything else will be built. In Section
3.2 we use our basic components to define encodings of L-structures. Then in Section
3.3 we define the encodings used for expressing the fact that a fragment is named and
for encoding simple sentences.

3.1. Basic Components. We break our basic components into three groups. In
Section 3.1.1 we define the components which encode pieces of the category of sepa-
rated presheaves. In Section 3.1.2 we define the components needed to encode when
one subpresheaf is the closure of another. We will accomplish this by defining a com-
ponent which allows us to iterate the operation of a1(⋅) until it stabilizes. In order
to do this iteration we will need to define a sort which contains enough ordinals. In
Section 3.1.3 we define components which represent maps from a sort to the subobject
classifier. Defining these maps will require some care as we don’t want our encoded
models to have to encode all of the subobject classifier. To accomplish this we will
use the fact that each element of Ω is a subset of the morphisms C. We will then
define a map from S to Ω as a relation I on S × mor(C) where x gets mapped to
{f ∈ mor(C) ∶ I(x, f)}.

We end this section on basic components in Section 3.1.4 where we define struc-
tures which are not components (but will be part of a component in Section 3.3.1).
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Specifically we define the structure which will allow us to encode partial connectives.
This structure is not a component as it is not something which can be realized in
a Set-structure. Rather this structure will be a collection of conditions on formulas
which allow us to encode the partial connective, given that our encoding is treating
elements of Ω as subsets of mor(C).
3.1.1. Sorts, Subpresheaves and Functions. In this section we will define components
which are related to separated presheaves.

Definition 3.2. We say S̈ is an encoded sort if it is a component which contains:

● For each c ∈ obj(C) a (unique) sort Sc.
● For each f ∈ C[c, d] a (unique) function Sf ∶ Sd → Sc.

and which says for each c ∈ obj(C):

● (∀x ∶ Sc)⋀f,g,h∈mor(C),h=g○f Sf ○ Sg(x) = Sh(x).
● (∀x ∶ Sc)Sidc(x) = x.
● (∀x, y ∶ Sc)⋀I∈J(c)[⋀f∈I Sf(x) = Sf(y)]→ x = y.

Let Rep ∶ Mod(S̈) → obj(Sep(C,JC)) be such that Rep(M)(c) = (Sc)M for c ∈
obj(C) and Rep(M)(f) = (Sf)M for f ∈ mor(C). It is then immediate that Rep is a
∆0-definable bijection, and we let Enc be its inverse. In particular encoded sorts are
exactly the structures which capture separated presheaves on (C,JC).

We will use the shorthand S̈M for Rep(M∣S̈) when S̈ is an encoded sort in M.

In what follows S̈ and its variants will be encoded sorts. Note that encodings and
representations preserve size.

Lemma 3.3. Suppose A ∈ obj(Sep(C,JC)). Then ∣A∣ = ∣Enc(A)∣.
Note the following is immediate.

Lemma 3.4. If S̈1, . . . , S̈n are encoded sorts and S̈∗ is such that Sc∗ = ⟨Sc1, . . . , Scn⟩ and

Sf∗ = ⟨Sf1 , . . . , S
f
n⟩ then S̈∗ is an encoded sort, which we denote by S̈1×⋯× S̈n. Further,

if S̈1, . . . , S̈n are encoded sorts in M then so is S̈∗ and S̈M∗ = S̈M1 ×⋯ × S̈Mn .

Our next component captures the notion of being a subpresheaf. Before we give
this component though we will need a related definition.

Definition 3.5. Suppose S̈ ⊆ L is an encoded sort and suppose ϕ⃗ = ⟨ϕc ∶ c ∈ obj(C)⟩
where for each c ∈ obj(C), ϕc ∈ L∞,ω(L) is a formula whose free variable is of sort Sc.

We say ϕ⃗ is an encoded formula (of sort S̈) in a structure, if the structure satisfies
the theory ThFor(ϕ⃗) which says:

● S̈ is an encoded sort.
● ⋀c,d∈obj(C)⋀f∈C[c,d](∀x ∶ Sd)ϕc(x)→ ϕd(Sf(x)).

An encoded formula is a collection of formulas which cohere in a way so as to
describe a subpresheaf of our encoded sort. If ϕ⃗ is an encoded formula of sort S̈ in a
structureM, then we let ϕ⃗M be the presheaf where for any c ∈ obj(C), ϕ⃗M(c) = {x ∈
(Sc)M ∶M ⊧ ϕ(x)}. It is then clear that ϕ⃗M ⊆ S̈M.

Definition 3.6. We say Ë is an encoded subset of sort S̈ if it is a component
which contains:
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● The encoded sort S̈.
● ⟨Ec ∶ c ∈ obj(C)⟩ where for each c ∈ obj(C), Ec is a relation of type Sc.

and which proves ThFor(⟨Ec ∶ c ∈ obj(C)⟩).

If Ë is realized as an encoded subset in M we use the shorthand ËM for ⟨Ec ∶ c ∈
obj(C)⟩M.

Let SSep be the collection of pairs, ⟨A0,A1⟩, of objects of Sep(C,JC) with A0 ⊆ A1.
Now if we let Rep ∶ Mod(Ë)→ SSep be such that if Rep(M) = ⟨ËM, S̈M⟩ then Rep is
a ∆0-definable bijection. We call its inverse Enc. In this way we see that Ë captures
the notion of being a subpresheaf.

Our next component will capture being a morphism of presheves. Before we give
this component though, we will give the notion of an encoded term.

Definition 3.7. Suppose S̈ ∪ T̈ ⊆ L and suppose t⃗ = ⟨tc ∶ c ∈ obj(C)⟩ where for each
c ∈ obj(C), tc ∈ L∞,ω(L) is a term of type Sc → T c. We say t⃗ is an encoded term

(of type S̈ → T̈ ) in an structure if the structure satisfies the theory ThTer(t⃗) which
says:

● S̈, T̈ are encoded sorts.
● ⋀c∈obj(C)(∀x ∶ Sc)⋀g∈C[d,c] td ○ Sg(x) = T g ○ tc(x).

If ϕ⃗ is an encoded term of type S̈ → T̈ in a structure M, then we let ϕ⃗M be the
morphism of presheaves where for any c ∈ obj(C), and x ∈ S̈M, ϕ⃗M(x) = y if and only
ifM ⊧ tc(x) = y. It is then easily checked that t⃗M ∶ S̈M → T̈M is a map of presheaves.

Definition 3.8. We say f̈ is an encoded function with domain S̈ and codomain
T̈ if it is a component which contains:

● Encoded sorts S̈ and T̈ .
● ⟨f c ∶ c ∈ obj(C)⟩ where each f c is a function symbol of type Sc → T c.

and which proves ThTer(⟨f c ∶ c ∈ obj(C)⟩).

If f̈ is realized as an encoded function in M we use the shorthand f̈M for ⟨f c ∶ c ∈
obj(C)⟩M.

If Rep ∶ Mod(ThTer(⟨f c ∶ c ∈ obj(C)⟩))→mor(Sep(C,JC)) be such that Rep(M) =
f̈M then Rep is a ∆0-definable bijection. We call its inverse Enc.

Now that we have defined three of the basic components, we will introduce a
shorthand which will greatly simplify our presentation. Suppose ψ is a sentence of
L∞,ω(L). Let ψc be the result of replacing in ψ each occurrence of a sort S with a sort
Sc, each occurrence of a relation symbols E by a relation Ec and each occurrence of a
function symbol f by a function symbol f c. Further let ψ̂ be the result of (formally)
replacing each occurrence of a sort S with the encoded sort S̈, each occurrence of a
relation E by an encoded subset Ë and each occurrence of a function symbol f by
an encoded function f̈ . We then use ψ̂ as a shorthand for ⋀c∈obj(C)ψc.

3.1.2. Covers. Suppose S̈ is an encoded sort and Ë0 and Ë1 are encoded subsets of
S̈. In this section we will define the component which say that Ë1 is the closure of Ë0

in S̈. We will do this by adding an (encoding of an) initial segment of the ordinals to
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our theory and then adding structure which allows us to iterate aα(Ë0) ∩ S̈ through
these ordinals. In order to do this we will (in general) need our structure to contain
all ordinals less than or equal to ∣JC ∣+ + 1, and this can only be expressed in L∣JC ∣++,ω
and not in L∣JC ∣+,ω. As such it will important to define the ordinals in such a way

that if we happen to have aα(Ë0) ∩ S̈ = Ë1 with α < ∣JC ∣+, then our encoded models
will not be saddled with unnecessary, overly complex, structure.

We first define (our encoding of) the ordinals.

Definition 3.9. We say Öγ is an encoding of ordinals (up to γ + 2) if it is a
component which contains:

● A sort O.
● Constants {̂i ∶ i ≤ γ + 1} ∪ {∞̂, ∞̂−1} of sort O
● A relation ≤ of type ⟨O,O⟩.

and which proves:

● ≤ is a linear order.
● ∞̂−1 is the predecessor of ∞̂.
● (∀x ∶ O)⋁i≤γ+1 x = î.
● If i ≤ j ≤ γ + 1 then î < ĵ.

We will abuse notation in what follows and treat O as an encoded sort where Oc = O
for all c ∈ obj(C) and Of = idO for all f ∈ C[c, d]. Unlike other components of which
a model may have many different copies, we will require that any structure which
realizes this component realizes it only once. Further we will assume that all such
structures realizes it with the (exact) same sort O and the same relation ≤ (although
they may realize it with different constants).

The following lemma is then easily checked.

Lemma 3.10. If γ0 < γ1 then

● Lan[Öγ0] ⊆ Lan[Öγ1]
● ⊢ Th[Öγ0]→ Th[Öγ1].
● Every model of Öγ0 has a unique expansion to a model of Öγ1.

Definition 3.11. Suppose M ⊧ Öγ. We define the height of M to be the order type
of (OM,≤M).

The purpose of having the ordinals is to allow us to give the following (inductive)
definition. Let Lim(x) ∶= (∀β ∶ O)β < x → (∃γ ∶ O)β < γ < x. Lim(x) is a Σ1 formula
of type O which holds if and only if there is no largest element less than x.

Definition 3.12. We say
....

Covγ(Ë0, Ë1) is a (γ-)witness to E⃗0 covering E⃗1 if it is a
component which contains:

● An encoding of ordinals up to γ, Öγ.

● Encoded subsets Ë0, Ë1 of type S̈.
● An encoded subset Ẅ of type S̈ ×O.

and which proves

(1) (∀x ∶ S̈)Ë0(x)↔ Ẅ (x, 0̂).
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(2) (∀x ∶ S̈)Ë1(x)↔ Ẅ (x, ∞̂).
(3) (∀x ∶ S̈)(∀α ∶ O)Lim(α)→ [Ẅ (x,α)↔ (∃β ∶ O)β < α ∧ Ẅ (x,β)].
(4) For c ∈ obj(C), (∀x ∶ Sc)(∀α ∶ O)¬Lim(α)→ [W c(x,α)↔ ⋁I∈JC(c)⋀g∈I(c)(∃β ∶

O)β < α ∧W dom(g)(Sg(x), β).
(5) (∀x ∶ S̈)Ẅ (x, ∞̂)↔ Ẅ (x, ∞̂−1).

Now an important point to realize is that the witnesses are, more or less, absolute.

Lemma 3.13. Suppose M is an Lan[
....

Covγ(Ë0, Ë1)]-structure. Then the following
are equivalent:

●
....

Covγ(Ë0, Ë1) is a γ-witness to Ë0 covering Ë1.

● For each β ≤ γ + 1, {x ∶ (x, β̂) ∈ ẄM} = aβ(ËM0 ) ∩ S̈M.

Proof. This is an easy induction on β, given Definition 3.12 (1), (3) and (4). �

Further we have

Lemma 3.14. Suppose M realizes
....

Covγ(Ë0, Ë1) is a γ-witness to Ë0 covering Ë1.

Then Ë1
M = a(Ë0

M) ∩ S̈M.

Proof. Suppose M ⊧ ∞̂−1 = α̂. We have by Lemma 3.13 that aα(Ë0
M) ∩ S̈M =

aα+1(Ë0
M) ∩ S̈M by Definition 3.12 (5) and Lemma 3.13. The result follows from

Definition 3.12 (2).
�

In this way having a
....

Covγ(Ë0, Ë1) be a (γ)-witness to Ë0 covering Ë1 does in fact

capture the fact that Ë0 covers Ë1 in S̈. Further Lemma 3.13 shows that in this case
Ẅ is completely determined and the exact nature of the ordinals is unimportant,
so long as there are enough of them. In particular the following corollary follows
immediately from Lemma 3.13.

Corollary 3.15. Suppose

● γ0 < γ1.
●

....
Covγ0(Ë0, Ë1) is a γ0-witness that Ë0 covers Ë1 that is realized in M0.

●
....

Covγ1(Ë0, Ë1) is a γ1-witness that Ë0 covers Ë1 that is realized in M1.

● S̈M0 = S̈M1 and ËM0
0 = ËM1

0 .

Then

● For all x ∈ S̈M0 and all β ≤ γ0 + 1, (x, β̂) ∈ ẄM0 if and only if (x, β̂) ∈ ẄM1.

● For all γ0 ≤ β ≤ γ1 + 1, M1 ⊧ (∀x ∶ S̈)Ẅ (x, β̂)↔ Ë1(x).

However not only is Ẅ -completely determined, but the following two corollaries
show that it is provably completely determined.

Corollary 3.16. Suppose T0 ∶=
....

Covγ(Ë0, Ë1)[Ẅ0/Ẅ ] and T1 ∶=
....

Covγ(Ë0, Ë1)[Ẅ1/Ẅ ],
i.e. T0, T1 are

....
Covγ(Ë0, Ë1) with Ẅ0, Ẅ1 substituted in for Ẅ (respectively). We then

have

(∗) ⊢ T0 ∧ T1 → [(∀x ∶ S̈)(∀α ∶ O)Ẅ0(x,α)↔ Ẅ1(x,α)]
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Proof. First notice that if γ is countable and ∣JC ∣ = ω, then (∗) ∈ Lω1,ω(L) (for an

appropriate language L). But by Lemma 3.13 (∀x ∶ S̈)(∀α ∶ O)Ẅ0(x,α)↔ Ẅ1(x,α)
is true in all structures which satisfy T0∧T1. Hence, by the completeness theorem for
Lω1,ω(L) we have that there is a proof of (∗).

Now if we have (∗) /∈ Lω1,ω(L), then there is some forcing extension Set[G] of Set

where (T0 ∧ T1 ∈ Lω1,ω(L))Set[G]. But being a γ-witness that Ë0 covers Ë1 is absolute
and so by the previous paragraph we have there is a proof of (∗) in Set[G]. But the
existence of a proof is absolute and hence there must be a proof of (∗) in Set.

�

Corollary 3.16 tells us that the witness predicate Ẅ is provably completely de-
termined by Ë0, S̈ and the ordinals. In particular this gives justification for not
mentioning Ẅ as a parameter in the component

....
Covγ(Ë0, Ë1)

Corollary 3.17. If γ0 < γ1 then ⊢
....

Covγ0(Ë0, Ë1)→
....

Covγ1(Ë0, Ë1)
Proof. This follows immediately from Lemma 3.10. �

As the exact nature of the ordinals in our structures will be unimportant we will
often want to talk about when two structures minus their ordinals are the same. We
therefore have the following definition.

Definition 3.18. Suppose Öγ ⊆ L. Let L′ be the language where SL′ = SL − {S ∶ O ∈
tc({S})}, FL′ = {f ∈ FL ∶ dom(f), codom(f) ∈ SL′}, and RL′ = {R ∈ RL ∶ dom(R) ∈ SL′}.
We then say two L-structures M,N are equivalent without ordinals, written
M ≎ N , if M∣L′ = N ∣L′.

It is worth mentioning that the only components which will make use of the ordinals
are covers (and components which use covers).

As a consequence we have that we can find an expansion which has a γ-witness to
Ë0 covering Ë1 if and only if Ë0 actually covers Ë1.

Corollary 3.19. Suppose S̈, Ë0, Ë1 ⊆ L and O /∈ L. We then have the following are
equivalent for an L-structure M:

(1) a(ËM0 ) ∩ S̈M = ËM1 .

(2) For some γ there is an expansion Mγ of M to an L ∪ Lan[
....

Covγ(Ë0, Ë1)]-
structure such that Mγ ⊧

....
Covγ(Ë0, Ë1).

(3) For some γ ≤ ∣JC ∣+ there is an expansion Mγ of M to L∪Lan[
....

Covγ(Ë0, Ë1)]-
structure such that Mγ ⊧

....
Covγ(Ë0, Ë1).

Proof. The equivalence of (1) and (2) follows immediately from Lemma 3.14 and the
equivalence of (2) and (3) follows from Proposition 2.11 and Lemma 3.13. �

Another easy but important consequence of Lemma 3.13 is the following.

Corollary 3.20. Suppose

● M ⊆ N is a substructure.
● N ⊧

....
Covγ(Ë0, Ë1).

Then for all α ≤ γ + 1, {x ∶M ⊧ Ẅ (x, α̂)} = {x ∶ N ⊧ Ẅ (x, α̂)} ∩ S̈M.
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Proof. By Lemma 3.13 we have {x ∶ (x, β̂) ∈ ẄM} = aβ(ËM0 ) ∩ S̈M and {x ∶ (x, β̂) ∈
ẄN} = aβ(ËN0 ) ∩ S̈N . The result then follows from Lemma 2.9 and the fact that

ËM0 = ËN0 ∩ S̈M.
�

3.1.3. Sieves and Subobjects. In this section we show how to encode maps from an
encoded sort S̈ to the subobject classifier. Our method will be first to define an
encoded sort C̈ with a constant f̂ of sort Cdom(f) for every f ∈ mor(C). We then
define an encoded sieve on c ∈ obj(C) to be a relation of type Cc which satisfies a
specific theory. An encoded subobject will then be an encoded subset R̈ of S̈×C̈ where
for all x ∈ S̈, {f ∈ C̈ ∶ R̈(x, f)} is a closed sieve and the map x ↦ {f ∈ C̈ ∶ R̈(x, f)} is
the desired map from S̈ to Ω which is encoded by R̈.

Definition 3.21. We say C̈ is an encoding of the morphisms of C if it is a
component which contains:

● An encoded sort C̈.
● For each c ∈ obj(C), a set {ĝ ∶ g ∈ C[−, c]} of constants of sort Cc.

and which proves:

● For each c ∈ obj(C) and all g0, g1 ∈ C[−, c] with g0 ≠ g1 we have ĝ0 ≠ ĝ1.
● For each c ∈ obj(C), (∀x ∶ Cc)⋁g∈C[−,c] x = ĝ.
● If g1 ∈ C[c, d0], h1 ∈ C[c, d1] is the pullback of g0 ∈ C[d0, e], h0 ∈ C[d1, e] then

Cg0(ĥ0) = ĝ1.

Like the encoding of ordinals, while the encoding of morphisms of C can be realized
in any structure, we require that it be realized at most once and that when it is realized
it is always realized by the same language (in all structures).

Definition 3.22. We say Ïc is an encoded closed sieve on c if it is a component
which contains:

● C̈, the encoding of morphisms of C.
● A relation I of sort Cc.

and which proves:

(1) ⋀h∈C[d,c],g∈C[e,d] I(ĥ)→ I(ĥ ○ g).

(2) ⋀h∈C[d,c][⋁K∈JC(d)⋀g∈K I(ĝ ○ h)]→ I(ĥ).

Suppose C̈ ⊆ L and ψ(⋅) ∈ L∞,ω(L) is a formula of sort Cc. If M is an L-structure
then we define ≀ψ(⋅)≀M ∶= {g ∶M ⊧ ψ(ĝ)} ⊆ C[−, c].

Lemma 3.23. SupposeM is an Lan[Ïc]-structure. Then the following are equivalent

(1) M ⊧ Ïc.
(2) ≀I(⋅)≀M is a closed sieve on c.

Proof. That (2) implies (1) is immediate from Definition 3.22. Further notice that by
Definition 3.22 (1), if M ⊧ Ïc then ≀I(⋅)≀M is a sieve.

Now to get a contradiction assume there is an M such that M ⊧ Ïc but ≀I(⋅)≀M is
not closed, i.e. for some g ∈ C[d, c], g∗(≀I(⋅)≀M) ∈ JORD

C (d) but g /∈ ≀I(⋅)≀M. Let α be
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the level of g∗(≀I(⋅)≀M). Without loss of generality we can assume that α is minimal
such that these conditions hold.

Now if the level of g∗(≀I(⋅)≀M) is 0, then by Definition 3.22 (2) we have g ∈ ≀I(⋅)≀M
and hence we can assume α > 0. In particular, we can assume that there is a sieve
K ∈ JC(d) such that for every f ∈K, f∗(g∗(≀I(⋅)≀M)) ∈ JORD

C (dom(f)) and has level
strictly less than α. But by our inductive assumption this implies for each f ∈K that
g ○ f ∈ ≀I(⋅)≀M. Then by Definition 3.22 (2) we have g ∈ ≀I(⋅)≀M contradicting our
assumption.

Hence whenever M ⊧ Ïc we have ≀I(⋅)≀M is closed and (1) implies (2).
�

Lemma 3.23 shows that Ïc captures what we mean by a closed sieve on c.

Definition 3.24. We say
....
θ is an encoded subobject of sort S̈ if it is a component

which contains

● C̈, an encoding of the morphisms of C.
● An encoded sort S̈.
● An encoded subset θ̈ of type S̈ × C̈.

and which proves for each c ∈ obj(C):

(1) (∀y ∶ Sc)Th[Ïc][θc(y, x)/I(x)].
(2) ⋀f∈C[d,c](∀x ∶ Sc)⋀g∈C[e,d] θc(x, f̂ ○ g)↔ θd(Sf(x), ĝ).

We now want to show that being an encoded subobject captures the notion of being
a map to the subobject classifier. Suppose M is an Lan[

....
θ ]-structure and

....
θ is an

encoded subobject realized in M. Then let Rep(M) be such that for x ∈ (Sc)M,
Rep(M)(x) = ≀θ(x, ⋅)≀M.

Lemma 3.25. The following are equivalent for a Lan[
....
θ ]-structure M:

(1)
....
θ is an encoded subobject of sort S̈ realized in M.

(2) Rep(M) is a map of presheaves from S̈M to Ω.

Proof. That (2) implies (1) is immediate from the definition. To see (1) implies (2)
notice that if

....
θ is an encoded subobject of sort S̈ then Lemma 3.23 tells us that

Rep(M) is a function from ⋃c∈obj(C) S̈M(c) to ⋃c∈obj(C) Ω(c). But Definition 3.24 (2)
is satisfied if and only if for each f ∈ C[c, d] and x ∈ Sc we have Rep(M)(Sf(x)) =
f∗(Rep(M)(x)), i.e. if Rep(M) is a map of presheaves.

�

Now notice that as Ω is a sheaf, the map ι restricts to a bijection between the
categories Sep(C,JC)[−,Ω] and Sh(C,JC)[−,Ω]. Hence by Lemma 3.25 we have that
if Rep ∶ Mod(

....
θ ) → Sep(C,JC)[−,Ω] then q ○ ι ○ Rep is a ∆0-definable bijection

between Mod(
....
θ ) and Sh(C,JC)[−,Ω]. We call the inverse to q ○ ι ○ Rep, Enc. We

will use
....
θ
M as a shorthand for ι ○Rep(M∣....θ ).

3.1.4. Partial Connectives: A Non-Component. In this section we introduce the one
piece which is not a component, i.e. which will not itself be an explicit subset of our
encoded structures. Specifically we discuss what it means for a collection of formulas
to encode a subset of Ω and for a collection of formulas to encode a partial connective.
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Definition 3.26. Let LanSO be the language which contains:

● C̈, an encoding of morphisms of C.
● For each c ∈ obj(C) a relation Xc of sort Cc.

Suppose ˙SO(ϕ) = ⟨ϕc ∶ c ∈ obj(C)⟩ where for each c ∈ obj(C), ϕc ∈ Lκ+,ω({Xc}) is a

quantifier free sentence. We say ˙SO(ϕ) is a definable subset of Ω (of complexity
κ) if the following holds:

(1) ⊢ ϕc →Xc is an encoded closed sieve.

(2) ⊢ ⋀f∈C[d,c] [⋀g∈C[e,d]Xd(ĝ)↔Xc(f̂ ○ g)]→ [ϕc → ϕd].
We say that ˙SO(ϕ)∗ defines the function ˙SO(ϕ)∗(c) ∶= {≀Xc(⋅)≀M ∶M ⊧ ϕc}.

Definition 3.26 (2) says that for an {Xc,Xd} ∪ C̈-structure M, if f∗(≀Xc(⋅)≀M) =
≀Xd(⋅)≀M then ≀Xd(⋅)≀M is in our definable subset whenever ≀Xc(⋅)≀M is.

Lemma 3.27. If ˙SO(ϕ) is a definable subset of Ω then ˙SO(ϕ)∗ is a subpresheaf of
Ω.

Proof. That ˙SO(ϕ)∗(c) ⊆ Ω(c) for each c ∈ obj(C) follows immediately from Defini-
tion 3.26 (1) that ˙SO(ϕ)∗ is a subpresheaf follows immediately from Definition 3.26
(2). �

It turns out that every subset of Ω is definable with some complexity.

Lemma 3.28. For every Z ⊆ Ω there is a definable subset ˙SO(ϕ) of complexity at
most 2∣mor(C)∣ with ˙SO(ϕ)∗ = Z.

Proof. For I a closed sieve on c, let ηI ∶= ⋀f∈IXc(f̂) ∧ ⋀f/∈I ¬Xc(f̂). Then let ϕc ∶=
⋁I∈Z(c) ηI ∧⋀I/∈Z(c) ¬ηI .

�

An example of a definable subset of Ω of complexity ∣JC ∣ is ThCSi ∶= ⟨ThCSi(c)(Xc) ∶
c ∈ obj(C)⟩. It is clear that Th∗CSi = Ω and we say that a definable subset ˙SO(ϕ) of Ω
is total if ⊢ ⋀c∈obj(C)ϕc↔ ThCSi(c)(Xc).

Note that being a definable subset of Ω is an absolute property (i.e. is true in all
models of set theory). However, having ˙SO(ϕ)∗ = Ω is not in general absolute. We
can think of being total as an absolute analog of having ˙SO(ϕ)∗ = Ω.

The following lemma is also immediate.

Lemma 3.29. If V0 ⊆ V1 are models of ZFC and ˙SO(ϕ) is a definable subset of Ω,
then ( ˙SO(ϕ)∗)V0 = ( ˙SO(ϕ)∗)V1 ∩ΩV0.

We now show how to define partial connectives.

Definition 3.30. Let LancCon(n) be the language which contains the sort Cc and for
each c ∈ obj(C) relations Y c

1 , . . . , Y
c
n of sort Cc.

Suppose ˙SO(ϕ) is a definable subset of Ω (of complexity κ) and ˙Con(ψ) = ⟨ψc ∶
c ∈ obj(C)⟩ where for each c ∈ obj(C), ψc(y) ∈ Lκ+,ω(LancCon(n)) is a quantifier free

formula of sort Cc. We say ⟨ ˙SO(ϕ), ˙Con(ψ)⟩ is a definable partial connective
(of complexity κ) if the following holds:
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(1) For each c ∈ obj(C), ⊢ ⋀i≤nϕc[Y c
i (x)/Xc(x)]→ ϕc[ψc(x)/Xc(x)].

(2) For each c, d ∈ obj(C) and f ∈ C[d, c],

⊢
⎡⎢⎢⎢⎢⎣
⋀
i≤n

⎡⎢⎢⎢⎢⎣
⋀

g∈C[e,d]
Y d
i (ĝ)↔ Y c

i (f̂ ○ g)
⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎣
⋀

g∈C[e,d]
ψd(ĝ)↔ ψc(f̂ ○ g)

⎤⎥⎥⎥⎥⎦
.

Let ˙Con(ψ)∗ ∶ ( ˙SO(ϕ)∗)n → ˙SO(ϕ)∗ be such that ˙Con(ψ)∗(I1, . . . , In) = I∗ if and
only if (for some c ∈ obj(C)) there is a LancCon(n)-structure M with ≀Yi(⋅)≀M = Ii

for each i ≤ n and ≀ψc(⋅)≀M = I∗. We say that ⟨ ˙SO(ϕ), ˙Con(ψ)⟩ defines the pair
⟨ ˙SO(ϕ)∗, ˙Con(ψ)∗⟩.

Definition 3.30 (2) says that for f ∈ C[d, f] and an LancCon(n) ∪LandCon(n)-structure

M, if for each i ≤ n, f∗(≀Y c
i (⋅)≀M) = ≀Y d

i (⋅)≀M then we also have f∗(≀ψc(⋅)≀M) =
≀ψd(⋅)≀M.

Lemma 3.31. If ⟨ ˙SO(ϕ), ˙Con(ψ)⟩ is a definable partial connective then ˙Con(ψ)∗
restricts to a map of presheaves from [ ˙SO(ϕ)∗]n to ˙SO(ϕ)∗.

Proof. That the image of any tuple from ˙SO(ϕ)∗ is in ˙SO(ϕ)∗ follows from Definition
3.30 (1). That ˙Con(ψ)∗ is a function follows from the fact that ψc ∈ L∞,ω(LancCon(n))
and hence if we have two structures M,N which agree on LancCon(n) then they must

agree on ψc. Finally, that ˙Con(ψ)∗ is a map of presheaves follows from Definition
3.30 (2). �

We call a definable partial connective ⟨ ˙SO(ϕ), ˙Con(ψ)⟩ total if ˙SO(ϕ) is total.
We will sometimes refer to total definable partial connectives simply as definable
connectives. Definable connectives encode maps from Ωn to Ω (in any model of set
theory).

Lemma 3.32. Suppose X ⊆ Ω and β ∶Xn →X is a partial connective. Then there is
a definable partial connective ⟨ ˙SO(ϕ), ˙Con(ψ)⟩ of complexity at most ∣X ∣ ≤ 2∣mor(C)∣

such that:

● ˙SO(ϕ)∗ =X.
● ˙Con(ψ)∗ restricted to Xn equals β.

Proof. First let ˙SO(ϕ) be as in Lemma 3.28. Next, for I a closed sieve on c, let ηiI ∶=
⋀f∈I Y c

i (f̂)∧⋀f/∈I ¬Y c
i (f̂). We then let ψc(x) ∶= ⋁I1,...,In∈X[[⋀i≤n ηiIi]→ ⋁f∈β(I1,...,In) x =

f̂]. �

The following lemma is also immediate.

Lemma 3.33. If V0 ⊆ V1 are models of ZFC and ⟨ ˙SO(ϕ), ˙Con(ψ)⟩ is a definable par-
tial connective. Then for any (x ∈ [ ˙SO(ϕ)n]∗)V0, ( ˙Con(ψ)∗(x))V0 = ( ˙Con(ψ)∗(x))V1.

We now end with a few important example of definable connective of complexity
∣mor(C)∣.
Example 3.34. First recall that if A1,A2 are subpresheaves of a sheaf A then we
define A1 ⇒ A2 to be the subpresheaf where, for c ∈ obj(C), e ∈ A(c) if and only if
⋀f∈C[d,c]A(f)(e) ∈ A1(d) implies A(f)(e) ∈ A2(d).
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Now if we interpret Ai as maps ai ∶ A → Ω and [a1 ⇒ a2] ∈ Sh∗(C,JC)[A,Ω] then
for e ∈ A(c), [a1 ⇒ a2](e) = {f ∈ C[−, c] ∶ (∀g ∈ C[−,dom(f)])f ○ g ∈ A1(c) → f ○ g ∈
A2(c)}. Now let

⇒̂c(x) ∶= ⋀
f∈C[−,c]

⎡⎢⎢⎢⎢⎣
x = f̂ → ⋀

g∈C[−,dom(f)]
Y c

1 (f̂ ○ g)→ Y c
2 (f̂ ○ g)

⎤⎥⎥⎥⎥⎦
.

It is then immediate that ⟨ThCSi, ⇒̂⟩ is a ∣mor(C)∣-definable connective which de-
fines the operation ⇒∶ Ω2 → Ω.

Example 3.35. Let

=̂c(x) ∶= ⋀
f∈C[−,c]

⎡⎢⎢⎢⎢⎣
x = f̂ → ⋀

g∈C[−,dom(f)]
Y1(f̂ ○ g)↔ Y2(f̂ ○ g)

⎤⎥⎥⎥⎥⎦
.

It is then immediate that ⟨ThCSi, =̂⟩ is a ∣mor(C)∣-definable connective which defines
the operation =Ω∶ Ω2 → Ω.

Example 3.36. Suppose a ∶ 1→ Ω. Then we can define the connective

âc(x) = ⋀
f∈C[−,c]

⋁
f∈a(1)(c)

x = f̂ .

It is then immediate that ⟨ThCSi, â⟩ is a ∣mor(C)∣-definable connective which defines
the operation a ∶ 1→ Ω.

3.2. Model Components. In this section we show how to combine basic compo-
nents to encode sheaf models. We break this into four subsections. In Section 3.2.1
we deal with components associated to sorts, in Section 3.2.2 we deal with compo-
nents associated to functions, in Section 3.2.3 we deal with components associated to
relations. Then, once we have defined all of these components we combine them to
define our encoding of sheaf models.

3.2.1. Sorts. First we give a component which pins down when a separated presheaf
is isomorphic (as a separated presheaf) to a given fixed separated presheaf.

Definition 3.37. Suppose A is a separated presheaf. We say ¨ConA(S̈A) encodes A
if it is a component which contains:

● An encoded sort S̈A.
● For each c ∈ obj(C) and a ∈ A(c) a constant â of sort ScA.

and which proves:

● For each c ∈ obj(C), (∀x ∶ ScA)⋁a∈A(c) x = â.

● For each c ∈ obj(C), ⋀a,a′∈A(c) â ≠ â′.
● For each g ∈ mor(C), ⋀a=A(g)(a′) S

g
A(â′) = â.

The following lemma is immediate.

Lemma 3.38. If S̈A is an encoded sort in a structure M, then M has an expansion
which satisfies ¨ConA(S̈A) if and only if S̈MA is isomorphic to A (in Sep(C,JC)).

We next define the component which encodes products in the category Sh∗(C,JC).
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Definition 3.39. We say
....

Prod(S̈i ∶ i ≤ n) is an encoded product of the encoded
sorts S̈0, . . . , S̈n if it is a component which contains:

● Encoded sorts S̈i for i ≤ n.
● An encoded sort S̈∗.
● Encoded functions π̈i ∶ S̈∗ → S̈i for each i ≤ n.

and which proves:

● (∀x, y ∶ S̈∗)[⋀i≤n π̈i(x) = π̈i(y)]→ x = y.
● (∀x1 ∶ S̈1)⋯(∀xn ∶ S̈n)(∃x ∶ S̈∗)⋀i≤n π̈i(x) = xi.

It is easy to see that
....

Prod(S̈i ∶ i ≤ n) is an encoded product in a structure M if
and only if ⟨S̈M∗ , ⟨π̈Mi ∶ i ≤ n⟩⟩ is a product of S̈M0 , . . . , S̈Mn in Sep(C,JC) if and only

if ⟨S̈M∗ , ⟨ι(π̈Mi ) ∶ i ≤ n⟩⟩ is the distinguished product of S̈M0 , . . . , S̈Mn in Sh∗(C,JC).

Definition 3.40. We say ....=S̈ is an encoding of equality on S̈ if it is a component
which contains:

● An encoded subset =̈S̈ of type S̈ × S̈.

and which proves:

● (∀x, y ∶ S̈)=̈S̈(x, y)↔ x = y.

3.2.2. Functions.

Definition 3.41. We say
....
γf is an encoded morphism (of height γ) with domain

S̈ and codomain T̈ if it is a component which contains

● Encoded sorts S̈ and T̈ .
● Encoded subsets D̈f , D̈1 of type S̈.

● A (γ-)witness,
....

Covγ(D̈f , D̈1) to D̈f covering D̈1.

● An encoded subset f̈ of type S̈ × T̈ .

and which proves

● (∀x ∶ S̈)D̈1(x).

● (∀x ∶ S̈)D̈f(x)↔ (∃y ∶ T̈ )f̈(x, y).

● (∀x ∶ S̈)(∀y, y′ ∶ T̈ )f̈(x, y) ∧ f̈(x, y′)→ y = y′.
Let Rep ∶ ⋃γ∈ORD Mod(

....
γf ) → mor(Sh∗(C,JC)) be such that when Rep(M) =

⟨f, df ⟩ then dom(⟨f, df ⟩) = S̈M, codom(⟨f, df ⟩) = T̈M, df = D̈Mf and f(x) = y if

and only if M ⊧ f̈(x, y). We then have immediately have the following lemma.

Lemma 3.42. Rep is a ∆0-definable surjection with Rep(M0) = Rep(M1) if and only
if M0 ≎M1.

We will use
....
γf
M

as a short hand for Rep(M∣....
γf ). We will also omit the subscript

representing the ordinals when it is clear from context. In particular if
....
f is an

encoded morphism, the corresponding encoded set which represents the graph of
....
f

will be f̈ .

Lemma 3.43. For every γ ∈ ORD and M ∈ Mod(
....
γf ) there is an M∗ ∈ Mod(

....
∣JC ∣+f)

with
....
γf
M =

....
∣JC ∣+f

M∗

.
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Proof. This follow immediately from Corollary 3.19 and the fact that Rep(M) =
Rep(M∗) if and only if M ≎M∗. �

In this way we see that
....

∣JC ∣+f really does capture the notion of being a morphism
in Sh∗(C,JC).
3.2.3. Relations.

Definition 3.44. Suppose S̈ is an encoded sort and suppose ϕ⃗ is an encoded formula
of type S̈. Let ThCFor(ϕ⃗) be the sentence which says:

● ⋀c∈obj(C)(∀x ∶ Sc)⋀I∈JC(c)[⋀g∈I ϕdom(g)(Sg(x))→ ϕc(x)].

It is then immediate that if Ë is an encoded subset of type S̈ in M then M ⊧
ThCFor(Ë) if and only if a1(ËM) ∩ S̈M = ËM ∩ S̈, i.e ËM is closed in S̈M. If an
encoded subset, Ë of S̈, also satisfies ThCFor(Ë) then we say Ë is a encoded closed
subset.

Definition 3.45. We say
....
Rel(R̈s,

....
R ) is an encoded relation of type S̈ if it is a

component which contains:

● An encoded closed subset R̈s of type S̈.
● An encoded subobject

....
R of type S̈.

and which proves:

● For all c ∈ obj(C), g ∈ C[d, c], (∀x ∶ Sc)Rc(x, ĝ)↔ Rd
s(Sg(x)).

The following is then immediate.

Lemma 3.46. Suppose in a structure M, S̈ is an encoded sort, R̈s is an encoded
subset of S̈ and

....
R is an encoded subobject. Then M ⊧

....
Rel(R̈s,

....
R ) if and only if

R̈Ms ⊆ S̈M is a pullback of ⊺ ∶ 1→ Ω along
....
R
M ∶ S̈ → Ω.

In particular the following is immediate from Lemma 2.15 and Lemma 3.25.

Corollary 3.47. Suppose S̈ is an encoded sort. Then

● For every structure M which realizes
....
R as an encoded subobject of type S̈

there is a unique expansion of M to an Lan[
....
Rel(R̈s,

....
R )]-structure M∗ where

M∗ ⊧
....
Rel(R̈s,

....
R ).

● For every structureM which realizes R̈s as an encoded closed subset of type S̈
there is a unique expansion of M to an Lan[

....
Rel(R̈s,

....
R )]-structure M∗ where

M∗ ⊧
....
Rel(R̈s,

....
R ).

3.2.4. Models. We are finally ready to define an encoding of a sheaf model.

Definition 3.48. Suppose L is a sheaf language. We say
....

Lanγ(L) is an encoding
of sheaf L-structures (of height γ) if it is a component which contains

● For every S ∈ SL an encoded sort S̈.
● For every f ∈ FL with domain S and codomain T an encoded morphism

....
γf (of

height γ) with domain S̈ and codomain T̈ .

● For every R ∈ RL of type S an encoded relation
....
Rel(R̈s,

....
R ) of type S̈.

● For each S ∈ SL an encoding of equality ....=S̈ on S̈.
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● For each Sp = ⟨S1, . . . , Sn⟩ ∈ SL an encoded product
....

Prod(S̈i ∶ i ≤ n)[S̈p/S̈∗] of

S̈1, . . . , S̈n.
● For each S ∈ OL an encoding of rL(S), ¨ConrL(S̈).

Let Rep ∶ ⋃γ∈ORD Mod(
....

Lanγ(L)) → L-Structures be such that when Rep(M) = N
then for all S ∈ SL, S̈M = SN , for all f ∈ FL,

....
γf
M = fN and for all R ∈ RL, ⟨R̈Ms ,

....
R
M⟩ =

⟨RNs ,RN ⟩. We then have

Lemma 3.49. The following hold:

(1) Rep is a ∆0-surjection.
(2) Rep(M0) = Rep(M1) if and only if M0 ≎M1.

(3) For each γ ∈ ORD and eachM ∈ Mod(
....

Lanγ(L)) there is anM∗ ∈ Mod(
....

Lan∣JC ∣+(L))
with Rep(M) = Rep(M∗).

Proof. (1) follows immediately from the analogous results for each component. (2)
follows from Lemma 3.42. (3) follows from (2) and Corollary 3.19. �

If N is an L-structure with Rep(M) = N then we let Enc(N ) ∈ Mod(
....

Lanγ(L)) be
the structure from Lemma 3.49 (3).

Now the following lemma follow immediately from Lemma 3.10.

Lemma 3.50. Suppose γ0 < γ1. Then

● Lan[
....

Lanγ0(L)] ⊆ Lan[
....

Lanγ1(L)].
● ⊢ Th[

....
Lanγ0(L)]→ Th[

....
Lanγ1(L)].

●
....

Lanγ0(L) has complexity max{∣JC ∣, ∣γ0∣, ∣L∣}.

3.3. Formula and Sentence Components. In this section we show how to encode
sentences. We do this by first showing in Section 3.3.1 how to encode when a formula is
named in a structure. Then in Section 3.3.2 we show how to encode simple sentences.
Lemma 2.41 then tell us that this is enough to encode arbitrary sentences.

3.3.1. Formula Components. We begin showing how to characterize a map from
Sh∗(C,JC) as well as showing how to characterize various operations on morphisms.

Definition 3.51. A,B are separated presheaves and α = ⟨αf , dα⟩ ∈ Sh∗(C,JC)[A,B].
We say ⟪....

g ∶=γ α⟫ defines α (with height γ) if it is a component which contains:

● An encoding of A, ¨ConA(S̈A) and an encoding of B, ¨ConB(S̈B).
● An encoded morphism

....
g (of height γ) with domain S̈A and codomain S̈B

and which proves:

● ⋀c∈obj(C)⋀a∈dα(c)Dc
g(â) ∧⋀a/∈dα(c) ¬Dc

g(â).

● ⋀c∈obj(C)⋀a∈A(c),α(a)=b gc(â, b̂).

We then have the following immediate lemma.

Lemma 3.52. If M is a Lan[⟪....
g ∶=γ α⟫]-structure with âM = a for all a ∈ A and

b̂M = b for all b ∈ B then M ⊧ ⟪....
g ∶=γ α⟫ if and only

....
g M = α.

In this way we have encoded the morphism α ∈ Sh∗(C,JC).
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Definition 3.53. We say ⟪....
g ∶=γ

....
f 1 ○

....
f 0⟫ defines the composition (of height

γ) of
....
f 1 with

....
f 0 if it is a component which contains:

● Encoded morphism
....
f 0 ∶ S̈ → T̈ ,

....
f 1 ∶ T̈ → Ü and

....
g ∶ S̈ → Ü (of height γ).

and which proves:

● (∀x ∶ S̈)D̈g(x)↔ (∃y ∶ T̈ )D̈f1 ∧ f̈0(x, y).

● (∀x ∶ S̈)(∀z ∶ Ü)g̈(x, z)↔ (∃y ∶ T̈ )f̈0(x, y) ∧ f̈1(y, z).

We then have the following immediate lemma.

Lemma 3.54. Suppose
....
f 0 ∶ S̈ → T̈ ,

....
f 1 ∶ T̈ → Ü and

....
g ∶ S̈ → Ü are encoded

morphisms (of height γ) in M. Then M ⊧ ⟪....
g ∶=γ

....
f 1 ○

....
f 1⟫ if and only

....
g M =

....
f
M
1 ○

....
f
M
0 .

In this way ⟪....
g ∶=γ

....
f 1 ○

....
f 0⟫ captures composition of morphisms.

Definition 3.55. We say ⟪Ë1 ∶=γ
....
f
−1[F̈ ]⟫ defines the inverse image of F̈ by

....
f
−1

if it is a component which contains:

● An encoded morphism
....
f (of height γ) with domain S̈ and codomain T̈ .

● Encoded subsets Ë0, Ë1 of sort S̈.
● A closed encoded subset F̈ of sort T̈ .
●

....
Covγ(Ë0, Ë1), a γ-witness to E⃗0 covering E⃗1.

and which proves:

● (∀x ∶ S̈)Ë0(x)↔ D̈f(x) ∧ (∃y ∶ T̈ )f̈(x, y) ∧ F̈ (y).

Lemma 3.56. If ⟪Ë1 ∶=γ
....
f
−1[F̈ ]⟫ defines the inverse image of F̈ by

....
f
−1

inM then

(1) ËM1 is in the subobject of S̈M corresponding to the pullback of F̈M along
....
f
M

in Sh∗(C,JC).

(2) If M ⊧
....
Rel(Ë1,

....
IE) and M ⊧

....
Rel(F̈ ,

....
IF ,) then

....
IE
M =

....
f
M ○

....
IF
M

.

Proof. To see (1) holds note ËM0 is the pullback of F̈M ∩ ran(fM) along fM in

Sep(C,JC). Then applying j ○ q to all maps and subobjects we see that j ○ q(ËM0 ) is

in the subobject (j ○ q(
....
f
M))−1[j ○ q(ËM0 )], as j ○ q preserves pullbacks. But we then

also have by Lemma 3.14 that j ○ q(ËM0 ) = j ○ q(ËM1 ).
(2) then follows immediately from (1) and Lemma 3.46. �

Definition 3.57. We say ⟪....
g ∶=γ ∏i≤n

....
f i⟫ defines the product of ⟨

....
f i ∶ i ≤ n⟩ if

it is a component which contains:

● An encoded product
....

Prod(S̈i ∶ i ≤ n) (of height γ).
● Encoded morphisms

....
f i ∶ T̈ → S̈i (of height γ) for i ≤ n.

● An Encoded morphism
....
g ∶ T̈ → S̈∗ (of height γ).

and which proves:

● (∀x ∶ T̈ )D̈g(x)↔ ⋀i≤n D̈fi(x).

● (∀x ∶ S̈)g̈(x, y)↔ ⋀i≤n f̈i(x,πi(y)).

We then easily have the following lemma.



MODEL THEORY OF L∞,ω IN A FIXED GROTHENDIECK TOPOS 34

Lemma 3.58. Suppose
....
g ∶ T̈ → S̈∗ and

....
f i ∶ T̈ → S̈i (i ≤ n) are encoded morphisms

(of height γ).

(1) If M ⊧ ⟪....
g ∶=γ ∏i≤n

....
f i⟫ then

....
g M is a product of ⟨

....
f
M
i ∶ i ≤ n⟩ (in

Sh∗(C,JC)).

(2) If
....

∣JC ∣+f i ∶ T̈ → S̈i are encoded morphisms realized inM, then there is a unique
expansion of M to M∗ which contain a new encoded morphism

....
∣JC ∣+g such

that M ⊧ ⟪....
g ∶=∣JC ∣+ ∏i≤n

....
f i⟫.

Proof. (1) Follows immediately from the definition of products. (2) follows from
Corollary 3.19. �

We now show how to compose encoded subobjects with partial connectives.

Definition 3.59. Suppose ⟨X,β⟩ = ⟨ ˙SO(ϕ)β, ˙Con(ψ)β⟩ is a definable partial connec-
tive in LanCon(n) and let ψc∗(x) = ψcβ[F c

i (x, y)/Y c
i (y)], ϕci(x) = ϕcβ[F c

i (x, y)/Xc(y)]
i.e. the result of substituting F c

i (x, y) in for Y c
i (y) and Xc(y) everywhere.

We say ⟪
....
G ∶=X β○⟨

....
F i ∶ i ≤ n⟩⟫ defines composition with β if it is a component

which contains:

● An encoded sort S̈.
● Encoded subobjects

....
G , {

....
F i ∶ i ≤ n} of type S̈.

and which proves:

(1) For all c ∈ obj(C), ⋀i≤n(∀x ∶ Sc)ϕci(x).
(2) For all c ∈ obj(C), (∀x ∶ Sc)⋀g∈C[−,c]

....
G (x, ĝ)↔ ψc∗(x, ĝ).

Lemma 3.60. Suppose M realizes encoded subobjects
....
G , {

....
F i ∶ i ≤ n}. Then the

following are equivalent:

(a) M ⊧ ⟪
....
G ∶=X β ○ ⟨

....
Fi ∶ i ≤ n⟩⟫.

(b) Both

(i) For each i ≤ n, ran(
....
Fi
M) ⊆ ˙SO(ϕ)∗β.

(ii)
....
G
M = ˙Con(ψ)∗β ○ [∏i≤n

....
Fi
M]

Proof. By Lemma 3.27 (1) and (i) are equivalent in any encoded model, and by
Lemma 3.31 (2) and (ii) are equivalent in any encoded model.

�

Lemma 3.61. The complexity of Th[⟪
....
G ∶= βX ○ ⟨

....
F i ∶ i ≤ n⟩⟫] is sup{complexity of

˙SO(ϕ)β, complexity of ˙Con(ψ)β, ∣JC ∣}.

Now we show how to define quantifiers.

Definition 3.62. Let
....
Q γ be the component which is the union of the following:

● An encoded subset Ë of sort S̈.
● An encoded morphism

....
f from S̈ to T̈ (of height γ).

● Encoded sets F̈0, F̈ of sort T̈ .
● A γ-witness

....
Covγ(F̈0, F̈ )

We say ⟪F̈ ∶=γ (∀....
f )Ë⟫ defines universal quantification if it the component

which contains
....
Q γ and further proves:
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● (∀y ∶ T̈ )F̈0(y)↔ [(∀x ∶ S̈)f̈(x, y)→ Ë(y)].
We say ⟪F̈ ∶=γ (∃....

f )Ë⟫ defines existential quantification if it is the component
which contains

....
Q γ and further proves:

● (∀y ∶ T̈ )F̈0(y)↔ [(∃x ∶ S̈)f̈(x, y) ∧ Ë(y)].
We then easily have the following lemma.

Lemma 3.63. We then have

(1a) If M ⊧ ⟪F̈ ∶=γ (∃....
f )Ë⟫ then F̈M is closed in S̈M and in the same subobject

as (∃....
f
M)ËM.

(1b) If M ⊧ ⟪F̈ ∶=γ (∀....
f )Ë⟫ then F̈M is closed and in the same subobject as

(∀....
f
M)ËM.

(2) Suppose in M realizes Ë as an encoded closed subset of S̈ and
....
γf ∶ S̈ → T̈

is an encoded morphism (of some height). Then there is a γ ≤ ∣JC ∣+ and an
M0 such that M0 ≎M, the height of M0 is γ and M0 has an expansion M∗

0

which realizes ⟪F̈ ∶=γ (∃....
f )Ë⟫ and ⟪F̈ ∶=γ (∀....

f )Ë⟫.

Proof. That (1a) and (1b) hold for any encoded model follows from the definition of
quantification and Lemma 3.14. That (2) holds follows from Corollary 3.19.

�

Lemma 3.64. We have the following for γ0 < γ1.

● ⊢ Th[⟪F̈ ∶=γ0 (∀....
f )Ë⟫]→ Th[⟪F̈ ∶=γ1 (∀....

f )Ë⟫]
● ⊢ Th[⟪F̈ ∶=γ0 (∃....

f )Ë⟫]→ Th[⟪F̈ ∶=γ1 (∃....
f )Ë⟫]

Proof. This follows immediately from Corollary 3.17 and the fact that the only men-
tion of the constants ζ̂ for ordinals ζ are in Th[Öγi]. .

�

We now show how to name conjunctions and disjunctions.

Definition 3.65. Let
....
B be the component which is the union of the following:

● An encoded sort S̈.
● Encoded closed subsets, F̈ and Ëi, i ∈ I, of sort S̈.

We let ⟪F̈ ∶= ⋀i∈I Ëi⟫ be the sort which contains
....
B and further proves:

● (∀x ∶ S̈)F̈ (x)↔ ⋀i∈I Ëi(x)
We let ⟪F̈ ∶=γ ⋁i∈I Ëi⟫ be the sort which contains

....
B as well as:

● An encoded set F̈0 of sort S̈.
● A γ-witness that F̈0 covers F̈ ,

....
Covγ(F̈0, F̈ ).

and which proves:

● (∀x ∶ S̈)F̈0(x)↔ ⋁i∈I Ëi(x)
The following lemma follows easily from the definition of infinite conjunctions and

disjunctions in Sh∗(C,JC).
Lemma 3.66. We have:
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(1a) If M ⊧ ⟪F̈ ∶= ⋀i∈I Ëi⟫ then F̈M is in the same subobject as ⋀i∈I ËM.
(1b) If M ⊧ ⟪F̈1 ∶=γ ⋁i∈I Ëi⟫ then F̈M is in the same subobject as ⋁i∈I ËM.

(2) Suppose M realizes Ëi are encoded closed subsets of S̈ (for i ∈ I) and M does
not contain any encoded ordinals. Then there is a γ ≤ ∣JC ∣+ and an expansion
M∗ of M which realizes ⟪F̈ ∶= ⋀i∈I Ëi⟫ and ⟪F̈ ∶=γ ⋁i∈I Ëi⟫.

Proof. That (1a) and (1b) hold for any encoded model follows from the definition of
infinite conjunctions and disjunctions of subobjects in Sh∗(C,JC) and Lemma 3.14.
That (2) holds follows from Corollary 3.19.

�

Lemma 3.67. We have the following for γ0 < γ1.

● ⊢ Th[⟪F̈1 ∶=γ0 ⋁i∈I Ëi⟫]→ Th[⟪F̈1 ∶=γ1 ⋁i∈I Ëi⟫]

Proof. This follows immediately from Corollary 3.17.
�

Now that we have all of these sentences which name formulas, we can say when a
fragment is named.

Definition 3.68. Suppose A is a fragment and NA = ⟨Hϕ ∶ ϕ ∈ A⟩ ⊆ FL ∪ RL −A and
let QA = ⟨Qβ ∶ β ○Xβ ∏i≤n fi ∈ A⟩ where Qβ = ⟨ϕβ, ψβ⟩ is a definable partial connectives

which defines ⟨Xβ, β⟩. Let
....

Namγ(A,NA,QA) be the component which contains:

(0) For each A,B ∈ OL and α ∶ rL(A)→ rL(B) in A, ⟪
....
H α ∶=γ α⟫.

(1a) For each g ○ f ∈ A with codom(g) ∈ SL, ⟪
....
H g○f ∶=γ

....
H g ○

....
H f⟫.

(1b) For each g ○ f ∈ A with codom(g) = Ω then ⟪(Ḧg○f)s ∶=γ
....
f
−1[(Ḧf)s]⟫

(2) For each {fi ∶ i ≤ n} all with codomain in SL and with ∏i≤n fi ∈ A, ⟪
....
H∏i≤n fi ∶=γ

∏i≤n
....
H fi⟫.

(3) For each β ○Xβ ∏i≤n fi ∈ A, ⟪
....
H β○Xβ∏i≤n fi ∶= Qβ ○ ⟨

....
H fi ∶ i ≤ n⟩⟫.

(4) For each ⋁i∈I Ei ∈ A, ⟪(Ḧ⋁i∈I Ei)s ∶=γ ⋁i∈I(ḦEi)s⟫.

(5) For each ⋀i∈I Ei ∈ A, ⟪(Ḧ⋀i∈I Ei)s ∶= ⋀i∈I(ḦEi)s⟫
(6) For each (∀f)E ∈ A, ⟪(Ḧ(∀f )E)s ∶=γ (∀....

H f
)(ḦE)s⟫.

(7) For each (∃f)E ∈ A, ⟪(Ḧ(∃f )E)s ∶=γ (∃....
H f

)(ḦE)s⟫.

We then have the following theorem which sums up the the results of this section.

Theorem 3.69. Suppose A ⊆ Forκ+,ω(L) is a fragment each of whose formulas is
legal for M∗, M∗ = Rep(M), i.e. M∗ is an encoding of M and that NA and QA are
as in Definition 3.68. Then the following hold:

(1) If M ⊧
....

Namγ(A,NA,QA) then {Hϕ ∶ ϕ ∈ A} are names for A in M∗.
(2) If {Hϕ ∶ ϕ ∈ A} are names for A inM∗ then there is anM0 such thatM0 ≎M

and M0 ⊧
....

Nam∣JC ∣+(A,NA,QA).

(3) ⊢ Th[
....

Namγ0(A,NA,QA)]→ Th[
....

Namγ1(A,NA,QA)] if γ0 < γ1.

(4) The complexity of
....

Namγ(A,NA,QA) is at most the supremum of {∣A∣, ∣γ∣, ∣JC ∣,
the complexity of all Qβ in QA}.
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Proof. (1) and (2) follow immediately from Lemma 3.52, Lemma 3.54, Lemma 3.56,
Lemma 3.58, Lemma 3.58, Lemma 3.63, Lemma 3.66. (3) follows from Corollary 3.17

and the fact that the only difference between
....

Namγ0(X) and
....

Namγ1(X) occur on
components which witness one encoded subset covering another. �

Theorem 3.69 is the most important of result of Section 3.3.1. It shows how we can
collect all of our encodings together to get names for all formulas in a fragment.

3.3.2. Sentence Components. We now show how to encode basic sentences. This,
along with the encoding of names, will allow us to encode arbitrary sheaf sentences.

Definition 3.70. We say ⟪
....
f 0 ≡γ

....
f 1⟫ defines the equivalence of

....
f 0 and

....
f 1 if

it is a component which contains:

● Encoded morphisms
....
f 0 and

....
f 0 (of height γ) both of which have domain S̈

and codomain T̈ .

and which proves:

● (∀x ∶ S̈)(∀y ∶ T̈ )D̈f0(x) ∧ D̈f1(x)→ [f̈0(x, y)↔ f̈1(x, y)].
We then easily have the following lemma.

Lemma 3.71. Suppose
....
f 0 and

....
f 1 are encoded morphisms (of height γ) from S̈ to

T̈ realized in M. Then M ⊧ ⟪
....
f 0 ≡γ

....
f 1⟫ if and only if

....
f
M
0 ≡

....
f
M
1 (as morphisms

of Sh∗(C,JC)).

Definition 3.72. We say ⟪
....
Rel(R̈0

s,
....
R

0) ≡
....
Rel(R̈1

s,
....
R

1)⟫ defines the equivalence

of
....
Rel(R̈0

s,
....
R

0) and
....
Rel(R̈1

s,
....
R

1) if it is a component which contains:

● Encoded relations
....
Rel(R̈0

s,
....
R

0) and
....
Rel(R̈1

s,
....
R

1) of type S̈.

and which proves:

● (∀x ∶ S̈)R̈0
s(x)↔ R̈1

s(x).

We then easily have the following lemma.

Lemma 3.73. Suppose
....
Rel(R̈0

s, R̈
0) and

....
Rel(R̈1

s, R̈
1) are encoded relations of type S̈

realized in M. Then M ⊧ ⟪
....
Rel(R̈0

s,
....
R

0) ≡
....
Rel(R̈1

s,
....
R

1)⟫ if and only if
....
R0
M

≡
....
R1
M

(as morphisms of Sh∗(C,JC)).

Definition 3.74. We then define the following by induction on simple sentences:

● For T ∈ Sen∞,ω(L) let ⟪¬̌T⟫ be the component which contains ⟪T⟫ and which
proves ¬Th[⟪T⟫].

● For {Ti ∶ i ∈K} ⊆ Sen∞,ω(L) let ⟪⋁̌i∈KTi⟫ and ⟪⋀̌i∈KTi⟫ be components which
contain each ⟪Ti⟫ and where:

– ⟪⋁̌i∈KTi⟫ proves ⋁i∈K Th[⟪Ti⟫].
– ⟪⋀̌i∈KTi⟫ proves ⋀i∈K Th[⟪Ti⟫].

Lemma 3.75. If T is a simple sentence and M is a sheaf structure with encoding
M∗, then M ⊧ T if and only if M∗ ⊧ ⟪T⟫.

Proof. This is immediate from the Definition 3.74, Lemma 3.71 and Lemma 3.73.
�
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Note that if T is not legal for M then we have M /⊧ T and M /⊧ ¬T . In particular
we have restricted our attention here to simple sentences as simple sentences are legal
in all structures.

Definition 3.76. Suppose T ∈ Senκ+,ω(L) and we have the notation from Lemma

2.41 and Definition 3.68. Let
....
Senγ(T ) be the component which is the union of the

following components:

●
....

Namγ(P (T ),NT ,QP (T )).
● ⟪TNT ⟫.

Theorem 3.77. Suppose T ∈ Senκ+,ω(L) is legal for M. Then the following hold:

(1) If Rep(M∗) =M and M∗ ⊧
....
Senγ(T ) then M ⊧ T .

(2) If M ⊧ T then there is an expansion M∗ of M with everything in P (T ) and

an M∗
0 such that Rep(M∗

0) =M∗ and M∗
0 ⊧

....
Sen∣JC ∣+(T ).

(3) ⊢ Th[
....
Senγ0(T )]→ Th[

....
Senγ1(T )] if γ0 < γ1.

(4) The complexity of
....
Senγ(T ) is at most the supremum of {tc(T ), ∣γ∣, ∣JC ∣, the

complexity of all Qβ ∈ QP (T )}.

Proof. (1) and (2) follows from Lemma 2.41 and Corollary 3.19, Theorem 3.69 and
Lemma 3.75.

(3) and (4) then follow from Theorem 3.69 (3) and (4).
�

4. Applications

In this section we will use our knowledge about models of L∞,ω in Set along with
the encodings from Section 3 to deduce facts about sheaf models and sheaf sentences.

4.1. Elementary Chains. As an example of the strength of our encoding we pro-
vide a proof that the directed embedding theorem. We will deduce this from the
corresponding result for Set-structures.

Theorem 4.1 (Directed Embedding Theorem). Let A ⊆ Forκ+,ω(L) be a fragment
and suppose ⟨I,⪯⟩ is a partial order such that every pair of elements has an upper
bound. Further suppose D = ⟨{Mi ∶ i ∈ I},{αi,j ∶ Mi → Mj, i ⪯ j}⟩ is a directed
system of sheaf models such that each formula in A is valid for eachMi and each αi,j

preserves all formulas in A. Then D has a directed limit ⟨M+, ⟨αi ∶Mi →M+, i ∈ I⟩⟩
where:

(1) Each each ϕ ∈ A is valid for M+ and each αi preserves all ϕ ∈ A.
(2) Suppose T ∈ Sen∞,ω(L) is such that Mi ⊧ T for all i ∈ I and P (T ) ⊆ A. Then
M+ ⊧ T .

(3) ⋃S∈SL ∣SM+ ∣ + ∣L∣ = ⋃i∈I ⋃S∈SL ∣SMi ∣ + ∣L∣
Proof. First note that by Proposition 2.27 and the fact that (1) and (2) are closed un-
der isomorphisms of directed diagrams it suffices to restrict attention to total directed
systems with total directed limits.

To see (1) holds note from Lemma 2.37 that ifMA
i is an expansion ofMi by (only)

adding names for all formulas in A (in the same way) then DA = ⟨{MA
i ∶ i ∈ I},{αi,j ∶
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i ⪯ j}⟩ is a directed system as well. Let M∗
+ be the directed limit of this system. We

then have by Lemma 2.37 that ifM∗
+ =MA

+ than each αi preserves all formulas in A.
Notice though that as we can assume all maps αi,j are total we also have that

⟨{Enc(MA
i ) ∶ i ∈ I},{Enc(αi,j) ∶ i ⪯ j}⟩ is a directed system of

....
Lanγ(L)-structures

and Enc(M∗
+) is its directed limit.

But by Theorem 3.69 we have that Enc(MA
i ) ⊧ Th[

....
Nam∣JC ∣+(A)] for each i ∈ I

and that Th[
....

Nam∣JC ∣+(A)] is Π2. Hence because in Set-structures Π2-sentences are

preserved by directed limits we have Enc(M∗
+) ⊧ Th[

....
Nam∣JC ∣+(A)] and so by Theorem

3.69 that M∗
+ =MA

+ (i.e. M∗
+ has names for each formula in A which corresponds to

the names in each Mi).
To see that (2) holds it suffices to show, by Lemma 2.41, Lemma 2.37 and the

previous paragraph, that (2) holds for simple sentences in DA. But if T is a simple
sentence then Th[⟪T⟫] is Π2 (by Definition 3.70, Definition 3.72 and Definition 3.74).

�

4.2. Löwenheim-Skolem Theorem. We now prove an analog of the downward
Löwenheim-Skolem Theorem.

Theorem 4.2 (Generated Downward Löwenheim-Skolem Theorem). Suppose A ⊆
Forκ+,ω(L)∪Senκ+,ω(L) is a fragment and QA is as in Definition 3.68. Further suppose
∣A∣, ∣JC ∣, ∣L∣ ≤ κ and all definable partial connectives in QA have complexity at most κ.

IfM is an L-structure and Y ⊆ ⋃S∈SL SM is of size ≤ κ then there is an L-structure
NY such that:

(1) Y ⊆ NY ⊆M and NY is at most κ-generated,.
(2) The inclusion map in ∶ NY →M preserves all formulas in A.
(3) For any sentence T ∈ A valid for M, M ⊧ T if and only if NY ⊧ T .

Proof. By Lemma 2.37 and Lemma 2.41 in order to show (2) and (3) it suffices to
assume all sentences of A are named inM and then to find NY for which the theorem
holds for simple sentences and where for each ϕ ∈ A if Hϕ is a name for ϕ in M it is
also a name for ϕ in NY .

LetM∗ be an encoding ofM and let V ≺n Set be such that {tc({Y,L,A}),M,M∗} ∈
V and ∣V ∣ = κ. Let i ∶ V → V0 be the transitive collapse of V and let N ∗ = i(M∗). We
then have i−1

∗ ∶ i(N ∗)→M∗ is a homomorhpism and we can let NY = Rep(ran(i−1
∗ )).

Note that if T ∈ A then as V0 is an elementary substructure of Set we haveM ⊧ T if
and only if i(M) ⊧ T (as i(T ) = T ) if and only if i(M∗) ⊧ ⟪T⟫ if and only if NY ⊧ T .

Next note that, by our assumption in the first paragraph, we haveM∗ ⊧
....

Nam∣JC ∣+(A).
Hence as tc(A) ∈ V we also have N ∗ ⊧ i(

....
Nam∣JC ∣+(A)). But i(

....
Nam∣JC ∣+(A)) =

....
Nami(∣JC ∣+)(A) and so by Theorem 3.69 (3) we have N ∗ ⊧

....
Nam∣JC ∣+(A) as well (as

i(∣JC ∣+) ≤ ∣JC ∣+). Hence if Hϕ is a name for ϕ in M, Hϕ is also a name for ϕ in NY
and so the inclusion map preserves ϕ.

All that is left is to show (1). But clearly Y ⊆ NY and, as ∣V ∣ = κ we have NY must
be κ-generated.

�

We now have a similar result for pure size, provided we have some condition on the
cardinality.
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Corollary 4.3 (Pure Downward Löwenheim-Skolem Theorem). If κ∣mor(C)∣ = κ then
we can assume NY in Theorem 4.2 has pure size at most κ.

Proof. This follows immediately from Lemma 2.18.
�

Note that in general we cannot do away with the assumption in Corollary 4.3. For
example if (C,JC) is as in Example 2.19 and L has a single sort S, if Y ⊆ SM(c) with
∣Y ∣ = κ then any substructure NY ⊆M has pure size at least κ∣mor(C)∣.

4.3. Completeness. We now turn our attention to countable weak sites and sen-
tences of Lω1,ω. In particular we show that there is a completeness theorem in this
context.

Definition 4.4. We say a sentence T is κ-valid if whenever T is legal for M and
M has height at most κ, then M ⊧ T . We say T is valid if it is κ-valid for all κ.

For the rest of this section suppose V0 ⊆ V1 are models of set theory with the same
ordinals such that A ∈ V0 is a fragment.

Definition 4.5. Suppose T ∈ Sen∞,ω(L). We define a proof up to α of T to be a
proof of:

● Prα(T ) ∶= [
....

Lanα(L) ∧
....

Namα(P (T ),NT ,QP (T ))]→ ⟪TNT ⟫.

In what follows it will be useful to have a notion of how complicated a sentence is
to express. We define the complexity of T ∈ Senκ+,ω(L) to be sup{κ, ∣JC ∣, ∣L∣, ∣P (T )∣,
complexity of QP (T )}.

We then have the following

Lemma 4.6. If T ∈ Sen∞,ω(L) then the following are equivalent:

(0) T has a proof up to α for all α ∈ ORD.
(1) T has a proof up to α for all α < (complexity of T )+.
(2) T has a proof up to α for some α ≥ (complexity of T )+.

Proof. Notice that (0) immediately implies (1). Next suppose (0) doesn’t hold. In
particular suppose that there is no proof of T up to α for some α ∈ ORD. Now for
any particular α having a proof up to α (of T ) is absolute (as it is just a matter of
having a proof of a sentence of L∞,ω, which is an absolute property of a sentence).

Let V ≺1 Set with {α, tc({T,P (T ), (C,JC),L})} ∈ V and ∣V ∣ = (complexity of T ).
Let i ∶ V → V0 be the transitive collapsing map. Then in V0, i(T ) = T does not
have a proof up to i(α) = α′. Hence T does not have a proof up to α′ in Set. But
∣V ∣ =(complexity T ) and so α′ < (complexity of T )+, contradicting (1).

In particular we have shown that (0) and (1) are equivalent. But we also he that
(0) easily implies (2) and that (2) implies (1) by Theorem 3.77 (3). Hence we are
done.

�

Now as a consequence of Lemma 4.6 we have the following.

Lemma 4.7. If (complexity T )V0 = ω then the following are equivalent:

(0) T is valid in V1.
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(1) T has a proof up to α for all α < ωV01 in V0.
(2) In V1: All sheaf models for which T is legal satisfy T .
(3) In V0: All countably generated sheaf models for which T is legal satisfy T .

Proof. First note that because Prα(T ) ∈ V0 for all α ∈ ORD(V0) and if Prα has a
proof in V1 it must also have a proof in V0 the equivalence of (0) and (1) follows from
Lemma 4.6.

Next note that (2) easily implies (3) as the satisfaction relation between L-structures
and sentences of Sen∞,ω(L) is absolute.

Next assume (3) holds. If α < ωV01 then Prα(T ) is true in all countable models and
hence (by the downward Löwenheim-Skolem theorem) is true in all models. But then
Prα(T ) is valid (by the completeness theorem for Lω1,ω) and so we have ⊢ Prα(T ).
(1) follows as α was arbitrary.

Finally to show that ¬(2) implies ¬(1) (and hence (1) implies (2)), notice that if
there is some sheaf model which doesn’t satisfy T then there is some κ such that T
doesn’t have a proof in V1 up to κ. But then T doesn’t have a proof in V0 up to κ
either (as Prκ(T ) ∈ V0 and ORD(V0) = ORD(V1)). Hence by Lemma 4.6, there is
some α < ωV01 such that T doesn’t have a proof up α.

�

Theorem 4.8 (Completeness Theorem). If L is countably generated then the col-
lection of sentences of Senω1,ω(L) which have countable complexity and are valid is
Σ1(ω1).

Proof. First notice that the collection of sentences T such that if ⟨X,β⟩ ⪯ T then
⟨X,β⟩ is definable with countable complexity is a Σ1 (uniformly) collection of sen-
tences. Let Tot be this collection. The Σ1(ω1) definition is then {T ∈ Tot ∶ (∀α <
ω1) ⊢ Prα(T )}. �

Note that this does not mean that the collection is uniformly Σ1. The reason is
this definition uses the ω1 parameter which is not absolute.

Lemma 4.9. If L is countably generated then the collection of sentences of Senω1,ω(L)
which have countable complexity and are valid is Π2 over the hereditarily countable
sets (HC).

Proof. First notice that any such sentence is in HC. Also notice the the collection
Tot ∩HC is Σ1 over HC. The Π2 definition is then {T ∈ Tot ∶ (∀α) ⊢ Prα(T )}. �

The previous completeness theorem only worked for sentences with connectives that
were definable by formulas with countable complexity. We now turn to the general
case.

In what follows suppose X ⊆ Ω is countably generated and T ∈ Senω1,ω(L) is a
⊑-maximal sentence. Let TX be a sentence such that all partial connectives have a
domain containing X and TX ⊑ T .

Theorem 4.10. T is valid if and only if TX is ω1-valid for every countable X.

Proof. Left implies Right: Any M-structure which satisfies T and for which TX is
legal also satisfies TX by Lemma 2.33. Further, if T is valid, then as it is ⊑-maximal,
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it hold in all sheaf models.

¬Left implies ¬Right: Suppose there is some sheaf modelM such thatM /⊧ T . Then,
as T is ⊑-maximal we must haveM ⊧ ¬T . Now let V ≺n Set be countable withM ∈ V
and let i ∶ V → V0 be the transitive collapse. Then i(M) ⊧ i(T ). But as i(Ω) ⊆ Ω,
i(T ) is legal for i(M) and i(M) ⊧ ¬Ti(M). Therefore Ti(Ω) is not ω1-valid (as i(M)
must have height < ω1).

�

Corollary 4.11. Let Pω(Ω) be the collection of countable subpresheaves of Ω. Then
the collection of valid sheaf sentences in Senω1,ω(L) is Σ1(ω1,Pω(Ω)).

Proof. This follows immediately from the Theorem 4.8 and Theorem 4.10. �

4.4. Barwise Compactness. In this section we show that for certain admissible
sets a version of Barwise’s compactness theorem holds.

Theorem 4.12. Suppose V is a countable Σ1-admissible set (with respect to some
language) such that V ⊧“There exists a Σ1-definable well-ordering” with {(C,JC),L} ∈
V and such that V ⊧ (∃κ)∣κ∣ > ∣mor(C)∣. Further suppose T ⊆ V ∩ Senω1,ω(L) is Σ1

over V and that there is a collection of definable partial connectives ⟨Q⟨X,β⟩ ∶ ⟨X,β⟩ ⪯
⋀̌T ⟩ which is also Σ1 over V (where Q⟨X,β⟩ defines ⟨X,β⟩). We then have that if
every V -finite subset1 of T has a model in V then T also has a model.

Proof. Let α = (∣JC ∣+)V . By our assumption on T and the definable partial connec-

tives, the collection T ∗ ∶= {
....
Senα(U) ∶ U ∈ T} is also Σ1 over V .

Now if F ⊆ T is V -finite we have by assumption that F has a model in V . But
then by Proposition 2.11, Lemma 3.13 and the fact that the only components which
use encoded ordinals are encoded witnesses to covers, we have {

....
Senα(U) ∶ U ∈ F} also

has a model.
By Barwise compactness we then have that T ∗ has a model M∗. But then by

Theorem 3.77 (1) we have Rep(M) ⊧ T .
�

Just as with Barwise compactness we can’t assume that the resulting model is ac-
tually in V . However unlike with Barwise compactness our proof makes fundamental
use of the fact that the models realizing the V -finite subsets of T are themselves
V -finite.
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