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Abstract

In this essay we analyse and clarify the method to establish and clarify the scope of logic theorems offered
within the theory of institutions. The method presented pervades a lot of abstract model theoretic develop-
ments carried out within institution theory. The power of the proposed general method is illustrated with
the examples of (Craig) interpolation and (Beth) definability, as they appear in the literature of institutional
model theory. Both case studies illustrate a considerable extension of the original scopes of the two clas-
sical theorems. Our presentation is rather narrative with the relevant logic and institution theory concepts
introduced and explained gradually to the non-expert reader.

1. Institution theory – a very brief introduction

Institution theory is a categorical abstract model theory that arose about three decades ago [20] as a
response to the explosion of the population of logical systems used for formal software specification. Its
original aim was to develop as much computing science as possible in a general, uniform way, independently
of particular logical systems. This has been achieved to an extent even greater than originally envisaged.
The theory of institutions became the most fundamental mathematical tool underlying algebraic specifica-
tion theory (in its wider meaning) [29], also being increasingly used in other areas of computer science.
Moreover, institution theory is a major trend in the so-called ‘universal logic’ (in the sense envisaged by
Jean-Yves Béziau [4, 5]) which is considered by many a true renaissance of mathematical logic. A lot of
model theory has been gradually developed at the level of abstract institutions (see [14]). A relatively recent
survey of the vast area of institution theory is [16].

The starting concept of institution theory is the formal definition of a logical system; this includes the
syntax, the semantics and the satisfaction relation between them. It plays the same role as for example the
definition of group plays for group theory. Although the definition of group is very simple, group theory is
a vast sophisticated mathematical area. The same with the definition of institution and institution theory.

An institution is a tuple (Sign,Sen,Mod, (|=Σ)Σ∈|Sign||) that consists of
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• a category Sign whose objects are called signatures,
• a functor Sen: Sign → Set (to the category of sets) giving for each signature a set whose elements

are called sentences over that signature,
• a (contravariant) functor Mod: (Sign)op → CAT (to the ‘category’ of categories), giving for each

signature Σ a category whose objects are called Σ-models, and whose arrows are called Σ-(model)
homomorphisms, and

• a relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sign|, called the satisfaction relation,

such that for each morphism ϕ : Σ→ Σ′ ∈ Sign, the Satisfaction Condition

(1) M′ |=Σ′ Sen(ϕ)(ρ) if and only if Mod(ϕ)(M′) |=Σ ρ

holds for each M′ ∈ |Mod(Σ′)| and ρ ∈ Sen(Σ).
The literature (e.g. [14, 29]) shows myriads of logical systems from computing or from mathematical

logic captured as institutions. In fact, an informal thesis underlying institution theory is that any ‘logic’ may
be captured by the above definition. While this should be taken with a grain of salt, it certainly applies to
any logical system based on satisfaction between sentences and models of any kind.

Given a signature Σ in an institution, for any sets E and E′ of Σ-sentences by E |= E′ we denote the
situation that for each Σ-model M, M |= E implies M |= E′. The institution is compact when given E |= E′

if E′ is finite then there exists finite E0 ⊆ E such that E0 |= E′.

2. The method to clarify the scope of logic theorems

Among mathematicians it is common to think that there cannot be an in-depth understanding of a result
in the absence of the understanding of the proof of this result. The understanding of the scope of logic
theorems may be therefore considered at two different levels. A coarse level refers to the actual results
(statements of logic theorems), and a subtle level refers to the causalities leading to the results (i.e. depen-
dencies among logic theorems and methods to prove these theorems). Clearly, answers at the subtle level
determine answers at the coarse level.

Institution theory and its abstract approach to model theory develop a distinctive and clear way to
determine the scope of logic theorems, with emphasis on revealing bare causalities that are stripped off

irrelevant details. In many situations this led not only to quite unexpected extensions of the scopes of logic
theorems, but even to a reformed and a more realistic understanding of fundamental logic concepts (these
points will be illustrated also by the case studies discussed in this essay). The following scheme captures
a method to determine the scope of logic theorems that proved effective in numerous developments within
institution theory:

1. Choose a proof of a logic theorem.
2. Extract its essence by leaving out the irrelevant details and by identifying the conceptual structure

and the causalities underlying the result.
3. Formulate the conceptual structure at the level of an abstract institution.
4. Lift the proof considered to the level of an abstract institution, shaping an abstract, generic scope of

the result.
5. Determine the actual scope by analysing the abstract conditions used in the proof.

In the following we illustrate this scheme with a few representative cases from institutional model theory.
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3. First case study: interpolation by axiomatisability

Because of its many applications in logic and computer science, interpolation is one of the most desired
and studied properties of logical systems. Although it has a strikingly simple and elementary formulation,
in general it is very difficult to establish. The famous result of Craig [9] marks perhaps the birth of the
study of interpolation, proving it for first-order logic. The actual scope of Craig’s result has been gradually
extended to many other logical systems (for example in the world of modal logics, see [19]).

It has been widely believed that equational logic lacks interpolation; likewise for Horn-clause logic and
other such fragments of first-order logic. As far as we know, Piet Rodenburg was the first to point out that
this is a misconception due to a basic misunderstanding of interpolation, rooted in the heavy dependency of
logic culture on classical first-order logic with all its distinctive features taken for granted. Then it follows
the grave fault of exporting a coarse understanding of concepts dependent on details of a particular logical
system to other logical systems of a possibly very different nature, where some detailed features may not
be available. In the case of interpolation, the gross confusion has to do with looking for an interpolant
as a single sentence. In first-order logic, which has conjunction, looking for interpolants as finite sets
of sentences ({ρ1, . . . , ρn}) is just the same as looking for interpolants as single sentences (ρ1 ∧ · · · ∧ ρn).
Hence, the common formulation of interpolation requires a single-sentence interpolant. However, this is not
an adequate formulation for equational logic which lacks conjunction, i.e., conjunction ρ1∧ρ2 of universally
quantified equations ρ1 and ρ2 cannot be captured as a universally quantified equation in general. Rodenburg
[27, 28] proved that equational logic has interpolation with the interpolant being a finite set of sentences,
and this apparently weaker interpolation property is quite sufficient in both computer science and logic
applications. While the proof in [27] is syntactic and consists of rather lengthy combinatorial arguments,
the second proof reported in [28] is purely algebraic and displays a very elegant reliance upon Birkhoff’s
variety theorem (any class of algebras over a common signature is axiomatisable by a set of equations if
and only if it is closed under products, sub-algebras, and homomorphic images). We take the proof of [28]
as item 1. of the scheme sketched in Sect. 2 to determine the scope of interpolation by axiomatisability.

At item 2. of the scheme, we go through a process of understanding that the essence of the proof in [28]
is in fact independent of equational logic and of Birkhoff’s variety theorem. The key is a causal relationship
between interpolation and a ‘Birkhoff-style’ axiomatisability property of the logic, both of them considered
in a rather general sense. In other words, the proof in [28] carries over in essence to various logics that
support some kind of axiomatisability property resembling Birkhoff’s variety theorem.

At the next step (item 3.) we work towards formalising the above understanding of the proof in [28]

• by defining the concept of interpolation at the level of abstract institutions, and
• by formulating a general axiomatisability concept at the level of abstract institutions that captures the

essence of the use of Birkhoff’s variety theorem in the proof of [28] as abstractly as possible.

Interpolation in abstract institutions.
The standard formulation of (Craig) interpolation property for first-order logic is as follows. Given

signatures Σ1, Σ2, Σ1-sentence ρ1 and Σ2-sentence ρ2, if ρ2 is a consequence of ρ1 (written ρ1 ` ρ2) then
there exists an ‘interpolant’ (Σ1 ∩ Σ2)-sentence ρ such that ρ1 ` ρ and ρ ` ρ2.

It is by far not straightforward how to express this property at the level of abstract institutions. First,
we have to interpret the consequence relation between (sets of) sentences ` as the semantic consequence
|=, which is naturally defined in any institution. Then, in order to free our discussion from the existence
of conjunctions, we replace single sentences by finite sets of sentences. Finally, we have to capture the
relationship between signatures Σ1, Σ2 and their union Σ1 ∪ Σ2 (where the consequence ρ1 ` ρ2 happens)
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and intersection Σ1 ∩ Σ2 (the signature of the interpolant), depicted by the following diagram where arrows
indicate the obvious inclusions:

Σ1 ∩ Σ2 //

��

Σ1

��
Σ2 // Σ1 ∪ Σ2

While intersections ∩ and unions ∪ are more of less obvious for signatures as used in first-order logic
and in many other standard logics, they are not so in some other logical systems, and certainly not at the
level of abstract institutions where signatures are just objects of an arbitrary category. One immediate
response to this problem would be to add an infrastructure to the abstract category of signatures that would
support concepts of ∩ and ∪; in fact this is already available in the institution theoretic literature and is
called inclusion system [17, 14]. However this may not be the best solution. In many computer science
applications it is very meaningful to consider non-inclusive signature morphisms in the role of inclusions
in the square above. The abstraction exercise concerning interpolation we undertake is an ideal occasion
to follow [31] and incorporate the corresponding generalisation as well. The category-theoretic property of
the above intersection-union square that makes things work is that it is a pushout. These considerations lead
to the following abstract formulation of the interpolation property.1

An institution has Craig interpolation (Ci) when for each pushout square of signatures

Σ
ϕ1 //

ϕ2

��

Σ1

θ1

��
Σ2 θ2

// Σ′

and any finite sets of sentences E1 ⊆ Sen(Σ1) and E2 ⊆ Sen(Σ2), if θ1(E1) |= θ2(E2) then there exists a finite
set E of Σ-sentences such that E1 |= ϕ1(E) and ϕ2(E) |= E2.

However, this concept proves a bit too strong (for example many-sorted first-order logic does not support
this [21, 7, 14]). It is useful to restrict (of course abstractly) the signature morphisms involved to pre-defined
classes of signature morphisms, L for ϕ1 and R for ϕ2. We thus arrive at a realistic concept of Craig (L,R)-
interpolation which these days prevails institution-theory literature (e.g. [14]).

The use of pushout squares above meets so-called model amalgamation property, which is a crucial
technical property pervading most of the developments in institutional model theory. This requires that
for any pushout of signatures as above, Σ1-model M1 and Σ2-model M2 with common reduct to Σ, i.e.,
Mod(ϕ1)(M1) = Mod(ϕ2)(M2), admit a unique common expansion M′ to Σ′, i.e., Mod(θ1)(M′) = M1 and
Mod(θ2)(M′) = M2. This property is evident in most institutions of interest, and is tacitly assumed in
many model-theoretic developments. Often its weaker variant, that does not require the uniqueness of M′,
suffices; this is called weak model amalgamation.

Abstract Birkhoff institutions.
The other concept that plays a crucial role in our analysis of the scope of interpolation by axiomatis-

ability is that of Birkhoff(-style) axiomatisability. Let us start from the classical result of Birkhoff [6] about
the equationally defined classes of algebras, which gives the following algebraic characterisation of the

1Given a signature morphism ϕ : Σ → Σ′, we abbreviate Sen(ϕ) as ϕ, and so for a set of sentences E ⊆ Sen(Σ), ϕ(E) is the
image of E under Sen(ϕ).
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so-called equationally axiomatisable hulls: for any class A of algebras (of a common signature) we have
that

A∗∗ = HSP(A)

where A∗ is the set of the (universally quantified) equations satisfied by all algebras in A, A∗∗ is the class
of algebras that satisfy all sentences ofA∗, and HSP(A) is the closure ofA first under direct products (P),
then under sub-algebras (S ), and finally under homomorphic images (H). The Birkhoff variety theorem
is just one of a large spectrum of algebraic characterisations of axiomatisable hulls M∗∗ as closures of
M first under a certain class of filtered products, and then under some relation between models defined
in terms of certain classes of model homomorphisms. The class of the filtered products and the relation
considered are interdependent with the kind of sentences considered. For example, if in the Birkhoff variety
theorem discussed above we generalise the sentences to conditional equations (equations with finite sets of
equational premises) then we have to consider closure under all filtered products instead of P, and closure
under isomorphisms instead of H — this is another famous axiomatisability result, the so-called quasi-
variety theorem of Mal’cev [24].

The concept of Birkhoff institution [12, 14] below captures abstractly this kind of algebraic characteri-
sations of axiomatisable hulls. A tuple (Sign,Sen,Mod, |=,F ,B) is a Birkhoff institution when

• (Sign,Sen,Mod, |=) is an institution such that for each signature Σ ∈ |Sign|, the category Mod(Σ) of
Σ-models has F -filtered products,

• F is a class of filters with {{∗}} ∈ F , and
• BΣ ⊆ |Mod(Σ)| × |Mod(Σ)| is a binary relation for each signature Σ ∈ |Sign|, which is closed under

isomorphisms, i.e., (BΣ◦ �Σ) = BΣ = (�Σ ◦BΣ) (where �Σ denotes the isomorphism relation between
Σ-models),

such that
M∗∗ = B−1

Σ (FM)

for each signature Σ and each class of Σ-modelsM ⊆ |Mod(Σ)|, and where FM is the class of all F-filtered
products of models fromM for all filters F ∈ F . (Given a filter F over a set I, the F-filtered product of a
family {Mi | i ∈ I} of Σ-models is defined as the co-limit of the F-shaped diagram of projections between
corresponding direct products of models from the family; this is the common concept of filtered product
from categorical model theory [25, 23, 1, 11, 14].) B−1

Σ
(FM) stands for the class {M′ | there exists M ∈

FM such that (M′,M) ∈ BΣ}.
From the perspective of the problem of the scope of logic theorems, the concept of Birkhoff institution

may be regarded as a very abstract definition of the (coarse-level) scope of Birkhoff’s variety theorem. The
literature abounds with examples of Birkhoff institutions that correspond to various axiomatisability results
(a general result with hundreds of concrete instances has been the subject of [1]).

Interpolation theorem by axiomatisability.

Let us now get back to our general scheme of Sect. 2, to item 4. The result below (taken from [14] and
extending the original version in [12]) gives a generic scope for interpolation by axiomatisability:

Theorem 3.1. Any Birkhoff institution (Sign,Sen,Mod, |=,F ,B) with the weak model amalgamation prop-
erty, has Craig (L,R)-interpolation when

1. for each ϕ ∈ L, Mod(ϕ) preserves F -filtered products, and
2. – for each ϕ ∈ R, Mod(ϕ) lifts B, or
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– for each ϕ ∈ L, Mod(ϕ) lifts B−1 and model isomorphisms.

The requirements in this theorem (which include the conditions underlying the definition of Birkhoff

institutions) represent a clarification of the system of detailed technical causalities in the proof of interpo-
lation by axiomatisability. Their analysis corresponds to item 5. of our scheme, that determines the actual
scope. The conditions of amalgamation and preservation of filtered products are rather obvious in the con-
crete situations (at least in the conventional institutions). They are thus easy to overlook; however, at the
abstract level their role becomes evident. The lifting conditions are less obvious, even if in the applications
they may be established rather smoothly (see [12, 14]). Their definition is as follows. For ϕ : Σ → Σ′,
Mod(ϕ) lifts B when for each Σ′-model M′ and each Σ-model N such that (Mod(ϕ)(M′),N) ∈ BΣ there
exists a ϕ-expansion N′ of N such that (M′,N′) ∈ BΣ′ . Semantic in nature, the lifting conditions represent
the technical link between the closure by B in the algebraic characterisation of the axiomatisable hulls (the
formula B−1

Σ
(FM)) and the syntactic restriction on the signature morphisms involved in the interpolation

property.
In the rather classical context of fragments of (many-sorted) first-order logic, let us give two perhaps

surprising concrete instances of the general interpolation theorem by axiomatisability.

Corollary 3.1. [14] Many-sorted Horn-clause logic (with equality) has (L,R)-interpolation for any classes
L and R of signature morphisms such that

– R consists only of injective signature morphisms, or
– L consists only of signature morphisms that are injective on the sorts and that ‘encapsulate’ the

operations in the sense that there is no ‘new’ operation with an ‘old’ result sort.

4. Second case study: definability by interpolation

In first-order logic, an operation or relation symbolσ is defined implicitly by a theory E′ in a signature Σ′

when the interpretation of σ in any model M′ of E′ is uniquely defined by the interpretations of all the other
symbols of Σ′ in M′. An example is the inverse operation in group theory: it is an easy exercise to see that
any monoid may be expanded by at most one inverse operation so that the expanded model is a group. This
notion of definability is clearly semantic. There is also a syntactic counterpart: σ is defined explicitly by E′

when for each finite set of variables X and each (Σ′+X)-sentence ρ there exists a ((Σ′ \{σ})+X)-sentence Eρ

such that E′ ` (∀X)(ρ⇔ Eρ). The fact that the inverse operation is defined explicitly by the theory of groups
is much less obvious than in the case of implicit definability. Beth’s definability theorem [3] establishes the
equivalence between these two notions of definability in first-order logic. Since (in first-order logic) it is
trivial to see that explicit definability implies implicit definability, the real substance of Beth’s definability
result is the opposite implication. In fact, in the literature the term “Beth definability result” often refers to
this difficult derivation of explicit from implicit definability. The standard proof of this result in classical
first-order model theory [8, 22] relies on Craig interpolation and uses classical implication. However, in
[26] it is shown that Beth definability may be derived more directly from axiomatisability properties. In the
following we study the scope of Beth’s definability theorem by interpolation. In the process we will see
how the classical first-order logic framework may lead to a misunderstanding of how interpolation causes
definability.

Proceeding to item 3. of our general scheme in Sect. 2, we establish the concepts of definability, interpo-
lation, and implication at the level of abstract institutions. Interpolation has already been discussed above,
so we are left with the other two concepts.
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Definability in abstract institutions.
We present here an abstract institutional version of definability following [26], see also [14].
As formulated above, the classical concept of definability concerns a signature extension by an in-

dividual new symbol (such as the inverse operation of groups); the natural generalisation is to consider
an arbitrary signature morphism. This may appear as a big generalisation step, and one may think to
recover some of the details of the classical situation by considering only inclusions here, or imposing
some finiteness properties on the signature morphism. However, it turns out that for definability these
are irrelevant details, and moreover it is definitely simpler to do without them. Hence we say that a
signature morphism ϕ : Σ → Σ′ is defined implicitly by a Σ′-theory E′ when the corresponding reduct
Mod(ϕ) : Mod(Σ′, E′) ⊆ Mod(Σ′) → Mod(Σ) is injective. This is quite a straightforward lifting of implicit
definability to the abstract institutional setting we consider. A signature morphism ϕ : Σ → Σ′ is defined
explicitly by E′ when for each pushout square

Σ
ϕ //

θ
��

Σ′

θ′
��

Σ1 ϕ1
// Σ′1

and each sentence ρ ∈ Sen(Σ′1), there exists a finite set of sentences Eρ ⊆ Sen(Σ1) such that

E′ |=Σ′ (∀θ′)(ρ⇔ ϕ1(Eρ)).

The above formulation does not assume that the set of sentences of our institution is closed under the
equivalence connective and universal quantification. It should simply be read as follows: each θ′-expansion
of each model of E′ satisfies ρ if and only if it satisfies ϕ1(Eρ). Referring to the above classical definition of
explicit definability in first-order logic, θ captures the set X of variables; thus θ (and consequently θ′) extends
a signature by a finite number of variables. This kind of additional restriction on θ may be handled also at
the abstract level with some technical effort. However it turns out that this is another unnecessary detail
which may be skipped at the abstract level — and so we may consider arbitrary signature morphisms here.
The pushout square is used to capture the translation of quantified formulae that is standard in institution
theory; in the classical framework of first-order logic such a translation is taken for granted, but at the
abstract level here it becomes visible and its expected properties have to be ensured. A more substantial
difference with respect to the definition of definability in first-order logic is that we permit Eρ to be a finite
set of sentences rather than a single sentence; this is quite similar to what have been discussed above for the
concept of interpolant, and plays the same role.

A signature morphism ϕ has the definability property if and only if a theory defines ϕ explicitly when-
ever it defines ϕ implicitly. We will not discuss the opposite implication (deriving implicit from explicit
definability); we just note that while this is immediate within first-order logic (and therefore gets almost no
attention in the literature), as shown in [26] it is highly non-trivial at the general level of abstract institutions.

Implication; but is it really needed?
Besides interpolation, the first-order logic proof of Beth’s definability theorem uses implication — this

feature of first-order logic so obvious that it is hardly ever mentioned explicitly in this context. Its definition
at the level of abstract institutions is straightforward [31]: an institution has implication when for every
signature Σ and Σ-sentences ρ1, ρ2, there exists a Σ-sentence ρ such that for each Σ-model M,

M |= ρ if and only if M |= ρ2 whenever M |= ρ1.
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However, in the context of definability results, we may render implication unnecessary by reformulating the
interpolation property. The trick is to ‘parametrise’ each instance of interpolation by a set of ‘secondary’
premises. In [18, 30, 33] this is called Craig-Robinson interpolation (CRi); it also plays an important role
in specification theory, e.g. [2, 17, 18, 14]. Let us recall here explicitly its institution-theoretic formulation.
An institution has Craig-Robinson (L,R)-interpolation when for each pushout square of signatures with
ϕ1 ∈ L and ϕ2 ∈ R

Σ
ϕ1 //

ϕ2

��

Σ1

θ1

��
Σ2 θ2

// Σ′

and finite sets of sentences E1 ⊆ Sen(Σ1) and E2,Γ2 ⊆ Sen(Σ2), if θ1(E1)∪ θ2(Γ2) |= θ2(E2) then there exists
a finite set E of Σ-sentences such that E1 |= ϕ1(E) and ϕ2(E) ∪ Γ2 |= E2.

Clearly, CRi implies Ci. In any compact institution with implication, CRi and Ci are equivalent [15, 14]
(so for instance within first-order logic, the two properties coincide). This means that CRi alone in principle
is weaker than Ci and implication. But is it properly so? Is there a significant example of an institution
lacking implication but having CRi? Through a rather sophisticated technique of so-called Grothendieck
institutions [10, 13], a result in [14] gives a general method to lift Ci to CRi in institutions that may not have
implication but are embedded in a certain way into institutions having implication. The following corollary
is an example of a consequence of this result based on the Ci property stated in Cor. 3.1.

Corollary 4.1. Many-sorted Horn-clause logic (with equality) has (L,R)-CRi when L consists only of
signature morphisms that are injective on sorts and ‘encapsulate’ the operations.

As hinted above, in the context of definability results, CRi may replace Ci and implication: according
to [26], the proof of Beth’s definability theorem can be carried out using CRi alone instead of Ci and
implication. While such a change is not of interest for the classical Beth definability theorem for first-order
logic (which has implication), this general result becomes very interesting in other logical contexts, where
implication may be lacking.

Definability theorem by interpolation.
The generic scope of Beth’s definability theorem is given by the following result from [26], which

corresponds to item 4. of the scheme given in Sect. 2.

Theorem 4.1. In any compact institution that has the model amalgamation property and (L,R)-CRi for
classes of signature morphisms L, R that are stable under pushouts, any signature morphism in L ∩ R has
the definability property.

The actual scope of definability by interpolation is determined by the analysis of the conditions of
Thm. 4.1. Compactness is a common property of institutions (or logics they capture) that may be established
by various means, such as completeness of a finitary proof calculus, or preservation by ultraproducts (for
the latter method at the level of abstract institutions see [11, 14]). Model amalgamation is another common
condition that has already been been discussed. The above discussion of CRi also makes demands behind
these requirements sufficiently clear. Stability of L under pushouts means that in any pushout square of
signature morphisms as below

Σ
ϕ //

θ
��

Σ′

θ′
��

Σ1
ϕ′

// Σ′1
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if ϕ ∈ L then ϕ′ ∈ L too (and similarly for R). This is a purely technical condition, which is rather mild
for typical choices of L and R in applications. Summing up, this analysis shows that the only substantial
condition for definability by interpolation is the CRi property.

Let us present two sample applications of Thm. 4.1. The following corollary represents a twofold
extension of the scope of Beth’s definability theorem in first-order logic, to the many-sorted case and to
arbitrary signature morphisms. It is based on the interpolation result for many-sorted first-order logic [7, 21].

Corollary 4.2. In many-sorted first-order logic any signature morphism that is injective on sorts has the
definability property.

Another corollary extends the scope of Beth’s definability theorem to a logic without implication. This
is a consequence of Thm. 4.1 and Cor. 4.1.

Corollary 4.3. In many-sorted Horn-clause logic any signature morphism that is injective on sorts and
‘encapsulates’ the operations has the definability property.

5. Conclusions

We have put forward a general institution-theoretic scheme for clarifying the scope of logic theorems
and illustrated it with the cases of Craig interpolation and Beth definability results. Our approach distin-
guishes two different levels: that of the scope of results themselves and another, more subtle, of the scope
of methods to prove the results. We claim that the abstraction process involved in developments of logic
theorems within the theory of institutions almost always implies a clarification and a significant expansion
of the scope of the most important logic concepts involved, often correcting some common conceptual
misunderstandings of rather subtle nature. We have noticed this also with our two case studies.

Lack of space prevented us from discussing other important achievements that clarify the scope of logic
theorems in institution theory, following the general pattern proposed by this essay. They include Birkhoff

and Gödel completeness theorems, compactness theorems (by ultraproducts as well as by completeness),
Craig interpolation (by Robinson consistency), Beth definability (by axiomatisability), the Keisler-Shelah
isomorphism theorem (by saturated ultraproducts), axiomatisability theorems, etc.

For the same reason we restricted our presentation of the concrete scope of Craig interpolation and Beth
definability to the rather conventional contexts of simple fragments of many-sorted first-order logic, where
we presented general results that significantly expand the scope of both theorems. We think that Craig
interpolation and Beth definability in the many-sorted context considerably strengthen arguments [32] that
dramatically invalidate a rather common view expressed for instance in [30]: namely, that many-sorted
logics are ‘inessential variations’ on their single-sorted versions. Institution theory literature contains many
examples of less conventional logics, which for instance may involve partial functions, ordered models,
modalities and Kripke semantics, many-valued truth, etc. Although we have not discussed this here ex-
plicitly, it should be clear that the general results outlined in this essay easily instantiate to such contexts
as well, and determine the scopes of so generalised logic theorems in a variety of new logical situations at
hand.
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[1] Hajnal Andréka and István Németi. A general axiomatizability theorem formulated in terms of cone-injective subcategories.

In B. Csakany, E. Fried, and E.T. Schmidt, editors, Universal Algebra, pages 13–35. North-Holland, 1981. Colloquia Math-
ematics Societas János Bolyai, 29.

[2] Jan Bergstra, Jan Heering, and Paul Klint. Module algebra. Journal of the Association for Computing Machinery, 37(2):335–
372, 1990.

[3] Evert Willem Beth. On Padoa’s method in the theory of definition. Indagationes Mathematicæ, 15:330–339, 1953.
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[13] Răzvan Diaconescu. Interpolation in Grothendieck institutions. Theoretical Computer Science, 311:439–461, 2004.
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