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1 Introduction

A number of arguments, including (Whittle 2004), (Field 2008), (Shapiro
2012), and (Beall & Murzi 2012), have been put forward for the claim that
logical validity is plagued by a paradox (or paradoxes) similar to the more
well-known paradoxes that afflict notions such as truth, knowledge, or set.
These claims are incorrect. As I will show here, there is no paradox of logical
validity. In addition, I will demonstrate that a recent argument (Ketland
2012) against the existence of a paradox of logical validity, although promot-
ing the right conclusion, nevertheless provides a partially mistaken picture
of what goes wrong in the arguments for the existence of such a paradox.
Further, and perhaps most importantly, this analysis of the purported para-
dox of logical validity brings with it important lessons regarding the kinds
of inferences that can be taken to be logically valid (versus, e.g., merely
truth-preserving).

There is general agreement amongst those who have put forward one or
another version of the paradox that the stakes are high. Of course, almost
no one in this group agrees on exactly what these high stakes are: Whittle
argues that the paradox shows that a dialethiest, such as (Priest 2002), will
need to appeal to a Tarski-like hierarchy of logical validity predicates; Field
uses the paradox to (among other things) suggest that validity does not
preserve truth; and Shapiro and Beall & Murzi argue (independently) that
the paradox forces us to give up the structural rule of contraction.1 Thus,
the conclusions drawn from the purported paradox of validity are varied, and
in the latter case, at least, the paradox is not the only evidence marshalled
for the conclusion in question. Thus, I will not attempt to examine any of
these further claims directly. Instead, I will be content to show that there
is no paradox of logical validity. As a result, whatever other arguments one
might have, this supposed paradox provides no additional support for the
views just listed.

1There are subtle differences between (Shapiro 2012)’s rejection of contraction and
(Beall & Murzi 2012)’s rejection of contraction, but these are irrelevant to the task at
hand.
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Before examining the purported paradox itself, it is worth clarifying ex-
actly what notion is, or notions are, at issue. The paradox of logical validity
(if there is such) is a paradox that arises via the mobilization, in some sense
or another, of a logical validity predicate – that is, a predicate that applies
to a premise and a conclusion (or to codes of, or other ‘representatives’ of,
that premise and that conclusion) if and only if the argument from premise
to conclusion is logically valid. Validity, strictly speaking, is thus a relation
holding of formulas within some logical calculus, but validity is intended to
capture the logical consequence relation in natural language. Hence, with
appropriate clauses in place regarding appropriate translations from formal
language to natural language2, the thought is that an premise/conclusion
pair in the formal language will be valid (and hence the validity predicate
will hold of that pair) if and only if the natural language translation of the
conclusion of the formal argument is a logical consequence of the natural
language translation of the premise of the formal argument.

Further, I take it that the notion of logical consequence in question is, at
least roughly, the notion identified by Tarski in his seminal work on logical
consequence:

Consider any class ∆ of sentences and a sentence Φ which follows
from the sentences of this class. From an intuitive standpoint it
can never happen that both the class ∆ consists only of true sen-
tences and the sentence Φ is false. Moreover, since we are con-
cerned here with the concept of logical, i.e. formal, consequence,
and thus with a relation which is to be uniquely determined by
the form of the sentences between which it holds. . . the conse-
quence relation cannot be affected by replacing the designations
of the objects referred to in these sentences by the designations
of any other objects. ((Tarski 1936): 414 – 415)

This notion can be (again, roughly) captured by the slogan that logical
consequence is necessary preservation of truth in virtue of logical form. Of
course, almost every notion involved in this slogan – necessity, truth, and
formality – is the subject of lively philosophical debate. Fortunately, for
our purposes here we require only a single, simple observation regarding the
nature of logical consequence.

Logical consequence in natural language, at least as understood by Tarski
(and, as we shall, following Tarski, understand it here), is formal. Thus,
logical validity in formal languages must be formal as well. The are numerous
competing precise characterizations of exactly what the formality of logical
validity amounts to – typically involving permutation invariance or similar
combinatorial notions – but nearly all agree that the formality of logical

2It is worth noting that these clauses are non-trivial, since the details will depend on,
among other things, how one draws the logical/non-logical vocabulary divide.
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validity entails that the validity relation must be closed under arbitrary
substitution of like expressions for like expressions. More carefully, if it is
to be formal, then logical validity must meet the following constraint:

Logical Substitutivity :

For any formulas Φ1, Φ2, primitive non-logical expres-
sion Ψ, and (possibly complex) expression Ω of the
same logical type as Ψ, if:

Φ1 ` Φ2

is a valid argument, then:

Φ1[Ψ/Ω] ` Φ2[Ψ/Ω]

is a valid argument.3

Of course, there are other validity notions that are of philosophical interest –
arithmetic validity, metaphysical validity, analytic validity, etc. – and these
notions need not satisfy the substitutivity requirement.4 Logical validity,
however, must be formal in some sense of formality that underwrites the
substitutivity requirement. As we shall see, the formality of logical validity
will provide an important piece of the story regarding why the purported
paradox of logical validity is no paradox at all.

2 The Beall-Murzi Validity Paradox

Along lines that will be familiar to anyone who has worked with formal
versions of other paradoxes involving semantic notions, such as the Liar,
Curry, or Yablo paradox, the paradox of logical validity arises when we ask
the following question: What happens when we add a validity predicate to
Peano Arithmetic (hereafter PA)?

Before answering this question, however, it is worth noting that the
puzzle can, and has, arisen due to asking a slightly different question: What
happens when we add a validity connective – that is, a connective that holds
between two sentences just in case the argument from the first to the second

3Φ[Ψ/Ω] is the result of uniformly replacing all occurrences of Ψ in Φ with Ω. Here
and below I represent the formal logical validity relation using the single turnstile “`”.
Since the definitions, arguments, models, etc. discussed below apply to classical first-order
logic (and classical first-order arithmetical theories), the completeness theorem guarantees
nothing critical (of a technical nature) hinges on whether we use “`” or the double turnstile
“|=”.

4Further (as I shall suggest in passing below), these notions might be susceptible to gen-
uine paradoxes similar in structure to the construction involving logical validity examined
here.
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is logically valid – to PA? This is the approach taken in (Whittle 2004)
and (Shapiro 2012). In order to construct a version of the paradox using a
validity connective, the language in question also needs to contain a truth
predicate – else it will not support the required fixed-point construction
necessary to carry out the proof to contradiction. Since this complicates the
presentation of the paradox, and since this method is equally susceptible
to versions of the criticisms developed below for the predicate version of
the paradox, I set aside discussion of the validity connective version of the
puzzle until §5 below.

Fleshing things out a bit more (and following the presentation in (Beall
& Murzi 2012) rather closely), what we are investigating is the behavior of a
predicate “V al(x, y)” that holds of the Gödel code <Φ> of Φ and the Gödel
code <Ψ> of Ψ (in that order) if and only if the argument whose sole premise
is Φ and whose conclusion is Ψ is logically valid.5 Of course, merely adding
such a predicate to the language of arithmetic causes no more problems
than merely adding a new predicate “T (x)” for truth does. Problems, or
at least apparent problems, do arise once we supplement the axioms and
rules of arithmetic with plausible rules for “V al(x, y)”. First, we have an
‘introduction rule’ for “V al(x, y)”:6

V S1 : For any formulas Φ and Ψ :

If : Φ ` Ψ

Then : ∅ ` V al(<Φ>,<Ψ>)

In short, V S1 codifies the natural thought that if we have a proof of Ψ from
Φ, then the argument with Φ as premise and Ψ as conclusion is valid. That
some version of V S1 holds of the validity predicate is obvious, although as
we shall see below, the correct formulation of this rule turns out to be more
subtle than it initially appears. Nevertheless, with introductions out of the
way, we also need something akin to an ‘elimination rule’ for “V al(x, y)”,
and this is provided by:

V S2 : For any formulas Φ and Ψ :

∅ ` V al(<Φ>,<Ψ>)→ (Φ→ Ψ)

In short, V S2 codifies the very natural (and very Tarskian) thought that
validity preserves truth.

5Of course, validity is, more generally, a relation that holds between a (possibly infinite)
set of premises and a single conclusion (or, sometimes, a set of conclusions as in the sequent
calculus). So long as the logic in question is compact, however, we can mimic the more
general notion by replacing a set of premises with the conjunction of (some finite subset
of) those premises (and, in the sequent calculus, a set of conclusions with the disjunction
of some subset of those conclusions).

6“V S1” stands for validity schema one, etc.
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These are not the only possible, or only plausible, rules for the validity
predicate. For example, if our task were to construct a powerful theory of
logical validity within PA, rather than to determine whether such a theory is
susceptible to paradoxes, then the following additional rule would be worth
consideration:7

V S3 : For any formulas Φ and Ψ :

∅ ` V al(<Φ>,<Ψ>)→ V al(<Σ>,<V al(<Φ>,<Ψ>)>)

For our purposes here, however, V S1 and V S2 suffice.
That being said, it is obvious that some rules are unacceptable. One such

unacceptable rule – one that will play a role in the analysis that follows, is
the following Unacceptable Rule:

UR : For any formulas Φ and Ψ and set of formulas ∆ :

If : ∆,Φ ` Ψ

Then : ∆ ` V al(<Φ>,<Ψ>)

In short, just because we can prove that Ψ follows from Φ plus some addi-
tional set of premises ∆, it does not follow that ∆ entails that “V al(x, y)”
holds of (the codes of) Φ and Ψ. Obvious counterexamples to the accept-
ability of UR are not hard to come by. For example, let:8

Φn = “There are exactly n objects.”

Clearly, the claim that there are exactly four objects and the claim that
there are exactly five objects entails a contradiction:

Φ4,Φ5 ` ⊥

It does not follow, however, that the claim that there are exactly four objects
entails that the argument whose premise is that there are exactly five objects
and whose conclusion is a contradiction is valid – that is:

Φ4 6` V al(<Φ5>,<⊥>)

Hence, we must (as the name suggests) reject the unacceptable rule UR.

7Note that V S1 entails that if:

V al(<Φ>,<Ψ>)

is a theorem then:
V al(<Σ>,<V al(<Φ>,<Ψ>)>)

is also a theorem.
8For any finite n, Φn is definable in the language of first-order logic with identity.
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We are now in a position to formulate the purported paradox of log-
ical validity. First, we apply the Gödelian diagonalization lemma to the
predicate:

V al(x,<⊥>)

to obtain a sentence Π such that:

Π↔ V al(<Π>,<⊥>)

is a theorem. We can then, using arithmetic, V S1, and V S2, derive a paradox
along lines similar to the reasoning underlying the Curry paradox:

1 Π Assumption for application of V S1.

2 V al(<Π>,<⊥>) 1, diagonalization.

3 Π→ ⊥ 2, V S2.

4 ⊥ 1, 3, modus ponens.

5 V al(<Π>,<⊥>) 1 – 4, V S1.

6 Π→ ⊥ 5, V S2.

7 Π 5, diagonalization.

8 ⊥ 6, 7, modus ponens.

This is the paradox described in (Beall & Murzi 2012), and (modulo re-
placement of the primitive validity predicate “V al(x, y)” with a complex
predicate constructed from a validity connective and the truth predicate –
see §5 below) it is essentially that found in (Whittle 2004) and (Shapiro
2012). The problem, however, is that if “V al(x, y)” is meant to capture
logical validity, then the argument given above is fallacious.

To see why, note that the equivalence between Π and “V al(<Π>,<⊥>)”
is not a logical truth, but rather a truth of PA. Spelling out the reasoning
above a bit more carefully, we should have noted that when we apply the
Gödelian diagonalization lemma we obtain a Π such that:

Π↔ V al(<Π>,<⊥>)

is a theorem of arithmetic (note the emphasis!) Hence, the inference from
line 1 to line 2 depends on arithmetic. As a result, line 5, which is labeled as
an application of V S1, is no such thing. Lines 1 through 4 do not constitute
a proof that a contradiction logically follows from Π, but rather that PA
entails that a contradiction follows from Π – that is, lines 1 through 4 show
that:

PA,Π ` ⊥
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As a result, in concluding “V al(<Π>,<⊥>)” at line 5, we did not actually
apply V S1, but instead applied the unacceptable rule UR. Reasoning more
carefully, we can conclude at line 5 that:9

PA ` BewPA(<Π>,<⊥>)

But provability in PA and logical validity are, of course, different things.
We should note, however, that the application of arithmetic in passing

from lines 1 to 2 is not the only questionable step in the sub-proof termi-
nating with the application of V S1 at line 5. In addition, the application
of V S2 at line 3 is also of questionable legitimacy. After all, even if the
invalidity of the rules V S1 and V S2 is not as obvious as the invalidity of
the axioms and rules of PA,10 it is surely not straightforwardly obvious
that V S1 and V S2 are, in fact, logically valid. In a recent examination of
the Beall-Murzi version of the paradox, Jeffrey Ketland concludes, in effect,
that we should disallow both arithmetic and the validity rules themselves in
sub-proofs terminating in an application of V S1:

11

. . . the fact that Φ is a theorem of V-logic does not imply that
Φ is itself valid or logically true. For example, V al(<0 = 0>)
and V al(<0 = 1>)→ 0 = 1 are theorems of V-logic, but neither
formula is valid. Perhaps an analogy is that the fact that one can
derive certain results using axioms/rules for the natural numbers
(e.g., the induction scheme, or an induction rule, or an ω-rule)
does not imply that such results are valid. In the usual (current)
setting of first-order logic, the validity of Φ is equivalent to Φ’s
being logically derivable; and this is why the introduction rule
(V-Intro) is restricted. So, one may infer V al(<Φ>) only if
Φ has been derived using logic. If extra, non-logical principles
have been used to prove Φ, then Φ might not be valid. ((Ketland
2012): 423)

9For any recursively axiomatizable theory T :

BewT (x, y)

is the arithmetic predicate codifying T -entailment. That is, “BewT (<Φ>,<Ψ>)” is true if
and only if there is a proof of Ψ from Φ in T . Note that, for any recursively axiomatizable
theory T , BewT (x, y) is definable in PA.

10I am allowing a bit of terminological sloppiness here. Strictly speaking, we should talk
of rules being valid and formulas being logical truths – or, at the very least, we ought to
distinguish the sense in which rules might be valid from the sense in which axioms might
be valid. Using the term ‘valid’ interchangably for both notions simplifies the discussion,
however, and is harmless in the present context.

11Ketland considers a one-place validity predicate V al(x) holding of (the codes of)
logical truths. His V-Intro is the a one-place analogue of the rule called V SL

1 below. The
upshot is the same, however.
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Thus, according to Ketland, both the move from 1 to 2 in the derivation
above, and the move from 2 to 3, are illegitimate in a sub-proof leading to
an application of V S1 (his V-Intro), since the former involves arithmetic and
the latter involves the rules for the validity predicate itself, neither of which
are logically valid (even though both are truth-preserving).

As we shall see, Ketland is right – a proper formulation of the validity
predicate will disallow applications of both arithmetic and the rules for the
validity predicate in sub-proofs terminating in an application of V S1. But
his analysis leaves two critical questions unanswered: First, even if both
arithmetic and the validity rules V S1 and V S2 fail to be valid, it does not
follow that both PA and the validity rules are responsible for the apparent
paradox that results from (incorrectly) assuming that they are valid. As we
shall see, even though neither arithmetic nor the validity rules are themselves
valid, and hence neither should be used within a sub-proof terminating in an
application of V S1, it is demonstrably the validity rules, and not arithmetic,
that lies at the root of the paradox. Second, although Ketland is thus clearly
correct in asserting that the validity rules are not valid, he supports this
claim with nothing more than intuition:

Perhaps one might try to reply. . . that the theory of validity is
itself valid, in some more general sense of ‘valid’. But it seems to
me that here there is a genuine disanalogy with, e.g., the notions
of truth and necessity. ((Ketland 2012): 427)

Unfortunately, Ketland does not specify what, exactly, this disanalogy is.
And in fact this is just as well, since there is no disanalogy – at least,
not between logical validity and truth. The rules for the logical validity
predicate, as we shall see, are not themselves logically valid for exactly the
same reasons that the rules for the truth predicate (the T-schema) are not
logically valid. This does point, however, to a deeper disanalogy, not between
truth and logical validity, but between the paradoxes involving truth (such
as the Liar) and the purported paradoxes involving logical validity.

3 Validity, Rules, and Paradox

Reflecting on the fallacy detected in the Beall-Murzi proof, the issue is this:
What resources are, and are not, allowed in a sub-proof of Ψ from Φ if we
are to apply V S1 to that sub-proof and conclude that “V al(<Φ>,<Ψ>)”
is true? This question is equivalent to asking: Which axioms and rules of
inference, of those currently at issue, are logically valid?

The discussion above suggests that arithmetic is not an allowable re-
source: Any ineliminable use of PA in a sub-proof should prevent appli-
cation of V S1 to that sub-proof, since the derivation in question will as a
result not be logically valid (even if arithmetically sound). In addition, we
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have reasons for at least some doubt with regard to whether the validity
rules V S1 and V S2 should be allowed in such sub-proofs. Summing all this
up, there are three possible resources that we need to consider:

L = Pure First-Order Logic.

PA = Peano Arithmetic.

V = V S1 + V S2.

I take it to be obvious that the resources of pure first-order logic should be
allowable in such sub-proofs – after all, if first-order logic doesn’t preserve
logical validity, then it is not clear that anything does.12 Additionally, and
more substantially, I will assume in what follows that V S1 and V S2 stand or
fall together – that is, either both of V S1 and V S2 are allowed in sub-proofs
that can be terminated with an application of V S1, or neither are.13 This
leaves us with four possibilities:

• L is logically valid, but V S1, V S2, and PA are not.

• L and PA are logically valid, but V S1 and V S2 are not.

• L, V S1, and V S2 are logically valid, but PA is not.

• L, V S1, V S2, and PA are all logically valid.

Of course, we have already ruled out the second and fourth option, since
the axioms and rules of PA are not logically valid. Examining systems that
allow the use of PA in such sub-proofs will turn out to be illuminating
nevertheless. Given these four distinct possible answers to our question, we
obtain four distinct versions of V S1:

V SL
1 : For any formulas Φ and Ψ :

If : Φ `L Ψ

Then : ∅ `L+PA+V V al(<Φ>,<Ψ>)

12Further, I will assume for the sake of argument, and for the sake of actually engaging
with those I am criticizing, that first-order classical logic can be used in such sub-proofs.
For the reader whose is (like myself) sympathetic to intuitionistic (or other non-classical)
logics, however, it is worth noting that the derivation of a contradiction from V S1 and V S2

given in the last section is intuitionistically valid, and that both the derivation above and
the results to follow can be easily adapted to many non-classical contexts. In particular,
the substitutivity requirement introduced in §1, which will play a central role in §4 below,
holds not only of classical logic but also of the vast majority of non-classical logics defended
in the literature.

13Treating these rules separately, considering systems that allow V S1 but not V S2 to
be allowed in such sub-proofs (or vice versa), would double the number of cases we need
to consider, with no additional philosophical insight. The methods of the next section can
be generalized, however, to settle these additional cases. Doing so is left to the interested
reader.

9



V SL+PA
1 : For any formulas Φ and Ψ :

If : Φ `L+PA Ψ

Then : ∅ `L+PA+V V al(<Φ>,<Ψ>)

V SL+V
1 : For any formulas Φ and Ψ :

If : Φ `L+V Ψ

Then : ∅ `L+PA+V V al(<Φ>,<Ψ>)

V SL+PA+V
1 : For any formulas Φ and Ψ :

If : Φ `L+PA+V Ψ

Then : ∅ `L+PA+V V al(<Φ>,<Ψ>)

V SL
1 states that, if we have a sub-proof of Ψ from Φ that uses only the

resources of first-order logic, then we can apply (this version of) V S1 and
conclude that “V al(<Φ>,<Ψ>)” is true. V SL+PA

1 states that, if we have a
sub-proof of Ψ from Φ that uses only the resources of first-order logic and
Peano arithmetic, then we can apply (this version of) V S1 and conclude
that “V al(<Φ>,<Ψ>)” is true. V SL+V

1 states that, if we have a sub-proof
of Ψ from Φ that uses only the resources of first-order logic, (this version of)
V S1, and V S2, then we can apply (this version of) V S1 and conclude that
“V al(<Φ>,<Ψ>)” is true. And finally, V SL+PA+V

1 states that, if we have
a sub-proof of Ψ from Φ that uses only the resources of first-order logic,
Peano arithmetic, (this version of) V S1, and V S2, then we can apply (this
version of) V S1 and conclude that “V al(<Φ>,<Ψ>)” is true.

The obvious next step is to investigate the consistency of the systems
that result from extending PA with V S2 and one of these four variants
of V S1. As we shall see, the results are somewhat surprising, and suggest
that Ketland’s analysis of the paradox of logical validity misses something
important. The following theorems settle the consistency question for the
four systems in question:

Theorem 3.1. The system that results from adding V SL+PA+V
1 and V S2

to PA is inconsistent.

Proof. This is settled by the Beall-Murzi derivation given above.

Theorem 3.2. The system that results from adding V SL+PA
1 and V S2 to

PA is consistent.

Proof. Let:

PAH = PA + {BewPA(<Φ>,<Ψ>)→ (Φ→ Ψ) : Φ,Ψ ∈ LPA}.
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Then V SL+PA
1 and V S2 are interpretable in PAH : Let:

V al(x, y) = BewPA(x, y).

For V S1, note that, if:
Φ `L+PA Ψ

then:
∅ `L+PA BewPA(<Φ>,<Ψ>)

hence:
∅ `L+PAH

BewPA(<Φ>,<Ψ>)

since PAH extends PA. V S2 is easy. Hence, if V SL+PA
1 + V S2 + PA were

inconsistent, then PAH would be inconsistent. But PAH is true on the
standard model of arithmetic.14

Corollary 3.3. (Ketland 2012):The system that results from adding V SL
1

and V S2 to PA is consistent.

Proof. Immediate consequence of Theorem 3.2.15

Theorem 3.4. The system that results from adding V SL+V
1 and V S2 to

PA is inconsistent.

Proof. Let A be the conjunction of any finitely axiomatizable theory of arith-
metic strong enough to support diagonalization (e.g. Robinson arithmetic).
Let Π(x, y) be the function that maps any pair of Gödel codes of sentences
t1, t2, onto the code of their conjunction (in that order). Note that Π(x, y) is
primitive recursive. By diagonalization we obtain a statement Λ such that:

Λ↔ V al(Π(<Λ>,<A>), <⊥>)

14The following technical clarification might be helpful: The provability predicate for
PA, “BewPA(x, y)”, obeys the rules V SL+PA

1 and V S2 in the stronger system PAH , but
not in the weaker system PA. This is merely another way of stating the well-known fact
that an ‘arithmetic validity’ predicate for PA can consistently be added to PA (if PA is
itself consistent), but cannot be defined in PA itself.

15(Ketland 2012) actually proves (something equivalent to the claim) that the result of
adding V SL

1 and V S2 to PA is a conservative extension of PA (Theorem 1, p. 426). This
result is non-trivial, depending on the essential reflexivity of PA, and does not generalize
to V SL+PA

1 . More generally, since the system investigated in (Ketland 2012) – essentially
the result of adding V SL

1 and V S2 to PA – is, as we shall see, the correct formalization
of a theory of the logical validity predicate, and since Ketland’s paper is a good bit more
technically sophisticated than the present essay, the reader interested in further details
regarding how the logical validity predicate behaves within PA is strongly encouraged to
read (Ketland 2012).
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and hence:16

Λ↔ V al(<Λ ∧ A>), <⊥>)

are theorems of A (and hence of PA). Note that, a bit loosely, Λ says
something like:

The argument with this sentence and A as premises,
and ⊥ as conclusion, is valid.

We now reason as follows:

1 Λ ∧ A Assumption for application of V SL+V
1 .

2 A 1, logic.

3 Λ 1, logic.

4 V al(<Λ ∧ A>), <⊥>) 2, 3, logic.17

5 ⊥ 1, 4, V S2.

6 V al(<Λ ∧ A>), <⊥>) 1 – 5, V SL+V
1 .

7 Λ 6, arithmetic.

8 Λ ∧ A 7, arithmetic.

9 ⊥ 6, 8, V S2.

The situation, viewed from a purely technical perspective, is summarized in
the following table:

PA allowed PA disallowed

V S1, V S2 allowed Inconsistent Insconsistent

V S1, V S2 disallowed Consistent Consistent

In short, whether or not our theory of the logical validity predicate is consis-
tent co-varies with whether or not we allow the rules for the logical validity
predicate themselves to appear in sub-proofs terminating with an applica-
tion of V S1 – that is, with whether or not we treat the rules for the validity

16Note that, for all Φ and Ψ:

<Φ ∧ Ψ>= Π(<Φ>,<Ψ>)

is a theorem of PA (or of A).
17This line represents the ‘trick’ in the proof: Unlike the Beall-Murzi derivation, in this

case we get that the validity claim “V al(<Λ ∧ A>)” follows from previous lines in the
sub-proof, as a matter of logic, rather than as a theorem of PA, since the conjunction of
the axioms of (a finite but sufficiently strong subsystem of) arithmetic just is one of the
previous lines in the sub-proof.
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predicate as being logically valid themselves. Whether or not we allow arith-
metic within such sub-proofs turns out to be completely irrelevant to the
consistency status of the resulting systems, however, strongly suggesting
that the logical status of arithmetic and its use within such sub-proofs is
orthogonal to a correct assessment of whether there truly is a paradox of
logical validity. Thus, we have answered the first of the two questions left
open by Ketland’s discussion: Our consistency proofs demonstrate that no
paradoxes will arise from assuming that the axioms of PA are logical truths,
(although as we have seen, falsity will arise from such an assumption, since
the axioms of PA are not, in fact, logical truths!) Rather, it is the assump-
tion that the validity rules V S1 and V S2 are logically valid that leads to
paradox.

As a result, if we want to know whether or not there really is a genuine
paradox of logical validity, we need to determine whether the rules for the
logical validity predicate are themselves logically valid rules. Of course, we
could, like (Ketland 2012), just stipulate that these rules are not logically
valid, on the grounds that assuming otherwise leads to contradictions. But
this approach seems no more illuminating than merely abandoning the T-
schema in light of the Liar paradox. What is needed is some account that
explains why the validity predicate is not a logical operator, and hence
explains why the validity rules V S1 and V S2 are not logically valid.

4 Validity and Substitutivity

The results of the previous section have left us with two options: either
we can conclude that the addition of a logical validity predicate to PA is
paradoxical, in much the same way that the addition of an unrestricted
truth predicate to PA is paradoxical, or we can conclude that the rules
V S1 and V S2 are not logically valid, and hence cannot be applied in sub-
proofs terminating in an application of V S1. In short, we need to decide
whether V SL+V

1 or V SL
1 is the right ‘introduction rule’ for the logical validity

predicate.
Before defending the second option, it would be remiss not to note that

the first option is tempting. After all, at first glance, it would seem that
accepting that the rules for the logical validity predicate can be applied
in sub-proofs terminating in an application of V S1, and the paradox that
arises as a result, in many respects parallels accepting the unrestricted T-
schema for the truth predicate and the paradoxes that arise as a result.
There is a critical disanalogy, however. Deriving the Liar paradox (or any
other variant of semantic paradox) from the T-schema requires only that
the relevant instances of the T-schema are true (or, equivalently, that the
analogous inference rules for the truth-predicate are truth-preserving). No
similar paradoxes arise from the assumption that the validity predicate rules
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V S1 and V S2 are merely truth-preserving. Paradox only arises if we assume
that V S1 and V S2 are not only truth-preserving but logically valid, since
only then are they eligible for application in sub-proofs terminating in an
application of V S1. This is the crucial disanalogy between truth and logical
validity mentioned in §2 above: If (as will be argued below) the rules for
both the truth predicate and the validity predicate are truth-preserving but
not logically valid, then there is a genuine paradox involving truth yet no
paradox involving logical validity.18

Regardless of this disanalogy with truth, the intuition that V S1 and V S2

are not only truth-preserving but also logically valid remains, admittedly,
a strong one. After all, why wouldn’t predicates codifying something like
‘necessary entailment in virtue of logical form’ be true of particular sentences
(or their names, or codes, or whatever) necessarily, and in virtue of form,
when they are true of those sentences? The negative answer to this question
has to do not only with what such predicates encode (logical validity), but
how they encode this information (Gödel codes or other non-logical naming
devices).

The argument is simple, involving a straightforward application of the
logical substitutivity constraint discussed in §1 above:

Logical Substitutivity :

For any formulas Φ1, Φ2, primitive non-logical expres-
sion Ψ, and (possibly complex) expression Ω of the
same logical type as Ψ, if:

Φ1 ` Φ2

is a valid argument, then:

Φ1[Ψ/Ω] ` Φ2[Ψ/Ω]

is a valid argument.

If we assume that V S1 and V S2 are logically valid, and that logical substi-
tutivity holds, we can prove clearly absurd claims. For example:19

Pseudo-theorem 4.1. If V S1 and V S2 are logically valid, and the logical
substitutivity constraint holds, then there are sentences Φ1 and Φ2 such that,
for any n:

V al(<Φ1> +n,<Φ2> +n)

18This of course suggests a more general phenomenon: Are there other significant se-
mantic notions Φ such that a paradox arises if, but only if, we assume, loosely speaking,
that the rules for a Φ-predicate are themselves Φ (or Φ-preserving, etc.)? Unfortunately,
space considerations preclude exploring this topic in depth in the present essay.

19I have labelled this result a pseudo-theorem since it is hoped that, by the end of
the paper, the antecedent of the claim will be so clearly false as to render the result
uninteresting!
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is a logical truth.

Proof. Let Φ1 and Φ2 be any formulas such that the former logically entails
the latter:

Φ1 ` Φ2

Since V S1 is valid, we have:

∅ ` V al(<Φ1>,<Φ2>)

Note that the above is of the form:

` V al(s(s(s(. . . s(0) . . . ))), s(s(s(. . . s(0) . . . ))))

Then, by logical substitutivity, we may replace the simple non-logical term
“0” with:

n = s(s(s(. . . s(0) . . . )))

(for arbitrary n). Since n arbitrary, it follows that, for any n:

∅ ` V al(<Φ1> +n,<Φ2> +n)

that is, all instances of:

V al(<Φ1> +n,<Φ2> +n)

are logical truths.20

This ‘pseudo-theorem’ clearly fails to hold of many easily constructed re-
cursive coding functions (including most ‘intuitive’ ones used in standard
textbooks such as (Boolos, Burgess, & Jeffrey 2007)).21

Of course, one could perhaps ‘cook up’ a particular coding function for
which the result just proved is not absurd. Such computational shenanigans
will not avoid the problem, however. Surely whether or not the rules for
the logical validity predicate are logically valid should not depend on the
arithmetic properties of the particular coding function we choose (other
than the fact that the coding function is recursive, etc.) Thus, if logical
validity must be closed under the logical substitutivity constraint, then V S1

and V S2 are not logically valid.
Further, if the logical validity predicate is a logical operator, and the rules

for this operator are logically valid, then this fact ought to be independent

20Note that this proof actually only assumed that V S1 is logically valid. Note further
that, if the “V al(x, y)” only holds of x and y if x and y are both codes of sentences, then
an easy corollary of this theorem is that all but finitely many natural numbers are codes
of sentences. This also fails for most standard coding functions.

21In addition, it is not difficult to ‘cook up’ particular coding functions such that the
‘pseudo-theorem’ implies that obviously invalid arguments are valid, and obviously false
claims are logical truths.
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of the particular naming device used and of the nature of those names – that
is, its legitimacy ought to be independent of whether we use Gödel codes,
or primitive names of some sort, or quotation names, etc. As a result,
we can produce even simpler absurdities. Just extend the language with
three additional, primitive names t1, t2, and t3, where t1 and t2 are names
for two logical truths Φ1 and Φ2 respectively and t3 is the name of some
contradiction Φ3. Then clearly:

Φ1 ` Φ2

So, by V S1 we obtain:
∅ ` V al(t1, t2)

Hence, by logical substitutivity:

∅ ` V al(t1, t3)

This last is obviously absurd, however, since no logical truth entails any
contradiction. Further, a final application of V S2 at this point provides:

Φ1 ` Φ3

rendering the system trivial.
Thus, either we give up the idea that logical validity is formal, and hence

must satisfy the logical substitutivity constraint, or we give up the idea that
the rules for the logical validity predicate are themselves logically valid.
Since giving up on the formality of logical validity would seem to be giving
up on the intended and intuitive notion of logical validity altogether (robbing
the claim that V S1 and V S2 are logically valid of most of its interest!), it
seems that our only viable option is to abandon the idea that V S1 and V S2

are logically valid. As a result, the proper formulation of V S1 is its weakest
formulation: V SL

1 .
It should be noted that the arguments above do not, on their own, show

that the logical validity predicate is not a logical operator. On the contrary,
these arguments are compatible with the claim that the logical validity pred-
icate is a logical operator, and that there are logical truths that involve the
validity predicate in an essential manner. For example, it might be the case
that:

(∀x)(∃y)(V al(x, y))

is, in fact, a logical truth.22 What has been shown, however, is that the
rules V S1 and V S2, in particular, are not logically valid. But that is enough
for our purposes: If V S1 and V S2 are not logically valid, they cannot be
used in sub-proofs terminating with an application of V S1, and there is no
paradox of logical validity.23

22Of course, no particular claim of the form V al(n,m), for particular numerals n and
m, can be a logical truth, for the reasons already given.

23In fact, I do not think that the logical validity predicate is a logical operator, nor do
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5 Logical Validity and the Truth Predicate

As noted in §1 above, (Whittle 2004) and (Shapiro 2012) provide a slightly
different version of the paradox of logical validity – one relying on a logi-
cal validity connective instead of a logical validity predicate. As a result,
in order to construct the fixed-point sentence generating the paradox, they
also make use of an unrestricted truth predicate. Since their constructions
of the paradox are, in essentials, extremely similar from a technical per-
spective (even if they use the supposed paradox to argue for very different
conclusions), I will focus on Shapiro’s construction. Similar comments ap-
ply to Whittle’s version of the paradox.24 Shapiro’s version of the paradox
proceeds as follows:

Let K be a sentence equivalent to T (<K>) ⇒ P , where ⇒
is an entailment connective. (To simplify my presentation, I
shall pretend that these are not just equivalent sentences, but the
same sentence.) Currys paradox can now be formulated as the
following. . . :

1 T (<K>) Assumption.

2 T (<K>)⇒ P 1, T-Elim.

3 P 1, 2, modus ponens.

4 T (<K>)⇒ P 1 – 3, Conditional Proof.

5 T (<K>) 4, T-Intro.

6 P 4, 5, modus ponens.

(2010: 17, emphasis added.25)

Shapiro’s presentation clings more closely to the traditional formulation of
the Curry paradox than that found in (Beall & Murzi 2012), demonstrating
that we can, via the paradoxical reasoning, prove any statement P whatso-
ever. Plugging “⊥” in for P , however, provides the explicit contradiction.

I think that there are any logical truths that involve occurrences of the logical validity
predicate in an essential manner. Arguments for these additional claims would take us too
far afield, however, and are not needed for the purposes of the primary task undertaken
in this paper – to demonstrate that there is nothing paradoxical about a logical validity
predicate.

24With one striking exception: (Whittle 2004) does not mistakenly assume that the
T-schema is a logical truth, but rather notes, in his criticism of (Priest 2002), that the
latter explicitly asserts that the T-schema is a logical truth. Thus, the mistake in this
case is Priest’s, not Whittle’s (for more discussion, see (Cook 2012)).

25I have freely adapted the derivation found in (Shapiro 2012), aligning the notation to
match that used elsewhere in this essay.
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It should be clear by now that this derivation no more provides a genuine
paradox of logical validity than the construction given in (Beall & Murzi
2012). First (and most obviously, given the helpful emphasis I have pro-
vided), there is the simplifying assumption that K and “T (<K>)⇒ P” are
not equivalent sentences, but identical sentences. If, however, the sentence
K is obtained through diagonalization (it need not be, but the admission
that these sentences are really merely equivalent suggests this) then this
pretense hides the illegitimate use of PA in moving from lines 1 to 2 (it also
hides the fact that if the fixed point is obtained via diagonalization, then K
and “T (<K>)⇒ P” are, on most standard codings, provably not the same
sentence!) Given our discovery above that it is not the use of PA, but the
illegitimate use of the rules for the validity operator, that lie at the root of
the purported paradox, however, let us set this aside. As we shall see, there
are other reasons for objecting to Shapiro’s derivation.

For our purposes, it is the sort of inference applied at line 4 that is of
real interest. Shapiro labels line 4 as an application of conditional proof, but
it is not an instance of the standard conditional proof rule for the material
conditional. Rather, it is an analogue of this rule for the logical validity
connective “⇒”. Likewise, the inference from 1 and 2 to 3 is not, contrary
to Shapiro’s labeling, an instance of the standard modus ponens rule for
the material conditional, but is an analogue of this rule for “⇒” (as is the
inference from 4 and 5 to 6). In short, Shapiro is utilizing connective versions
of V S1 and V S2, which we can represent as follows:

⇒S1 : For any formulas Φ and Ψ :

If : Φ ` Ψ

Then : ∅ ` Φ⇒ Ψ

⇒S2 : For any formulas Φ and Ψ :

∅ ` (Φ⇒ Ψ)→ (Φ→ Ψ)

(where “→” remains the everyday material conditional). Interestingly, al-
though we have seen that V S1 and V S2 are not logically valid rules, the
argument given above does not generalize to⇒S1 and⇒S2. Since the latter
do not involve predicates but operators, we cannot apply the same substi-
tutivity tricks directly to ⇒S1 and ⇒S2. As a result, the argumentative
strategies mobilized above provide no reasons for denying that (our rational
reconstructions of) Shapiro’s rules are logically valid.

Moreover, there is at least some evidence in favor of treating⇒S1 and⇒
S2 as logically valid. John Burgess (building on work by, e.g. (Halldén 1963))
argues that S5 is the right modal logic for logical validity, understanding
“2Φ” as “Φ is a logical truth” (Burgess 1999). If this is right, then we can
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easily construct a binary validity operator obeying ⇒S1 and ⇒S2:

Φ⇒ Ψ =df 2(Φ→ Ψ)

Note that, if the language only contains the resources of the modal logic S5,
then both ⇒S1 and ⇒S2 are themselves logically valid on this interpreta-
tion.26

Furthermore, although Shapiro does not proceed this way, given the
logical validity connective and the truth predicate, it is straightforward to
construct a validity predicate:

V al(x, y) =df T (x)⇒ T (y)

With this predicate in hand, the Beall-Murzi version of the paradox can be
reconstructed.

If ⇒S1 and ⇒S2 are, in fact, logically valid rules (or, at the very least,
could be for all we have seen so far), then where does the Shapiro version
of the derivation go wrong? The fallacy lies in the transition from line 1 to
line 2. This inference does not rely solely on diagonalization (or whatever
non-logical resources were used to obtain a sentence K equivalent to “T (<
K>) ⇒ P”. In addition, the inference in question relies on the T-schema
(or some equivalent rule for the truth predicate) that allow us to move from:

K ↔ (T (<K>)⇒ P )

To:
T (<K>)↔ (T (<K>)⇒ P )

The T-schema, however, is no more logically valid than are V S1 and V S2,
since it is susceptible to logical substitutivity arguments along lines similar to
those given in the last section.27 As a result, the move from 1 to 2, although
truth preserving, is not logically valid. Since ⇒S1 should only apply to
sub-proofs that are logically valid, the derivation given in (Shapiro 2012) is

26This point also highlights the fact that the logical substitutivity requirement, while
providing a necessary condition for the logical validity of a rule of inference, does not
provide a sufficient condition. While S5 satisfies the substitutivity requirement, and the
modal operators might, as sketched above, be plausibly thought of as logical operators
(and the rules for the modal operators might be plausible thought to be logically valid)
when the modal operators are interpreted as codifying the notion of logical validity itself,
this clearly does not hold for other modal logics that satisfy the substitutivity requirement.
In particular, the points made earlier in this paper make it clear that the rules for the
modal operators in the Gödel-Löb provability logic GL are not logically valid when “2”
is interpreted as arithmetic provability, yet propositional GL satisfies the substitutivity
requirement – see, e.g. (Boolos 1993).

27Let t1 be the name of a logical truth Φ1 and t2 be the name of a logical falshood
Φ2. Then ∅ ` Φ1. So, by the T-schema, we have ∅ ` T (t1). Hence, by substitutivity,
we obtain ∅ ` T (t2). But then, again by the T-schema, we obtain ∅ ` Φ2. For further
details, see (Cook 2012).
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fallacious in exactly the same manner as the Beall-Murzi construction (as is
the similar construction given in (Whittle 2004)).

Nevertheless, although neither the validity predicate nor the validity
connective is susceptible to paradox, they are different in an important and
striking way. The natural rules for the validity predicate – V S1 and V S2 –
are not logically valid, while the corresponding rules for the logical validity
connective (⇒S1 and ⇒S2) are valid (or, at the very least, there seem to be
no reasons at present for denying them this status). As a result, in a certain
sense it is not the content of the logical validity predicate that prevents the
rules governing its use – V S1 and V S2 – from being logically valid, since
presumably, in some loose sense, at least, the content of the logical validity
predicate and the content of the logical validity connective are the same.
Rather, it is how the logical validity predicate codifies that content – in
particular, that it is a predicate, and not a connective, and thus that it
applies not directly to sentences but to names of sentences – that prevents
V S1 and V S2 from being logically valid.

To sum up: There is no paradox of logical validity since the construction
of the paradox requires a context into which we can diagonalize. Such a
context requires, in turn, a logical validity predicate (either primitive or de-
fined in terms of a logical validity connective and the truth predicate). Such
a predicate, however, requires Gödel coding or some other naming device.
The presence of such coding functions, however, brings with it violations
of the substitutivity requirement, thus preventing V S1 and V S2 from being
logically valid. Hence, there is no paradox of logical validity.

6 What is the Status of Logical Validity?

Returning to our primitive validity predicate “V al(x, y)” a final question
remains to be answered: If the ‘correct’ rules for the validity predicate –
V SL

1 and V S2 – are not logically valid, then what is their status? Part of
the answer is simple, and already familiar: There are no reasons to think
that V SL

1 and V S2 are not truth-preserving, and every reason to think that
they are. So, assuming proper care is taken to only use logically valid rules in
sub-proofs terminating with applications of V SL

1 , reasoning with the validity
predicate in accordance with V SL

1 and V S2 cannot lead us astray (in the
sense of leading us from truths to falsehoods – of course, the point of much of
the above is that application of these rules can lead us from logical validities
to logical invalidities).

Further, there seems to be no good reason for thinking that the conse-
quences of correct applications of V SL

1 and V S2 are not analytically true
or necessarily true (and again, every reason to think that they are). This
observation is critically important. If facts about logical validity – that is,
those facts codified by our logical validity predicate – were merely contin-
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gent facts that held as a matter of luck or happenstance, then it would be
difficult to explain the central role played by logic and logical validity in
philosophical and mathematical theorizing. Fortunately, there is nothing
contingent or lucky about logical validity, and the central theses governing
validity codified by V SL

1 and V S2 (as well as, perhaps, other principles, such
as V S3 touched on in §1 above) are analytic, necessary, etc. They just are
not logically valid.

I will close the paper by pointing out that there are other notions of
validity that are susceptible to paradoxes of the general shape outlined by
(Beall & Murzi 2012). For example, if we were to introduce a predicate
“V alM (x, y)” such that:

V alM (<Φ>,<Ψ>) iff it is metaphysically necessary that, if Φ, then Ψ.

or a predicate “V alA(x, y)” such that:

V alM (<Φ>,<Ψ>) iff it is an analytic truth that, if Φ, then Ψ.

then we would find ourselves faced with genuine paradoxes. The reason is
simple – just as any rules that can be applied in a sub-proof terminating
in an application of V S1 must be logically valid, any rule applied in a sub-
proof terminating in an application of the“V alM (x, y)” analogue of V S1

must preserve metaphysical necessity (and similarly, any rule applicable in
a sub-proof terminating in an application of the “V alA(x, y)” analogue of
V S1 must preserve analytic truth). But, unlike the case with V S1 itself,
there seems every reason (other than the paradoxes that ultimately arise!)
to think that the rules for “V alM (x, y)” do preserve metaphysical necessity,
and that the rules for “V alA(x, y)” do preserve analytic necessity.28

Thus, there are paradoxes that can be formulated in terms of important
understandings of validity. But there are no paradoxes that plague the
notion of logical validity. As a result, the far-reaching conclusions drawn
by (Beall & Murzi 2012), (Field 2008), and (Shapiro 2012) based on the
supposed existence of a paradox of logical validity need to be reassessed.
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