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Abstract

We argue that the defining beliefs of both the Hilbertian and the Brouwe-
rian perspectives of classical logic have fatal vulnerabilities—due to their
uncritical acceptance in the first case, and their uncritical denial in the
second, of Aristotle’s particularisation. This is the postulation that an ex-
istentially quantified formula—such as ‘[(∃x)P (x)]’—of a first order lan-
guage S can be assumed to always interpret as the proposition, ‘There
exists some s in the domain D of the interpretation such that P ∗(s) holds
in D’, without inviting inconsistency. We show that if the first order
Peano Arithmetic PA is consistent, then the postulation is false. How-
ever, we cannot conclude from this that the Law of the Excluded Middle,
too, is false.

1 Introduction

Paul J. Cohen’s proof of the independence of the Axiom of Choice raises an inter-
esting philosophical issue. Cohen’s argument—in common with the arguments
of many important theorems in standard texts on the foundations of mathe-
matics and logic—appeals to a putative object when interpreting the existential
axioms of ZF (or statements about ZF ordinals)1:

“When we try to construct a model for a collection of sentences, each
time we encounter a statement of the form (∃x)B(x) we must invent
a symbol x and adjoin the statement B(x). . . . when faced with
(∃x)B(x), we should choose to have it false, unless we have already
invented a symbol x for which we have strong reason to insist that
B(x) be true.”

Two questions arises:

Query 1 Can we always introduce a symbol x into a formal language—
in Cohen’s sense—for which we can insist that B(x) is true under
an interpretation without inviting inconsistency?

1[Co66], p.19.
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Query 2 If so, what are the necessary and sufficient conditions that
would always permit the introduction of a symbol x into a formal
language—in Cohen’s sense—for which we can insist that B(x) is
true under an interpretation without inviting inconsistency?

We note that Query 1 essentially questions the introduction of Cantor’s first
transfinite ordinal ω into the formal language of Set Theory, purely on the
debatable basis that we can ‘insist’ upon the self-evident nature of the existential
Axiom of Infinity2.

The question highlights the persisting difference between what are commonly
perceived as the Classical (implicitly Platonic, Hilbertian) and Intuitionist (ex-
plicitly constructive, Brouwerian) perspectives of those first order languages
that appeal formally to the standard first order predicate calculus.

The difference has so far eluded a satisfactory consensus. Thus, Intuitionist
systems not only do not subscribe to the Classical belief that Query 1 can be
answered in the affirmative without inviting contradiction, but go further in
denying legitimacy to standard first order classical logic itself by denying the
Law of the Excluded Middle3; whereas, from a Classical perspective, Query 2
appears meaningful.

1.1 The significance of Aristotle’s particularisation for the
Classical (Hilbertian) perspective of the standard first
order predicate calculus

A formal approach to Query 2 was offered by David Hilbert in a 1925 address4.
He showed that the axiomatisation Lε of classical Aristotlean predicate logic
proposed by him as a first order ε-predicate calculus—in which he used a prim-
itive choice-function symbol, ‘ε’, for defining the quantifiers ‘∀’ and ‘∃’—would
adequately express, and yield under a sound interpretation, Aristotle’s logic of
predicates5 if the ε-function was interpreted so as to yield an unspecified object
(as required by arguments such as Cohen’s)6.

• Soundness: We define an interpretation of a formal language S as sound if, and only
if, the axioms of S are true under the interpretation and the rules of inference preserve
such truth.

However, whilst conventional wisdom refrains from appealing to Hilbert’s ε-
predicate calculus formally7, it does reflect Hilbert’s intent by implicitly ac-
cepting that Query 2 is meaningful and—equally implicitly—holding that the
concepts of semantic truth and syntactic provability are bound in first order
languages—at the very least—by the following thesis.

• Notation: We use square brackets to indicate that the contents represent a symbol or
a formula—of a formal theory—generally assumed to be well-formed unless otherwise

2[Me64], Axiom I, p.169.
3Which is a Theorem of classical first order logic.
4[Hi25], pp.382-383.
5Which subsumes Aristotle’s particularisation.
6[Hi27], pp.465-466.
7Even though Query 1 would necessarily be answered in the affirmative under any sound

interpretation of a formal language that appeals to the ε-calculus.
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indicated by the context.8 We use an asterisk to indicate that the associated expression
is to be interpreted semantically with respect to some well-defined interpretation.

Meta-thesis 1 (Aristotle’s particularisation) If the formula [(∃x)
F (x)] of a first order language S interprets as true under a sound
interpretation of S, then we may always conclude that there must be
some object s in the domain D of the interpretation such that, if the
formula [F (x)] interprets as the unary relation F ∗(x) in D, then the
proposition F ∗(s) is true under the interpretation.

In this investigation we shall show that Aristotle’s particularisation is false;
hence Query 1 cannot be answered in the affirmative.

1.2 The significance of Aristotle’s particularisation for the
Brouwerian perspective of first order predicate calcu-
lus

We begin by noting that, in a first order language, the formula ‘[(∃x)P (x)]’ is
an abbreviation for the formula ‘[¬(∀x)¬P (x)]’9.

The commonly accepted interpretation of this formula appeals—generally tac-
itly, but sometimes explicitly10—to Aristotle’s particularisation. This is a fun-
damental tenet of the Hilbertian perspective of classical logic; and one which
continues to be unrestrictedly adopted as intuitively obvious by standard liter-
ature11 that seeks to build upon the first order predicate calculus.

However, L. E. J. Brouwer had noted in his seminal 1908 paper12—on the
unreliability of some prevailing logical principles—that the commonly accepted
interpretation of this formula is ambiguous if interpretation is intended over an
infinite domain.

Brouwer’s argument was essentially that13, even supposing the formula ‘[P (x)]’
of a formal Arithmetical language interprets as an arithmetical relation that is
denoted in the interpretation by ‘P ∗(x)’, and the formula ‘[¬(∀x)¬P (x)]’ as the
arithmetical proposition denoted by ‘¬(∀x)¬P ∗(x)’, the formula ‘[(∃x)P (x)]’
cannot be assumed to always interpret as the arithmetical proposition ‘There
exists some object a in the domain of the interpretation such that P ∗(a)’, which
is denoted by the usual abbreviation ‘(∃x)P ∗(x)’.

Brouwer held that such postulation is invalid as a general logical principle in the
absence of a finitary means for constructing some putative object a for which
the proposition P ∗(a) holds in the domain of the interpretation.

8In other words, expressions inside the square brackets are to be only viewed syntactically
as juxtaposition of symbols that are to be formed and manipulated upon strictly in accordance
with specific rules for such formation and manipulation—in the manner of a mechanical or
electronic device—without any regards to what the symbolism might represent semantically
under an interpretation that gives them meaning.

9[Me64], p.47.
10e.g., [Me64], para (ii), p.52.
11e.g., [Hi25], p.382; [HA28], p.48; [Sk28], p.515; [Go31], p.32.; [Kl52], p.169; [Ro53], p.90;

[BF58], p.46; [Be59], pp.178 & 218; [Su60], p.3; [Wa63], p.314-315; [Qu63], pp.12-13; [Kn63],
p.60; [Co66], p.4; [Me64], p.52(ii); [Nv64], p.92; [Li64], p.33; [Sh67], p.13; [Da82], p.xxv;
[Rg87], p.xvii; [EC89], p.174; [Mu91]; [Sm92], p.18, Ex.3; [BBJ03], p.102.

12[Br08].
13cf. [Me64], p.4-5.
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Since we shall show that Aristotle’s particularisation is false, Brouwer’s objec-
tion is valid.

However, although we could validly argue that if Aristotle’s particularisation
is true then any first order system that appeals to the standard first order
predicate calculus must have a sound interpretation in which the Law of the
Excluded Middle holds, the falsity of Aristotle’s particularisation would not
justify Brouwer’s further rejection of the Law of the Excluded Middle14 as a
necessary condition for the consistency of such first order systems.

We shall hold the view, rather, that a first order system which appeals to the
standard first order predicate calculus can be consistent15 even if Aristotle’s
particularisation is false.

1.3 Semantic truth and syntactic ω-consistency

Now, in order to avoid appealing to the semantic concept of classical arithmetical
truth under an interpretation16, Kurt Gödel explicitly introduced the syntactic
property of ω-consistency as a putative ‘weaker’ assumption in his seminal 1931
paper on formally undecidable arithmetical propositions17.

Definition 1 (ω-consistency) A first order language S is ω-consistent
if, and only if, there is no S-formula [F (x)] such that:

(i) [¬(∀x)F (x)] is S-provable;

(ii) [F (a)] is S-provable for any given S-term [a].

Gödel’s introductory remarks18 suggest that his intent was to substitute the
semantic assumption of the truth of provable arithmetic formulas under an
interpretation—in a classical logic which appeals to Aristotle’s particularisation—
by what he believed to be “a purely formal and much weaker assumption” of
ω-consistency; introduction of which, presumably, would not invite inconsis-
tency in any formal reasoning that appeals only syntactically to consistent sets
of formulas of systems that subsume the axioms of the first order predicate
calculus.

However, we note that Gödel’s remarks19 suggest that Gödel simultaneously
embraced Aristotle’s particularisation, since he implicitly appealed to Aristotle’s
particularisation in his reasoning when needed20.

Now, although we could validly argue that if Aristotle’s particularisation is true,
then any first order system that appeals to the standard first order predicate
calculus must be ω-consistent, the falsity of Aristotle’s particularisation would
suggest a need to justify afresh the assumption that a first order Peano Arith-
metic can be ω-consistent21.

14Which, when expressed formally, is a Theorem of classical first order predicate calculus.
15cf. [An12].
16Which is based on an intuitionistically objectionable logic that implicitly embraces Aris-

totle’s particularisation.
17[Go31].
18On p.9 of [Go31].
19In his statement of Theorem IX and in his footnote #55 on p.32 of [Go31].
20[Go31], Theorem VII, p.29; Theorem X, p.34; Theorem XI, footnote 63, p.36.
21As required for Gödel’s Theorems VI and XI in [Go31] to be mathematically significant.
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We therefore now examine whether ω-consistency can—as intended by Gödel22—
be accepted as “a purely formal and much weaker assumption” than the seman-
tic assumption of the truth of provable arithmetical formulas under an interpre-
tation (in a classical logic) which appeals to Aristotle’s particularisation.

1.4 The significance of Aristotle’s particularisation for the
first order Peano Arithmetic PA

We note first that23:

Lemma 1 If PA were to have two sound interpretations over two
denumerable domains under the assumption of Aristotle’s particu-
larisation, then the two interpretations would be isomorphic.

Proof : Let [G(x)] denote the PA-formula24:

[x = 0 ∨ (∃y)(x = y′)]

If we assume Aristotle’s particularisation, then this translates under
every sound interpretation of PA as:

If x denotes an element in the domain of a sound inter-
pretation of PA, either x is 0, or x is a ‘successor’.

Further, in every such interpretation of PA, if G∗(x) denotes the
interpretation of [G(x)], then:

(a) G∗(0) is true;

(b) If G∗(x) is true, then G∗(x′) is true.

Hence, by Gödel’s completeness theorem:

(c) PA proves [G(0)];

(d) PA proves [G(x) → G(x′)].

• Gödel’s Completeness Theorem25: In any first-order predicate
calculus, the theorems are precisely the logically valid well-
formed formulas (i. e. those that are true in every model of
the calculus).

Further, by Generalisation:

(e) PA proves [(∀x)(G(x) → G(x′))];

• Generalisation in PA26: [(∀x)A] follows from [A].

22We note that although [An12] gives a finitary proof of consistency for PA that does not
depend on the truth or falsity of Aristotle’s particularisation, it also echoes Gödel’s belief and
naively claims—without proof—that “It is straightforward to show that the two concepts are
meta-mathematically equivalent in the sense that, if PA is consistent, then PA is ω-consistent
if, and only if, Aristotle’s particularisation holds under the standard interpretation of PA over
N”. The proof is not straightforward.

23cf. [Me64], Proposition 2.33, p.90.
24Where [n′] denotes the ‘successor’ of the numeral [n].
25[Me64], Corollary 2.14, p.68.
26[Me64], p.57.
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Hence, by Induction:

(f) [(∀x)G(x)] is provable in PA.

• Induction Axiom of PA27: For any formula [F (x)] of PA:

[F (0)→ ((∀x)(F (x)→ F (x′))→ (∀x)F (x))]

In other words, except 0, every element in the domain of any sound
interpretation of PA is a ‘successor’. Further, x can only be a ‘suc-
cessor’ of a unique element in any such interpretation of PA.

It follows that28:

(i) Every element in the domain of any sound interpreta-
tion of PA is either a ‘non-successor’ or a ‘successor’;

(ii) There can only be a unique ‘non-successor’ in the do-
main of any sound interpretation of PA;

(iii) Each ‘successor’ has a unique ‘predecessor’ in the do-
main of any sound interpretation of PA.

Hence if PA has two sound interpretations over two denumerable
domains, then the two interpretations would be isomorphic since
they have the same structure29; i.e., the axioms and rules of infer-
ence would be common, and we would have the 1-1 correspondence
between the members of the two domains:

unique non-successor ↔ unique non-successor

successor ↔ successor.

The lemma follows. 2

2 If PA is consistent then Aristotle’s particular-
isation is false

We note next that:

Lemma 2 If the first order Peano Arithmetic PA is consistent but
not ω-consistent, then Aristotle’s particularisation is false. 2

Proof : If PA is consistent, it has a sound interpretation IPA(N, Sound)

over the domain N of the natural numbers. Further, if PA is not
ω-consistent, there is some PA-formula [R(x)] such that:

(i) [¬(∀x)R(x)] is PA-provable, and therefore true in N
under IPA(N, Sound);

(ii) For any numeral [n] of PA, the formula [R(n)] is PA-
provable, and therefore true in N under IPA(N, Sound).

27[Me64], p.103 (S9).
28cf. [An08], p.7-8.
29cf. [Me64], p.90.
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Hence Aristotle’s particularisation is false. The Lemma follows. 2

We note further that:

Lemma 3 If PA is consistent and ω-consistent, then Aristotle’s
particularisation is false. 2

Proof : By Gödel’s reasoning30, if PA is ω-consistent then there is
a formula [R(x)] such that both [(∀x)R(x)] and [¬(∀x)R(x)] are not
provable in PA, but [R(n)] is provable for any numeral [n] of PA.

• In his paper Gödel introduces—and thereafter refers to—the corresponding
formula in his system P of Peano Arithmetic only by its Gödel number
‘r’31.

Hence the formal system PA+ obtained by adjoining [¬(∀x)R(x)] as
an axiom to the axioms of PA is consistent, but not ω-consistent32.

By the (downward) Löwenheim-Skolem Theorem, PA+ has a sound
interpretation IPA+(D, Sound) over a denumerable domain D. Ipso
facto IPA+(D, Sound) is also a sound interpretation of PA.

• (Downwards) Löwenheim-Skolem Theorem33: If a first-order proposition
is satisfied in any domain at all, then it is already satisfied in a denumerably
infinite domain.

Now, if we assume that Aristotle’s particularisation is true then, by
Lemma 1, the denumerable numerals of PA would correspond 1-1 to
the denumerable members of the domain D under the interpretation
IPA+(D, Sound).

This would imply that [¬(∀x)R(x)] is true in D under IPA+(D, Sound)

whilst, for any numeral [n], the formula [R(n)] always interprets as
true in D under IPA+(D, Sound). Since there is a 1-1 correspondence
between the PA+ numerals and the members of the domain D, this
contradicts the assumption that Aristotle’s particularisation is true.

Hence Aristotle’s particularisation is false if PA is consistent and
ω-consistent. 2

Lemmas 2 and 3 immediately yield that:

Theorem 1 If PA is consistent then Aristotle’s particularisation is
false. 2

30In [Go31].
31[Go31], eqn. (12), p.25.
32[Go31], p.27.
33[Lo15], p.245, Theorem 6; [Sk22], p.293; [Me64], Corollary 2.16, p.69.
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2.1 Is PA consistent?

The question arises: Is PA consistent?

We note that the question is addressed by the following arguments:

(i) PA is consistent since the standard interpretation of PA34 is
intuitively acceptable as sound;

Under the standard interpretation of PA, an existentially quantified PA for-
mula such as ‘[(∃x)P (x)]’ is assumed35 to always interpret as the arithmetical
proposition ‘There exists some natural number n such that P ∗(n) holds in N ’.

(ii) PA is consistent since transfinite induction in Gerhard Gentzen’s
proof36 is intuitively acceptable as logically valid.

The accepted interpretation of the Axiom of Infinity of ZF appeals implicitly to
Aristotle’s particularisation. Transfinite induction appeals to the the accepted
interpretation of the Axiom of Infinity for the existence of transfinite ordinals
below ε037.

(iii) PA is consistent since it has a sound algorithmic interpretation
over N38.

This is a finitary proof of consistency for PA that does not appeal to Aristotle’s
particularisation.

Although both (i) and (ii) are denied legitimacy by Theorem 1 since they appeal
critically to Aristotle’s particularisation, we conclude from (iii) and Theorem 1
that:

Theorem 2 Aristotle’s particularisation is false. 2

3 Conclusion

We have formally defined Aristotle’s particularisation, which is the postulation
that an existentially quantified formula of a first order language S, such as
‘[(∃x)P (x)]’, can be assumed to always interpret as the proposition, ‘There
exists some s in the domain D of the interpretation such that P ∗(s) holds in
D’, without inviting inconsistency.

We have then shown that:

(a) If PA is consistent but not ω-consistent, then Aristotle’s partic-
ularisation is false.

(b) If PA is consistent and ω-consistent, then Aristotle’s particular-
isation is false.

We concluded from the above and the finitary proof of consistency for PA39

that:

34[Me64], p.107.
35cf. [Me64], p.52(ii).
36cf. [Me64], p.258.
37cf. [Me64], p.270.
38[An12].
39In [An12].
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(c) Aristotle’s particularisation is false.

We leave for future consideration the query: Is PA ω-consistent?
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