
Is Hintikka’s Independence-Friendly Logic a
revolutionary non-classical first-order language?

Abstract
This paper investigates Hintikka’s Game-Theoretical Semantics (GTS),

starting from its application to classical First-Order Logic (FOL), in prepara-
tion to its further transposition into Hintikka’s Independence-Friendly Logic
(IFL). I shall argue that the literal transferring of the clauses of GTS into IFL
is, first, unjustified; and second, unnatural. Finally, I will suggest that a nat-
ural semantics for IFL is well-behaved, does not violate the central classical
theorems which Hintikka claims it violates, and is thus only an extension of
FOL with more expressive power, just like any other extension of FOL with
non-classical (e.g. generalized) quantifiers.

Hintikka (mostly in his 1996 book, among many other places) has vigorously
claimed that Independence-Friendly Logic (IFL) together with Game-Theoretical
Semantics (GTS) constitute the really fundamental first-order language, and should
as such replace classical First-Order Logic (FOL) in general practice —even for the
purpose of teaching basic logic in the universities. Among the various advantages
of IFL-GTS over FOL he points out, the most striking ones are related to the inva-
lidity of central theorems of classical logic, especially Gödel’s completeness and
Tarski’s undefinability of truth. Moreover, IFL-GTS is three-valued and, according
to Sandu and Hintikka (2001) (in spite of Hodges 1997), is not compositional in a
suitable sense. Now we ask: Does IFL really deserve the status of revolutionary
non-classical logic?

1 Game-Theoretical Semantics for First-Order Logic

GTS introduces games which are played only with complex sentences 1, by two
players, the Verifier (aka Eloise) and the Falsifier (aka Abelard). As one would

1We shall concentrate on quantifiers and negation and omit conjunction and disjunction through-
out the paper, since these latter connectives are treated in GTS much the same way as quantifiers.
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expect, games are played with respect to some given structure of interpretation.
Therefore, we use the general notation Gpϕ,Mq to mean a game played with the
sentence ϕ in structure M. The individual domain of M is written M.

Quantifiers (D) and (@) are then viewed as moves in the game associated with
choices by Eloise and Abelard respectively. The motivation behind the picture is
the following. If we have a sentence of the kind ϕ � DxRx, to prove that ϕ is true
in M is the same thing as finding some individual ā P M of name a, such that Ra is
true in M, i.e. pāq P RM. This is a natural move for Eloise, since she has the power
of verifying (or not) ϕ in just one move: it suffices for her to give such a suitable
a, and the game is over. Similarly for Abelard and the universal (@). Thus we give
Eloise the right of playing under the presence of an existential quantifier, whereas
the universal quantifier indicates that choice is attributed to Abelard.

The well-known overall mechanism of games Gpϕ,Mq for the other logical
constants is given by the clauses below. For all sentences of FOL, we may reach
through (a finite number of) moves by Abelard and Eloise an atomic sentence
which is directly evaluable in the relevant structure. In other words, Abelard and
Eloise’s choices eliminate quantifiers and connectives of the initial sentence. All
these observations can be informally stated through the following set of inductive
rules given by Hintikka (1996, p. 25) for games GpS q in some given structure M:

(R. D) GpDx S xq begins with the choice by the verifier of a member of M. If the
name of this individual is b, the rest of the game is as in GpS bq.

(R.@) Gp@x S xq likewise, except that falsifier makes the choice.

(R. ) Gp S q is like GpS q, except that the roles of the two players (as defined by
these rules) are interchanged.

(R. At) If A is a true atomic sentence (or identity), the verifier wins GpAq and the
falsifier loses it. If A is a false atomic sentence (or identity), vice versa.

Next we may ask: if Eloise (Abelard) verifies (falsifies) some ϕ in a given M,
does it mean that ϕ is true (false) in M? The general answer is "No". For ϕ to be
true (false), we must actually require that the choices by Eloise (Abelard) be such
that Abelard (Eloise) has no possible good choice for him (her). In other words, ϕ
is true (false) in M if and only if Eloise (Abelard) has some sequence of choices
such that she (he) wins every play of the game regardless of how Abelard (Eloise)
plays. A sequence of choices of that kind is called a winning strategy. Hintikka
glues all these observations as follows (ibid., p. 26):

(R. T) S is true in M if and only if there exists a winning strategy for the verifier
in the game GpS q when played in M.
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(R. F) S is false in M if and only if there exists a winning strategy for the falsifier
in the game GpS q when played in M.

1.1 From Games to Quantification

Let us mind our step. What exactly are Eloise and Abelard willing to verify and
falsify with respect to some quantified sentence ϕ?

Consider the atomic formula Rpx, yq. Since quantifiers are interpreted as de-
termining which player has the move in the game, the formula @xDyRpx, yq is
at bottom related to a game GpR,Mq over the matrix Rpx, yq with two (ordered)
choice-points, the first for x which is taken care of by Abelard, the second for y
whose choice is carried through by Eloise. Generally, quantifier games in GTS are
not really played over quantified sentences, but rather over their matrices accord-
ing to the choice-points determined by the quantifiers. In other words, the function
of quantifiers is to settle the turns and the order of the choices related to a game
over the matrix. In our example, the sequence x@x, Dyy determines that the game
GpR,Mq is to be played with the choice of x being ascribed to Abelard, and that of
y to Eloise 2.

From this point of view, the mechanism of GpRpx1
A, y

2
Eq,Mq is described as

follows: Abelard plays first, and picks an element of M whose name is a1, and the
game goes on as GpRra1s,Mq —with the obvious notation. Then Eloise picks an
element of M whose name is a2, and the games goes on as GpRra1, a2s,Mq. Since
Rra1, a2s is an atomic sentence, we say that Abelard wins GpR,Mq if pa1, a2q R RM;
and Eloise wins the game if pa1, a2q P RM.

Players are not playing for just winning, but rather for winning every possible
play of the game. Not every sequence pai, a jq P M2 is a possible outcome of the
game, because players will never make choices which may lead to his/her oppo-
nent’s victory. If pai, a jq R RM for some i, j, then Eloise will never choose a j if
Abelard chooses ai, therefore pai, a jq is not a possible outcome of GpRpx1

A, y
2
Eq,Mq.

To sum up, we may now say that Abelard’s final goal is to falsify the matrix
Rpx, yq of @xDyRpx, yq, for all possible outcomes of GpRpx1

A, y
2
Eq,Mq. Similarly,

Eloise’s challenge is to verify the matrix Rpx, yq of @xDyRpx, yq, for all possible
outcomes of GpRpx1

A, y
2
Eq,Mq. But this in turn is to say the following: Abelard’s

goal is to provide some constant a for x such that for all elements possibly chosen
for y, it is the case that pa, yq R RM. Eloise’s goal is to provide, for all elements

2This further suggests that GTS-style games can be defined also for atomic sentences like Rpa, bq,
with ā, b̄ P M, the particular feature being that the "choices" (which we had better call "random
draws") are no longer supplied by active players (who are now merely bettors, one betting for truth
and the other for falsity), but by a kind of lottery machine. I investigate this line in another working
paper.
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possibly chosen for x, some constant b such that px, bq P RM. As a consequence,
each player has a quantified sentence to prove in the game: Abelard wants to show

ϕ � Dx@y  Rpx, yq; (1)

whereas Eloise wants to show

ϕ1 � @xDy Rpx, yq. (2)

As we see, the game over Rpx, yq in which we give the first choice to variable x
and player Abelard, and the choice of y to Eloise, is associated with two quantified
conditions, namely (1) and (2), each one giving the respective goal of each player.
If we give different variables to different players in different orders, the conditions
will vary accordingly.

Thus as it stands, the game GpRpx1
A, y

2
Eq,Mq gives truth conditions for two

different quantified sentences, again (1) and (2). Specifically, we have:

ϕ is True in M iff Abelard has a winning strategy in GpRpx1
A, y

2
Eq,Mq ;

ϕ1 is True in M iff Eloise has a winning strategy in GpRpx1
A, y

2
Eq,Mq. (3)

We are starting here from the definition of the semantic game in order to
come upon the quantified conditions. The conclusion so far is that the game
GpRpx1

A, y
2
Eq,Mq gives only truth (but no falsity) conditions for two different quan-

tified sentences, one for each player. GTS is essentially the same game as we
have just described, the only difference being a notational one: instead of writing
Gp@xDyRpx, yq,Mq, we put GpRpx1

A, y
2
Eq,Mq. However, this latter notation says in

addition that ϕ1 is related to the same game as ϕ.
But if so, GTS games do not in principle give any falsity conditions on quanti-

fied sentences. Abelard is the falsifier, but what he is intrinsically falsifying is the
matrix of the quantified sentence, not the sentence itself. In order for us to securely
state that he is falsifying the whole sentence, we need to be sure that —to take our
particular case— the first clause of (3) is in fact equivalent to the negation of the
second, without which the statement that Abelard is the falsifier of the quantified
sentence turns out to be an ad hoc affirmation.

Fortunately, the equivalence does hold. On the other hand, however, it is an
equivalence which goes beyond the game-theoretical perspective, and which is cru-
cially grounded on the standard semantics of FOL. The equivalence is, of course:
 ϕ1 Ø ϕ. Under this equivalence, we can define the falsity of ϕ1 as the truth
of ϕ (the same for the falsity of ϕ), which leads directly to Hintikka’s clauses.
Therefore, the justification of Hintikka’s game-theoretical falsity condition draws
crucially on a peculiar fact of the standard semantics of FOL, not on any intrinsic
feature of GTS games.
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As long as we are placed within FOL (with its standard semantics), there is
thus no conflict involved (the following has the obvious notations):

Theorem. For every ϕ � Q1x1 . . .QnxnRpx1, . . . , xnq of FOL, ϕ is true (false) in
M if and only if Eloise (Abelard) has a winning strategy in Gpϕ,Mq, if and only if
Eloise (Abelard) has a winning strategy in GpRpx1Q1

, . . . , xnQn
q,Mq.

I have not enough space here, but the full proof is a straightforward conse-
quence of the observations in the above discussion.

2 Games for Independence-Friendly Logic

Independence-Friendly Logic (IFL), first presented by Hintikka and Sandu (1989)
following previous work by Hintikka, introduces a kind of language featuring inde-
pendence phenomena among quantifiers. As we have seen, quantifiers in FOL were
linearly ordered, i.e. they were automatically dependent on every quantifier pre-
ceding them in the formula, and independent on those succeeding them. Starting
from that, Hintikka and Sandu introduced a language extending FOL through a new
slash symbol which stands between some quantified variable Qv, with Q � t@, Du,
and a set of variables W, so that Qv{W counts as a well-formed string in IFL. The
standard Qv of FOL is then the special case where W � H 3. The intended mean-
ing of Qv{W is to the effect that Q is not in the semantic scope of the quantifiers
bounding the variables of W, even though it is in their syntactic scope.

Now the question was: How should we conceive a natural semantics for IFL?
GTS suited so beautifully the standard semantics of FOL, that one seemed to

take for granted that, in the absence of a standard semantics for IFL, the semantics
of IFL would be most naturally given by the same GTS. Hintikka’s more or less
tacit motivation for that was roughly the following: compositional semantics like
the standard Tarski-style semantics for FOL seemed unavailable for IFL, and since
GTS was not compositional (on the issue of compositionality, cf. Hintikka 1996,
Hodges 1997, Sandu and Hintikka 2001), it could conveniently fill in the gap: GTS
was an alternative semantics for FOL equivalent to the Tarski-style semantics; now
this latter is unavailable for IFL, but GTS is still here to save our semantical lives.

Indeed, since GTS describes games, we can still make sense of the slash opera-
tor by simply stating that it imposes a restriction on players’ strategies. The game is
the same as before, with every quantifier being associated with a choice-point; but
now the strategy of the "slashed player" associated with Qv{W becomes restricted
in the following way: his or her choice must be made independent on every choice

3We usually require that v R W, and that every v1 P W be bounded by some quantifier preceding
Q in the formula.
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associated with the "slashed variables" of W —in the case where W � H, we
obtain the standard unrestricted strategies.

This was then just too natural not to answer the above stated question. The
semantics of IFL is simply GTS, with no amendment.

There is no justification at all, in no single piece of the literature, for the literal
transposition of GTS into IFL. Of course, the insinuating movement sketched in
the last paragraph leading from GTS for FOL to GTS for IFL can by no means
stand for a sufficiently convincing argument; at best, it suggests a highly attractive
option. But then, the answer to the question should be: GTS is a possible semantics
for IFL. To begin with, there is no such thing as the semantics for some language,
for every semantical system is a particular among other possibilities of interpreting
the syntax of that language. Moreover, the fact that GTS is a possible semantics
for IFL does not mean by itself and without any further argumentation, that GTS
is the most suitable semantics for IFL. However, the two aspects are presupposed
throughout the literature on the topic (actually, the second is presupposed in such
a thorough way that the first is simply overlooked). In every exposition of IFL you
will find a variation of the following theme: That is how GTS works; it is arguably
equivalent to the standard semantics of FOL; here is the language of IFL, which
extends FOL; GTS is the semantics of IFL.

The question I want to ask is: Why is that so? On which grounds are we to
justify the literal transposition of GTS into IFL? It is too fundamental a question
for us to simply skip it. And however astonishing it may seem now, it was skipped
from the very beginnings of IFL.

2.1 Game-Theoretical Semantics for Independence-Friendly Logic

As we have just seen, GTS carries over to IFL without any modification. Pursuing
our rephrasing of GTS in terms of choice-point games to the case of IFL, we obtain
games like the two choice-point game GpRpx1

A, y
2
Eq,Mq of the last section. The

difference is that now the conditions imposed on the players for always winning the
game may be distinct, according to the amount of information about the previous
moves of the game they possess at the moment of their respective choices.

Suppose for example that we want to impose on Eloise the condition that her
choice be made without knowing which element was picked by Abelard. Both
strategies, Eloise’s and Abelard’s, must now take into account this new fact, just as
they both took into account the fact that in the game played in FOL, Eloise’s choice
was made with her acceding to the information about the choice previously made
by Abelard.

Thus Abelard’s goal is now to provide some a for x such that for all elements
possibly chosen for y independently on the choice of x, we have pa, yq R RM; and
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Eloise’s is to choose some constant b independently on the choice of x, such that for
all elements possibly chosen for x, we have px, bq P RM. This can now be formally
stated in the language of IFL, as we did for FOL through (1) and (2). Abelard now
wants to show —we write "{v" instead of "{tvu" for clearness of notation—:

ϕ{ � Dxp@y{xq  Rpx, yq; (4)

while Eloise wants to show:

ϕ1{ � @xpDy{xq Rpx, yq. (5)

Therefore, the condition imposed on Eloise’s strategies is not only to the effect
that these latter must be winning for her as it was the case before, but that they be
uniformly winning with respect to possible choices by Abelard. Following Hodges
(1997), we will say that slash operators trigger uniformly winning conditions on
the players.

As before, we obtain the following truth conditions for ϕ{ and ϕ1
{
:

ϕ{ is True in M iff Abelard has a uniform winning strategy in GpRpx1
A, y

2
Eq,Mq ;

ϕ1{ is True in M iff Eloise has a uniform winning strategy in GpRpx1
A, y

2
Eq,Mq.

(6)

Now the same kind of move is needed in order for us to obtain Hintikka’s GTS
clauses for truth and falsity of, say, ϕ1

{
. We need to turn ϕ{’s truth condition into a

falsity condition for ϕ1
{
, so that we can say that ϕ1

{
is true in M if and only if Eloise

has a uniform winning strategy in GpRpx1
A, y

2
Eq,Mq; and that ϕ1 is false in M if and

only if Abelard has a uniform winning strategy in GpRpx1
A, y

2
Eq,Mq.

But again, there is no intrinsic fact of GTS which allows us to conclude that
 ϕ1

{
Ø ϕ{. Worst, we have no longer the standard semantics of FOL on which

we could possibly rely. Yet, Hintikka tacitly takes it for granted, without any real
justification. Let us not take it for granted, and see whether Hintikka’s move was,
if not explicitly justified, eventually justifiable.

Since we cannot rely on the standard semantics of FOL any longer, let us ask
ourselves what the source of the equivalence  ϕ1 Ø ϕ is in FOL. The source
is of course the semantical clauses for universal and existential quantifiers, and
negation. Those clauses in turn derive from the intended meanings of the respective
syntactical elements. If it is false that every man is mortal, then it is true that there
exists a man such that he is not mortal, and conversely.

It seems then that in order to be sure that GTS is the most natural semantics
for IFL, we have to look at the intended meanings of slashed quantifiers. Consider
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the expression "there is some x chosen independently on W [i.e. on the choices
for the variables belonging to W] such that . . . ", which is the intended meaning of
Dx{W. What would be the intended negation of Dx{W? That is, what is the intended
meaning of the expression "it is not the case that there is some x independent on W
such that . . . "?

It seems fairly clear that to give some element for x independently on previous
choices for W is the same as providing some element which suits every possible
choice for W. The negation of this is then: "For all x, there is some W [i.e. some
set of choices for the variables of W] such that it is not the case that . . . ", for this
expression just denies the fact that there is some good choice of x independently
on the choice of W. We then obtain equivalences between  Dx{W,  Dx@W, and
@xDW (where DW and @W have the obvious meaning).

Hintikka argues, however, that @xpDy{xqRpx, yq is not equivalent to Dy@xRpx, yq.
If he is right, this is to my view a strong argument against the fact that (6) gives
falsity conditions to @xpDy{xqRpx, yq. If we do not have any evidence to that effect
within FOL, and if it goes against the intended meaning of the slash operator, I do
not see any further reason in ascribing to Dxp@y{xq  Rpx, yq the falsity condition
of @xpDy{xqRpx, yq. But then, since falsity in GTS is defined precisely in terms
of Abelard having a (uniform) winning strategy in the underlying game, then it
follows that GTS does not suit IFL.

The only way out would be to reject that the intended meaning of choosing x
independently on y is to make a choice for x such that it suits every choice for y,
that is, to find some x such that for all y etc. It seems to me it would be the hardest,
not to say impossible, way back to GTS.

Of course, Hintikka did not fail to see the evident close relationship between
@xpDy{xq and Dy@x. It seems to me that his failure was to take the one-way street in
the wrong direction. In presupposing that GTS falsity conditions applied literally to
IFL, he was able to reject the equivalence (he just did not need it) between @xpDy{xq
and Dy@x without much harm (though not without arguments 4). However, it was
precisely that literal transposition of GTS which was in need of justification, and if
justification were to be found in the intended meanings of IFL, as it is always the
case when one builds up a semantic system for a language, then it would turn out
that GTS clause for falsity conditions is inadequate for IFL.

4As we know, the argument is that the two formulas have equivalent truth conditions, but not
equivalent falsity conditions. But this depends on already defined falsity conditions, which are of
course provided by GTS, bringing us back to our initial concerns. The point is that we may well
have cases in which neither Abelard nor Eloise have a uniform winning strategy in the game, but
as is made explicit by (6), this just means, without the unjustified presupposition of GTS, that two
different formulas are not true in the underlying structure, and not that the same formula is neither
true nor false in the structure.
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Limitation of space prevents me of carrying through here a fully and explicitly
development of an alternative "intended semantics" for IFL, which I believe is the
most natural one. But let me draw some final opportune remarks and hint at some
future directions.

First, if @xpDy{xq is to be the same thing as Dy@x, one could think at first glance
that IFL is merely a complicated typography for FOL. This is not so. I am arguing
that GTS is not the right semantics for IFL, but this latter is still a legitimate exten-
sion of FOL. In the particular cases —as the one we were dealing with so far— in
which we have a simple independence pattern, IFL nails down to FOL. However,
in more complex cases like the double independence pattern in @x@ypDu{xqpDv{yq,
it is a well-known fact (which the reader can easily verify) that we cannot eliminate
all slashes. Thus in general, not every formula of IFL is expressible in FOL.

GTS is for sure a possible interpretation of IFL, which in addition brings logic
closer to some game-theoretical notions and some well-known games like the so-
called Matching Pennies game. But the mere fact that GTS and IFL fit some aspects
of game theory is not to say that they fit language. We cannot let the game metaphor
take over. Hintikka’s procedure was to use an adequate metaphor for the semantics
of FOL, and then crudely apply the metaphor to IFL, as if metaphor were more
important than semantics. As it happened, the metaphor did fit language in the
case of FOL, but it did not in the case of IFL. This is not to say, though, that game
theory is not useful to the understanding of language; but if it is, it is not the way
GTS as applied to IFL pretended it was.

Notice further that the rule of quantifier negation in IFL according to GTS is
just the same as that of standard FOL: we just invert the quantifier and move the
negation symbol inwards the formula, while the slash operator and the slashed set
are kept frozen (e.g.  Dv{W becomes @v{W ). Everything was affected by mov-
ing the negation into the formula, except for the slash and its slashed set. Who told
us that the slash-restriction must be left untouched, and not be switched elsewhere
in the formula 5? We are changing the nature of the quantifiers! we should at least
ask ourselves whether FOL quantifier rules really should be directly transposed
into IFL. And perhaps they could. But I think they do not. The only underlying
"motivation" for such a move, is to make metaphor take over semantics.

As a matter of fact, I think we can still keep the players metaphor in IFL. To
do that, we must define game semantics effectively over quantified sentences, and
not over their matrices. The line of reasoning is the following: what Abelard wants
to falsify in a game over @xpDy{xqRpx, yq is not the matrix Rpx, yq for all possible
movements associated with Eloise’s choice-point, but rather @xpDy{xqRpx, yq tout
court. Then his condition for winning the game is that he can provide some x

5As I believe it will in a correct semantics for IFL; see below.
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such that  pDy{xqRpx, yq holds. Following the intended meaning of the slash op-
erator, this means that he must find some x such that it is not the case that Eloise
can find some y independently on the choice of x, such that Rpx, yq holds in the
relevant structure. But the fact that Eloise cannot find any y independent on x
means that for all y, there exists some x such that Rpx, yq is false, or to state it
more briefly, Abelard’s condition is: @yDx Rpx, yq. But finally, this is quite dif-
ferent from Abelard’s previous condition of uniformly winning the GTS game, i.e.
Dxp@y{xq Rpx, yq. The upshot is that the verifier and the falsifier of GTS games
aim at verifying or falsifying the matrix of a quantified formula for every possible
outcome of the choice-point game, whereas the right move is to simply verify or
falsify the quantified formula. In FOL, the two methods are equivalent: to falsify
@xDyRpx, yq is to provide some x such that there exists no y such that Rpx, yq holds,
that is, some x such that @y Rpx, yq holds. But this is the same thing as providing
some x such that the matrix Rpx, yq fails to hold in connection with every possible
choice of y. However, in IFL the two methods give two different falsity conditions.

Actually, the deep negation of @xpDx{yqRpx, yq would be explicitly given by
@ypDx{Hq Rpx, yq, which in our particular example boils down to a FOL formula.
However, in the general case falsity conditions will give IFL formulas which are not
expressible in FOL. For instance, the negation of @x@ypDu{xqpDv{yqRpx, yq would
be given by @u@vpDx{vqpDy{uq Rpx, yq —slashes and slashed sets also move as
negation gets into the formula. Moreover, I believe that a compositional seman-
tics can be supplied managing a modification in syntactic notation. By way of a
hint, if we note p@Y

Xqv to mean that the variables in X are independent on v, and
the variables of Y are dependent on v, then we can write the negation  p@Y

Xqv as
pDX

Y qv , where pDX
Y qv means that v is independent on Y and dependent on X, in-

verting thereby not only the quantifiers as in FOL and in GTS-IFL, but also the
dependence-independence patterns. Again, a topic to be continued.

Under its natural semantics, IFL would arguably present a rather well-behaved
two-valued 6 compositional semantics. And since the lack of these two properties
was according to Hintikka what mostly provided IFL with all of its other revolu-
tionary features, it seems that classical results like Tarski’s undefinability of truth
and semantical completeness are still hovering around IFL.

In my opinion, IFL with its natural semantics is just an extension of FOL with
a new kind of quantifier, just as any extension of FOL with other non-classical
(e.g. generalized) quantifiers non-expressible in FOL. Its correct game-theoretical
interpretation is in turn a correct extension of the application of a metaphor.

6The reader may already verify that for the formulas given above, Abelard wins if and only if
Eloise looses, for every game with respect to any structure.
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