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Actualizing Dugundji’s Theorem

Abstract

In 1940 Dugundji proved that no system between S1 and S5 can
be characterized by finite matrices. Dugundji’s result forced the de-
velopment of alternative semantics, in particular Kripke’s relational
semantic. The success of this semantics allowed the creation of a huge
family of modal systems. With few adaptations, this semantics can
characterize almost the totality of the modal systems developed in the
last five decades.

This semantics however has some limits. Two results of incomplete-
ness (for the systems KH and KVB)1 showed that not every modal
logic can be characterized by Kripke semantics. Besides, the creation
of non-classical modal logics puts the problem of characterization of
finite matrices very far away from the original scope of Dugundji’s
result.

In this sense, we will show how to actualize Dugundji’s result in
order to precise the scope and the limits of many-valued matrices as
semantic of modal systems.

1 Introduction
The birth of symbolic modal logic seems to have a date: in general it is
postulated2 that Lewis inaugurated in 1918 this large family of logics. Aiming
to create a new implication, the strict implication, the author proposes a
hierarchy of five systems: S1-S5.

Shortly thereafter, in 1920, Łukasiewickz presents a set of matrices for a
3-valued logic Ł3 in order to modelize the new modal concept of possibly
true.3. Thus, a question arises: is it possible that many-valued matrices
characterize the systems S1-S5?

This question was resolved by Dugundji twenty years later: it was shown
that not only Łukasiewickz’s matrices but no finite matrix can be a complete
semantic for any system between S1 and S5.

1Those results can be found in [2] and [6].
2According to [1], p. 38
3See [13].
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Although the theorem of Dugundji seemed to have given the final strike
to any modal logic characterized by finite matrices, it is not clear that the
argument holds for modal logics of which its propositional fragment is not
classical (such as implicative, positive, paraconsistent or paracomplete modal
logics).

Among all these fragments, perhaps one of the most interesting of them
was proposed by Henkin4 in 1949. Henkin’s system has only the implication
⊃ as operator, which preserves convenient properties such as the Deduc-
tion Metatheorem. We will see that the most part of modal systems whose
propositional fragment is between Henkin’s system and Propositional Clas-
sical Logic cannot be characterized by finite matrices.

There is also a large list of important modal systems based on Proposi-
tional Classical Logic that are also outside the scope of Dugundji’s result.
Among them it is worth mentioning: K, D, T, B, KGL, KVB, KH, S0.5,
and others.

What we demonstrate here5 is that the original result of Dugundji can
be extended in two different senses: by embracing many modal systems de-
veloped from forties until today, on the one hand, and by considering some
modal logics whose propositional fragment is not classical, on the other.

2 Axiomatics
Consider the following schemes of axioms and rules of inference, where α and
β are variables ranging over formulas:

(A1) α ⊃ (β ⊃ α)

(A2) (α ⊃ β) ⊃ ((α ⊃ (β ⊃ γ)) ⊃ (α ⊃ γ))

(A3) (α ⊃ γ) ⊃ (((α ⊃ β) ⊃ γ) ⊃ γ)

(A4) α ⊃ (β ⊃ (α ∧ β))

(A5) (α ∧ β) ⊃ α

(A6) (α ∧ β) ⊃ β

(A7) (¬α ⊃ ¬β) ⊃ ((¬α ⊃ β) ⊃ α)

(K) �(α ⊃ β) ⊃ (�α ⊃ �β)
4In [10]
5Although it was considered the original Dugundji’s article [8], we preferred to follow

the clearer proof of it given in [5].
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(T) �α ⊃ α

(4) �α ⊃ ��α

(5) ♦α ⊃ �♦α

(GL) �(� ⊃ α) ⊃ �α

(Lem0) �((α ∧�α) ⊃ β) ∨�((β ∧�β) ⊃ α)

(MP) if ` α and ` α ⊃ β then ` β

(N) if ` α then ` �α

(N’) if ` α and α is a PC⊃-tautology, then ` �α

(N*) if ` α ⊃ β then ` �α ⊃ �β

Definition 2.1

(i) PC⊃ = {(A1), (A2), (A3), (MP)}

(i) PC⊃,∧ = PC⊃ ∪ {(A4),(A5),(A6)}

(iii) PC = PC⊃ ∪ {(A7)}

(iv) S0.50,⊃= PC⊃ ∪ {(K),(N’)}

(v) C20,⊃= PC⊃ ∪ {(K),(N*)}6

(vi) K⊃= PC⊃ ∪ {(K),(N)}

(vii) K⊃,∧= K⊃ ∪ {(A3)}

(viii) K4.3W = K ∪ {(4), (GL), (Lem0)}

(ix) S5= PC ∪ {(K),(T),(4),(5),(N)}

Consider, now, the following definition:

α ∨ β ≡PC⊃ (α ⊃ β) ⊃ β

6The systems S0.5 and C2 were considered by Lemmon in [12] and [11] as being
modally minimal. S0.50 is obtained by removing the axiom (T) from S0.5, check [7] p.
207. Following the same notation, it will be used C20 to mean the exclusion of (T) in
C2. As the reader may have noticed, the notation ⊃ and ⊃,∧ means that we are in the
propositional context of PC⊃ and PC⊃,∧, respectively.
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Theorem 2.2

(i) `PC⊃ α ⊃ α

(ii) `PC⊃ α ⊃ (α ∨ β)

(iii) `PC⊃ α ⊃ (β ∨ α)

(iv) `PC⊃,∧ α ⊃ (α ∧ α)

Proof: See [4], p. 27-28 and p. 30-31. �

Will will prove that any modal logic between S0.50 and S5 or between
C20 and S5 whose propositional fragment is between PC⊃ and PC cannot
be characterized by finite matrices. Then, we will show the same for systems
betweenK and K4.3W whose propositional fragment is between PC⊃,∧ and
PC.

3 Generalizing Dugundji’s Theorem
Definition 3.1 A matrixM is a tripleM = 〈M,D,O〉 in which:

(i) M 6= ∅

(ii) D ⊆M is a set of distinguished values

(iii) O is a set of operations over M �

Definition 3.2 A matrixM characterizes a logical system S if all theorems
of S and only them receive distinguished values when S in interpreted inM.
A matrix M is a model of a logical system S if all theorems of S (but not
necessarily only them) receive distinguished values when S in interpreted in
M �

Definition 3.3 For each natural number n, the adapted Dugundji’s formula
D′n is defined in the following way:

D′n ≡def

∨
i 6=j

(pi � pj)

in which 1 ≤ i, j ≤ n+ 1 and pi � pj means �(pi ⊃ pj) ∨�(pj ⊃ pi). �

Proposition 3.4 Any finite matrix with n truth-values that is a model of
S0.50,⊃ validates D′n.
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Proof:
Suppose that there isM with n truth-values that characterizes S0.50,⊃,

and let v be a valuation over M. Since in D′n we have n truth-values for
n + 1 variables, there will be i 6= j such that the values assigned by v to pi
and pj coincide. Then, the values assigned by v to (pi � pi) and (pi � pj)
coincide. But, by Theorem 2.2 (i) and (N’) we have that �(pi ⊃ pi) is a
theorem of S0.50,⊃ and by Theorem 2.2 (ii), (pi � pi) is also a theorem,
and so it is valid inM. Then, the value assigned by v to (pi � pi) (and so,
to (pi � pj)) is distinguished. Therefore, by Theorem 2.2 (ii) the values
assigned by v to (pi � pj) ∨ α and α ∨ (pi � pj) are distinguished, for every
α, and so the valued assigned by v to the formula D′n is distinguished. This
shows that matrixM validates the formula D′n. �

Proposition 3.5 There is a infinite matrixM∞ that is a model of S5.

Proof: Define the following matrixM∞

• M = ℘(N), that is, the powerset of the set of natural numbers;

• D = {N};

• O = {∪,∩,−,O,M}, in which ∪,∩ and − are the usual set-theoretic
operations, while O and M are defined in the following way:

MX =

{
N if X = N
∅ otherwise

OX =

{
N if X 6= ∅
∅ otherwise

Consider valuations v over M as functions that assign to each formula of
S5 an element of ℘(N) in the following way (using the notation X for N\X):

• v(¬α) = v(α)

• v(α ⊃ β) = v(α) ∪ v(β)

• v(�α) = M(v(α))

• v(♦α) = O(v(α))
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It is enough to prove that all the theorems of S5 receive from any valua-
tion v the distinguished value N, and the inference rules preserve this value.
For the axioms of PC and (MP), it is a consequence of the algebraic com-
pleteness of PC. For the modal axioms:

(K) v(�(p→ q)→ (�p→ �q)) = M(v(p) ∪ v(q)) ∪ Mv(p) ∪ Mv(q)

– if v(p) 6= N, then Mv(p) = N
– if v(p) = N, then
∗ if v(q) = N, then Mv(q) = N

∗ if v(q) 6= N, then v(p) ∪ v(q) 6= N and M(v(p) ∪ v(q)) = N

(T) v(�p ⊃ p) = Mv(p) ∪ v(p)

– if v(p) = N, then Mv(p) ∪ v(p) = N
– if v(p) 6= N, then Mv(p) = N

(4) v(�p ⊃ ��p) = Mv(p) ∪ MMv(p)

– if v(p) = N, then Mv(p) = N and MMv(p) = N
– if v(p) 6= N, then Mv(p) = ∅ and Mv(p) = N

(5) v(♦p ⊃ �♦p) = Ov(p) ∪ MOv(p)

– if v(p) = ∅, then Ov(p) = ∅ and Ov(p) = N
– if v(p) 6= ∅, then Ov(p) = N and MOv(p) = N

Finally, for (N) note that if α is a theorem, then v(α) = N and Mv(α) = N.�

Theorem 3.6 No modal system S between S0.50 and S5 whose propositional
fragment is between PC⊃ and PC can be characterized by finite matrices.

Proof: Take the following valuation v of M∞: to each propositional
variable pk we associate the set {k} ⊂ N. Note that for two distinct p and
q, we have P 6= N and Q 6= N, where P and Q are the values assigned by v
to p and q, respectively. Additionally, we have P ∪ Q 6= N and Q ∪ P 6= N
and then:

v(p � q) = M(P ∪Q) ∪ M(Q ∪ P ) = ∅ ∪ ∅ = ∅

Therefore, the value assigned by v in the matrix M∞ to each adapted
Dugundji’s formula D′n is ∅. By Proposition 3.5, no D′n is a theorem of
S5.
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Now, by Proposition 3.4, if S could be characterized by a finite matrix,
then D′n would be a theorem of S and therefore a theorem of S5, an absurd.

�

Theorem 3.7 No modal system S between C20 and S5 whose propositional
fragment is between PC⊃ and PC can be characterized by a finite matrix.

Proof: Take another adapted Dugundji formula D∗n such that the only
difference with respect to D′n is that the formula pi � pj is now an abbrevi-
ation for �(pi ⊃ pi) ⊃ �(pj ⊃ pi). Suppose thatM is a finite matrix with
n truth-values that is a model of C20,⊃. Observe that, by the same reasons
presented in Proposition 3.4, for every valuation v overM there will be i 6= j
such that the values assigned by v to pi � pj and pi � pi will be the same.
By Theorem 2.2 (i) we have that pi � pi = �(pi ⊃ pi) ⊃ �(pi ⊃ pi) is a
theorem of C20,⊃ and so v assigns to it (and then, to pi � pj) a distinguished
value. Therefore, v assigns to (pi � pi) ∨ α and α ∨ (pi � pi) a distinguished
value, for every formula α. Then v assigns to the formula D∗n a distinguished
value. This means that D∗n is valid inM.

Consider again the matrixM∞ of Proposition 3.5 and the valuation v of
Proposition 3.6. In this way, we have:

v(p � q) = M(P ∪ P ) ∪ M(Q ∪ P ) = MN ∪ M(Q) = ∅ ∪ ∅ = ∅.

The rest of the proof is identical to that of Theorem 3.6. �

Definition 3.8 The original Dugundji formula is defined, for each natural
number n, as follows:

Dn ≡def

∨
i 6=j

(pi � pj)

in which 1 ≤ i, j ≤ n+ 1 and pi � pj means �(pi ⊃ pj) ∧�(pj ⊃ pi). �

Proposition 3.9 Any finite matrix of n truth-values that is a model of K∧,⊃
validates also the original Dugundji formula.

Proof: The argument is analogous to that of Proposition 3.4, using also
Theorem 2.2 (iv). �

Proposition 3.10 There is an infinite matrixM′
∞ that is a model ofK4.3W.

Proof: Define the following matrixM′
∞
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• M = ℘(N)

• D = {N}

• O = {∪,∩,−,�}, in which ∪,∩ and − are usual Boolean operations,
while we define �7 as:

�X =

{
N if X is cofinite
N− {∅} if X is finite

Consider valuations overM′
∞ as mappings v which assign an element of

℘(N) to each formula of K4.3W in the following way:

• v(¬α) = v(α);

• v(α→ β) = v(α) ∪ v(β);

• v(�α) = �(v(α)).

Let us see that every modal axiom is valid:

(K) v(�(p→ q)→ (�p→ �q)) = �(v(p) ∪ v(q)) ∪�v(p) ∪�v(q)

– if v(q) is cofinite, then �v(q) = N and v(K) = N
– if v(q) is finite, then �v(q) = N− {∅}
∗ if v(p) is cofinite, then v(p) is finite and v(p) ∪ v(q) is finite.

So, �(v(p) ∪ v(q))) = N and v(K) = N.
∗ if v(p) is finite, then �v(p) = N− {∅} and �v(p) = {∅}

So, �v(q) ∪�v(p) = N and v(K) = N

(4) v(�p→ ��p) = �v(p) ∪��v(p)

– if v(p) is cofinite, then �v(p) = N, ��v(p) = N and v(4) = N
– if v(p) is finite, then �v(p) = N− {∅} but �v(p) = {∅}

So, ��v(p) = N− {∅} and v(4) = N

(GL) v(�(�p→ p)→ �p) = �(�v(p) ∪ v(p)) ∪�v(p)

– if v(p) is cofinite, then �v(p) = N and V (GL) = N
7The function that calculates � was inspired in [15], as an example of a modal operator

of diagonalizable algebras.
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– if v(p) is finite, then �v(p) = N − {∅} and �v(p) = {∅}. Then
�v(p) ∪ v(p) is finite. So, �(�v(p) ∪ v(p)) = N − {∅}, that is,
�(�v(p) ∪ v(p)) = {∅} and v(GL) = N

(Lem0) v(�((p ∧ �p) → q) ∨ �((q ∧ �q) → p)) = �((v(p) ∩�v(p)) ∪ v(q)) ∪
�((v(q) ∩�v(q)) ∪ v(p))

– if v(p) is cofinite, then (v(q) ∩�v(q))∪v(p) is cofinite. So, �((v(q) ∩�v(q))∪
v(p)) = N an therefore v(Lem0) = N.

– if v(p) if finite

∗ if v(q) is cofinite, then (v(p) ∩�v(p)) ∪ v(q) is cofinite. So,
�((v(p) ∩�v(p)) ∪ v(q)) = N an therefore v(Lem0) = N.
∗ if v(q) is finite, then �v(q) = N− {∅} and v(q) ∩�v(q)

is finite. So (v(q) ∩�v(q)) ∪ v(p) is cofinite, and than
�((v(q) ∩�v(q)) ∪ v(p)) = N. Therefore v(Lem0) = N.

Finally, if v(p) = N, then v(p) is cofinite and �v(p) = N. So, M′
∞

preserves (Nec) and all the K4.3W axioms. �

Theorem 3.11 No system between K and K4.3W whose propositional frag-
ment is between PC∧,⊃ and PC can be characterized by finite matrices

Proof. Consider the Dugundji’s formula Dn. For each propositional vari-
able pi we associate the set

Xi = {x : x = n.k + (i− 1) for some k ∈ N}

for i > 0. Then, Xi ∪Xj = Xi and Xi is not cofinite. Besides, Xj ∪Xi = Xj

and Xj is not cofinite neither. Then,

�(Xi ∪Xj) ∩�(Xj ∪Xi) = �Xi ∩�Xj = {∅} ∩ {∅} = {∅}.

Therefore Dn takes the non-distinguished value N − {∅}. If there is an
n-valued matrixMn that characterizes K4.3W then by Proposition 3.9 Dn

would be a theorem, so by Proposition 3.10 Dn would receive the distin-
guished value N inM′

∞, an absurd. �
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4 Conclusion
We show in this paper that Dugundji’s Theorem can be generalized not only
to systems modal systens S1 - S5, but for almost any modal system known
which fragment is between Henkin’s implicative calculus and Propositional
Calculus.

A parallel result to Dugundji’s one was proven by Scroggs in 19518 show-
ing that all extension of S5 can be characterized by finite matrices. Scroggs’
theorem was generalized by L. Esakia and V. Meskhi,9 showing that there are
five extensions of S4 (among them,S5 itself) such that all of their extensions
can also be characterized by finite matrices.

Our result in this sense is parallel to the L. Esakia and V. Meskhi one,
updating an old result on finite matrices and modal logic.

We hope that our results together with the above mentioned can con-
tribute to the current resumption of multi-valued semantics for modal logic
that was marginalized after the incredible success of Kripke semantics.10
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