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I study here Suszko’s reduction in toposes. The originality of this paper comes
not from the observation that the internal logic of a topos is bivalent because it is
in the scope of Suszko’s reduction; that is easy. Rather, the originality comes from
(1) recognizing the import of applying Suszko’s reduction in a topos-theoretical
setting, because the beautiful picture of logic in a topos rests on the ideas that (a)
Ω is (or at least can be seen as) a truth-values object, (b) that the internal logic
of a topos is in general many-valued and (c) that the internal logic of a topos is in
general (with a few provisos) intuitionistic1;
(2) the construction used to give categorial content to the reduction, and
(3) the extrapolation of the debate about Suszko’s thesis to the topos-theoretical
framework, which gives us some insight about the scope of another theorem, namely
that stating that the internal logic of a topos in general is intuitionistic.

The plan of the paper is as follows. In the first section I expound Suszko’s
reduction, following closely the presentations in [6], [22] and [24]. In section 2 I
show that the internal logic of a topos can be described as algebraically many-valued
but logically two-valued. I introduce there the notions of a Suszkian object and of
Suszkian bivaluation, as opposed to a truth values object and a subobject classifier.
I prove their existence and uniqueness (up to isomorphism) in a given topos. Even
though the main result of the paper is the internalization of Suszkian bivalence in
a topos, it is relatively straightforward once the hard part, the characterization of
a Suszkian object and a bivaluation, has been done. Finally, in sections 3 to 6 I
suggest how logical many-valuedness could be recovered, but at the price of letting
the internal logic of a topos become variable. Knowledge of basic category theory
(as in chapters of 1, 2 and 4 of [16]) is presupposed and knowledge of basic topos
theory would be useful (good sources are [9] and again [16]).

1. Suszko’s reduction

Let F be a non-empty collection of, say, formulas, and let A be a non-empty
collection of truth values. Let us assume A = D+ ∪ D− for suitable disjoint
collections D+ = {d1, d2, . . .} and D− = {a1, a2, . . .} of designated and antides-
ignated values, respectively. A semantics over F and A is said to be any collection
sem of mappings σ :F−→A, called n-valuations (where ‘n’ corresponds to a suffix,
uni-/bi-/tri-, and so, according to |A|, the cardinality of A). Given some n-valued
semantics sem and some formula ϕ ∈ F, it is said that one has a model for ϕ when
there is some σ ∈ sem such that σ(ϕ) ∈D+; when this is true for every σ ∈ sem it

1All this is common categorial wisdom. On (a), see for example [9], [11], [12], [13]; on (b) see

[2], [3], [4], [9], [11], [12], [16]; on (c) just to name but two important texts where this is asserted

see [9] and [13]. These claims are so widely endorsed by topos theorists as accurate readings of
some definitions and theorems that it is hardly worth documenting, but I have done it just to

show that they appear in several major texts by leading category-theorists.
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is said that ϕ is validated. A notion of entailment given by a consequence relation
|=sem⊆ ℘(F)XF associated to the semantics sem is then defined by saying that a for-
mula ϕ∈F follows from a set of formulas Γ⊆F whenever all models of all formulas
of Γ are also models of ϕ, that is:

Γ |=sem ϕ iff for all σ ∈ sem, σ(ϕ) ∈ D+ whenever σ(Γ) ⊆ D+

I will omit the semantics in the index whenever it is clear from the context. Clauses
like Γ, ϕ, ∆ |= ψ are written to denote 〈 Γ ∪ ϕ ∪ ∆, ψ 〉∈ |=; such clauses can
be called inferences.

It was early remarked by Tarski that the above notion of consequence may be
abstractly axiomatized as follows. For every Γ, ϕ, ∆, ψ:
(T1) Γ, ϕ,∆ 
 ϕ (reflexivity)
(T2) If ∆ 
 ϕ then Γ,∆ 
 ϕ (monotonicity)
(T3) If Γ, ϕ 
 ψ and ∆ 
 ϕ then Γ,∆ 
 ψ (transitivity)

A logic L can be defined simply as a structure (typically a set of propositions,
formulas, sentences or something similar) together with a consequence relation de-
fined over it. Logics respecting axioms (T1)-(T3) are called Tarskian. Notice, in
particular, that when sem is a singleton, one also defines a Tarskian logic. A theory
will be any subset of a logic. A logic given by some convenient structure and a
consequence relation 
 is said to be sound with respect to some given semantics
sem whenever Γ 
 ϕ implies Γ |=sem ϕ (that is, 
 ⊆ |=sem); and is said to have a
complete semantics when Γ |=sem ϕ implies Γ 
 ϕ (that is, |=sem ⊆ 
). A semantics
which is both sound and complete for a given logic is often called adequate. In case
a logic L is characterized by some n-valued semantics, it will be dubbed a (general)
n-valued logic, where n = |A|; L will be called finite-valued if n<ℵ0, otherwise it
will be called infinite-valued. Note that, as a logic may have different semantical
presentations, the ‘n’ in n-valued is not necessarily unique for L. Given a family
of logics {Li}i∈I , where each Li is ni-valued, it is also said that the logic given by
L = ∩i∈ILi is Maxi∈I(ni)-valued (this means that an arbitrary intersection of
Tarskian logics is still a Tarskian logic).

Suszko distinguished between the logical values on the one hand, and algebraic
values on the other hand. According to Suszko, many-valued logics resulted from a
purely referential phenomenon, i.e. from the fact that when one defines homomor-
phisms between a logic L = 〈F, |=〉 and one of its models, one can associate with
an element of F = |F| any number of algebraic values, for these homomorphisms
are in fact merely admissible reference assignments for F . Said otherwise, they are
algebraic valuations of L over the model. Logical values would play a different role,
since they are used to define logical consequence. One of them, TRUE, is used to
define consequence as follows: If every premise is TRUE, then so is (at least one
of) the conclusion(s). By contraposition, the other logical value also can be used to
explain valid semantic consequence: If the (every) conclusion is NOT TRUE, then
so is at least one of the premises.

Theorem 1.1 (Suszko’s Reduction). Every Tarskian logic is logically two-valued.

Proof. For any n-valuation σ of a given semantics sem (n), and every consequence
relation based on An andD+

n , define A2 = {TRUE,NOT TRUE} andD+
2 = {TRUE}

and set the characteristic total function bσ :F−→A2 to be such that bσ(ϕ) = TRUE
if and only if σ(ϕ) ∈ D+

2 . Now, collect all such bivaluations bσ’s into a new seman-
tics sem(2), and notice that Γ |=sem(2) ϕ if and only if Γ |=sem(n) ϕ. �
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Reductive results similar in spirit to Suszko’s were presented independently by
other logicians, for example Newton da Costa (see e.g. [10]), Dana Scott (cf. [20],
[21]) and Richard Routley and Robert K. Meyer [19]. Moreover, there is a family
of akin results of different strengths under the label “Suszko’s reduction”. Suszko’s
reduction in rigor, required from the logic not only to be reflexive, transitive and
monotonic, but also structural. Suszko-da Costa’s reduction, which is closer to what
I expound here, dropped the structurality requisite. Suszko-Béziau’s reduction only
requires reflexivity from the logic (cf. [22]).

Suszko declared that many-valuedness is “a magnificent conceptual deceit” and
he claimed that “(. . . ) there are but two logical values, true and false (. . . )”. This
claim is now called Suszko’s thesis and can be stated more dramatically as “All
logics are bivalent” or “Many-valued logics do not exist at all”. Reductive results,
especially the strongest form (Suszko-Béziau’s reduction) seem to be overwhelming
evidence in favor of Suszko’s thesis because virtually all logics regarded as such are
in the scope of this theorem.

A possible way to resist Suszo’s thesis is by extending the scope of logics to
cover non-Tarskian logics, especially to non-reflexive ones to avoid Suszko-Béziau’s
reduction, and this reply is what I will discuss more extensively after presenting
Suszko’s reduction in a categorial setting.

2. Suszkoing toposes. . .

A (standard) topos is a category SE with equalizers, (binary) products, coequal-
izers, coproducts, exponentials, and a morphism Strue : 1−→ SΩ, called subobject
classifier, has the following property:
Comprehension axiom. For each Sϕ : O −→ SΩ there is an equalizer of Sϕ
and StrueO, and each monic m : M � O is such an equalizer for a unique Sϕ.
In diagrams, Strue is such that for every Sϕ and every object T and morphism
o :T −→O, if m ◦Sϕ = m ◦S trueO and x ◦S ϕ = x ◦S trueO, then there is a unique
h :X−→M that makes the diagram below commutative:

M >
m
> O

Sϕ
>

StrueO
> SΩ

X

x

∧

h

<

Example 2.1. Let Set be the (standard) category of (abstract constant) sets as
objects and functions as morphisms. SΩSet has only two elements with the order

SfalseSet < StrueSet. Hence, in this category SΩSet = 2
SSet. Thus, for every

element t of O, t :1−→O, t ∈ O if and only if Sϕ ◦ t = StrueSet, and t /∈ O if and
only if Sϕm ◦ t = SfalseSet, since SfalseSet is the only morphism distinct from

StrueSet.

Example 2.2. SS
↓↓ is the category of (standard irreflexive directed multi-) graphs

and graph structure preserving maps.2 An object of SS
↓↓ is any pair of sets equipped

with a parallel pair of maps A
s
>

t
>V where A is called the set arrows and V is the

2Nice introductions to this category can be found in [23] and [12].
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set of dots (or nodes or vertices). If a is an element of A (an arrow), then s(a)
is called the source of a, and t(a) is called the target of a.

Morphisms of SS
↓↓ are also defined so as to respect the graph structure. That

is, a morphism f : (A
s
>

t
>V )−→ (E

s′
>

t′
>P ) in SS

↓↓ is defined to be any pair of

morphisms of Set fa :A−→V , fv : E−→P for which both equations

fv ◦ s = s′ ◦ fa
fv ◦ t = t′ ◦ fa

are valid in SSet. It is said that f preserves the structure of the graphs if it preserves
the source and target relations.

A terminal object in this category, 1
SS
↓↓ , is any arrow such that its source and

target coincide.
This topos provides a simple yet good example of a truth values object with more

than two elements. SΩS↓↓ has the form of a graph like that in Figure 1 above.
There are exactly three morphisms 1

SS
↓↓ −→ SΩS↓↓ in this category, which means

that SΩS↓↓ has three truth values with the order SfalseS↓↓< S(
s
t )S↓↓< StrueS↓↓ .

The Comprehension axiom enables us to define the more usual standard con-
nectives as operations on SΩ in a way that they come with certain truth conditions.3

For the purposes of this paper only the following ones are needed:
Negation. ¬ :SΩ−→SΩ
¬p = Strue if and only if p = Sfalse, otherwise ¬p = Sfalse
Disjunction. ∨ :SΩ×SΩ−→SΩ
(p ∨ q) = sup(p, q)
Implication. ⇒:SΩ×SΩ−→SΩ
(p⇒ q) = Strue if and only if p ≤ q, otherwise (p⇒ q) = q4

The internal logic of a standard topos will be the algebra of operations of SΩ,
that is, the algebra of operations of its object of truth values.5 In general, SΩ
has more than two elements, and that is why it is said that the internal logic of
a topos is in general many-valued. There is a theorem establishing necessary and
sufficient conditions for a proposition Sp being the same morphism as Strue in
a given standard topos SE. Let ‘|=I ’ indicate that logical consequence gives the
results as in intuitionistic logic. Then the following theorem holds:

3For details see for example [9, § 6.6].
4sup and ≤ here are relative to the partial order formed by the elements of SΩ (morphisms

with codomain SΩ).
5This logic is called internal because (i) it is formulated exclusively in terms of the objects

and morphisms of the topos in question and (ii) it it is the right to reason about the topos in
question, since it is determined by the definition of its objects and morphisms. It is not a canon

imposed “externally” to reason about the topos: Using a different logic for that purpose would
alter the definitory properties of those objects and morphisms and thus it would not be a logic
for the intended objects and morphisms.
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Theorem 2.3. For every proposition Sp, |=
SE Sp for every topos SE if and only if

|=I Sp.

i.e. SΩ is a Heyting algebra.6 Hence the commonplace that the internal logic of a
topos is, in general, intuitionistic.

Example 2.4. The internal logic of SSet is classical. For example, in SSet,
every proposition p is the same as one and only one of StrueSet and SfalseSet.
¬◦S trueSet =S falseSet and ¬◦S falseSet =S trueSet. Hence, for any p, ¬¬p = p.
Also, for any p (p ∨ ¬p) = ∨ ◦ 〈p,¬p〉 = sup(p,¬p) =S trueSet.

Example 2.5. In SS
↓↓, negation gives the following identities of morphisms:

¬ StrueS↓↓ = SfalseS↓↓ , ¬ S(
s
t )S↓↓ = falseS↓↓ , ¬ SfalseS↓↓ = StrueS↓↓

Since (p⇒ q)=Strue if and only if (p ∧ q) = p, in general (¬¬ p ⇒ p) 6= Strue
in S↓↓ because even though (¬ ¬ p ⇒ p) = StrueS↓↓ either when p = StrueS↓↓
or when p = SfalseS↓↓ , (¬ ¬ p ∧ p) 6= ¬ ¬ p when p = S(st )S↓↓ . Given
that (¬ ¬ p ⇒ p ) 6= StrueS↓↓ but there is no formula Φ such that Φ = true
in classical logic and Φ = false in intuitionistic logic, (¬¬p ⇒ p) = S(st )S↓↓
when p = S(st )S↓↓ . Moreover, p ∨ ¬p fails to be the same morphism as StrueS↓↓
since (p ∨ q) = Strue if and only if either p = Strue or q = Strue. If p =

S(st )S↓↓ , ¬p = SfalseS↓↓ , so neither p = StrueS↓↓ nor ¬p = StrueS↓↓ and hence
(p ∨ ¬p) 6= StrueS↓↓ .

The underlying idea behind Suszko’s reduction can be expressed in terms of
morphisms and compositions as follows. The internal logic of a standard topos is
said to be algebraically n-valued if there are n distinct morphisms 1−→SΩ in the
given standard topos. As reductive results have shown, an algebraically n-valued
Tarskian logic in general is not logically n-valued. Accordingly, the internal logic
of a topos is said to be logically m-valued if its notion of consequence implies that
there are m distinct values and this can be internalized in the topos. I give here
a definition for the case m = 2 and suggest a more general definition of logical
many-valuedness for the internal logic of a topos in section 6.

Logical consequence in a topos is assumed to be traditional, Tarskian conse-
quence. q is a consequence of premises Γ if true is preserved from premises to the
conclusion and is not a consequence if the premises are the same morphism as true
but the conclusion is not. A theorem is a consequence of an empty set of premises,
i.e. if it is a morphism which is the same morphism as true. A non-theorem is a
morphism which is different from true. But the two values true and not true (or
untrue, etc.) are the only values required to define (Tarskian) consequence. Let us
give categorial content to this Suszkian distinction.

Definition 2.6. In a non-degenerate category C with subobject classifier, a Suszkian
logical truth values object, or Suszkian object for short, is an object S such that

there are exactly two morphisms 1
δ+
>

δ−
>S and a morphism sep : SΩ−→ S such

that sep is the unique morphism which satisfies the following properties:
(S1) sep ◦ p = δ+ if p =S true, and

6In rigor, Sp is a morphism which corresponds to a formula (Sp)∗ in a possibly different
language, but there is no harm if one identifies them, hence the abuse of notation. A proof can

be found in [9, see §8.3 for the soundness part and §10.6 for the completeness part].
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(S2) sep ◦ p = δ− if p 6=S true
The morphisms δ+ and δ− can be collectively denoted by biv and are called a

Suszkian bivaluation. Thus, the diagram below commutes according to the above
definition of biv and the conditions (S1) and (S2):

1
p

> SΩ

S

sep

∨biv >

Theorem 2.7. A Suszkian object is unique up to isomorphism.

Proof. Suppose that S is a Suszkian object and that there is an isomorphism
f : S ′ −→S . Given any two morphisms x, y : 1−→S ′, collectively denoted biv′,
one has f ◦ biv′ : 1−→S . By exactness, biv = f ◦ biv′, and so biv′ = f−1 ◦biv.
Thus, f−1 ◦ biv are the only two arrows from 1 to S ′. By a similar reasoning,
sep′ = f−1◦sep. The exactness and uniqueness conditions imply that S ′, biv′ and
sep′ satisfy (S1) and (S2), so S ′ is also a Suszkian object.

Now suppose that both S and S ′ are Suszkian objects. Suppose now that there
is a morphism f :S ′−→S such that f◦biv′=f◦(sep′◦ϕ)=sep◦ϕ=biv. Such an f
is unique. Take now a morphism g :S −→S ′. Then f ◦(g◦biv)=(f ◦g)◦biv= biv.
But 1S is the unique morphism from S to S such that 1S ◦ biv = biv. Hence
f ◦g = 1S . By an analogous reasoning g◦f = 1S ′ . Then, f is an isomorphism. �

Remark 2.8. As a consequence of the definition, there is no morphism ψ :1−→S
such that ψ ∈ δ+ and ψ ∈ δ−. However, this does not mean that ∩ ◦ (δ+, δ−) = ∅.
This implies that, in general, S is not isomorphic to 2 in spite of having exactly
two morphisms 1−→S (nonetheless, it is easily proved that a Suszkian object and

SΩ are isomorphic for example in Set).

From the very definition of a Suszkian object, for every proposition ϕ, either
sep ◦ ϕ = δ+ or sep ◦ ϕ = δ−. Now, for every theorem Φ, sep ◦ Φ = δ+, and
for every non-theorem Ψ, sep ◦ Ψ = δ−. This justifies the definition of a Suszkian
object, but the difficult part is proving the following

Theorem 2.9. Every (non-degenerate) topos has a Suszkian object.

which guarantees that the internal logic of a topos is completely characterized by
a Suszkian object. First we need to prove the following

Lemma 2.10. In every standard non-degenerate topos there is an object S such
that there are exactly two morphisms from a terminal object 1 to S .

Proof. Suppose there is no object such that it is the codomain of exactly two
morphisms with domain a terminal object 1. One has thus three options:
(a) No object X is the codomain of a morphism with domain 1.
(b) Every object X is the codomain of only one morphism with domain 1.
(c) Every object X is the codomain of three or more distinct morphisms with
domain 1.

There must be at least the identity morphism for 1, hence there is a morphism
with domain 1, so (a) is impossible. According to (b), SΩ would have only one
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morphism 1−→ SΩ. But then Strue = Sfalse and hence the topos would be de-
generate, contrary to the hypothesis. Regarding (c), the (domain of the) subobject
induced by two of those morphisms would provide the required object. �

Now it is possible to prove Theorem 2.9:

Proof. Let S be an object of SE together with exactly two different morphisms

1
δ+
>

δ−
>S . Then there is exactly one morphism sep :SΩ−→S such that makes the

following diagram commute:

M >
m
> O

Sϕ
> SΩ

1

a

∧

δ+
>

Strue

>

S

sep

∨

This means that a standard non-degenerate topos has a Suszkian object. �

Remark 2.11. Unlike a subobject classifier, a Suszkian object does not necessarily
classify subobjects and it does not necessarily count them, either, for it collapses
every other proposition different from Strue into δ−. A Suszkian object provides a
bivaluation biv = sep ◦ p for SΩ, i.e. it says whether a proposition is logically true
or not, full stop.

Example 2.12. Consider the three truth values in SS
↓↓. Then sep◦S trueS↓↓= δ+

and sep◦SfalseS↓↓ = sep◦S(st )S↓↓ = δ−. Hence, for example, sep ◦ (¬ ¬ p ⇒ p) = δ−,
for (¬¬p ⇒ p) =S (st )S↓↓ when p =S (st )S↓↓ . Something similar happens with
(p ∨ ¬p).

Remark 2.13. The internal logic of complement-toposes (cf. [17], [18]) is Tarskian,
too. Even though the subobject classifier and the connectives are described in a dif-
ferent, dual way, the notion of consequence in the internal logic of complement-
toposes is the same as that of (ordinary or standard) toposes. Therefore, the
Suszkian object can be defined in the same way as it was done here for ordinary
toposes. Moreover, the proof of Theorem 2.9 can be copied almost verbatim for
complement-toposes (but of course the morphisms equal to “true” are different in
ordinary and complement-toposes; their logics have been differently, dually described
after all!). This allows us to speak of toposes simpliciter, ignoring for the rest of
the paper whether they are standard or not unless otherwise indicated.

3. . . . and de-Suszkoing them?

There are is least one more notion of logical consequence which in general is
not characterizable by a bivalent semantics and that could introduce interesting
complications in the theory of the internal logic of toposes. Consider Malinowski’s
Q-consequence (“Q” for “Quasi”; cf. [14], [15]):
Q-consequence. q is a logical Q-consequence from premises Γ, in symbols Γ |=Q q,

if and only if any case in which each premise in Γ is not antidesignated is also a case
in which q is designated. Or equivalently, there is no case in which each premise in
Γ is antidesignated, but in which q fails to be designated.
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Thus logical many-valuedness in a topos could be obtained at a different level,
by taking it into account from the very characterization of logical consequence.
However, this would result in a change in the description of the internal logic,
for it would be no longer intuitionistic. The Tarskian properties are indissolubly
tied to the canonical characterizations of consequence, but Q-consequence is non-
Tarskian: it is not reflexive. Let me exemplify how radical the change would be if
Q-consequence is adopted instead of the Tarskian one.

Theorems are those propositions which are consequences of an empty set of
premises, so theorems are propositions that are always designated. This is just the
usual notion of theoremhood, but whether Q-consequence affects the collection of
theorems depends on what are the designated values, because one has to choose by
hand, as it were, what are the designated, antidesignated and neither designated nor
antidesignated values. If Etrue is the only designated value as usual, the theorems
of the internal logic are the same whether Tarskian or Q-consequence is assumed.

Nonetheless, Q-consequence does affect the validity of inferences even if Etrue
is the only designated value. Unlike Tarskian consequence, Q-consequence is not
reflexive. For example, let us assume that StrueS↓↓ is the only designated value in

SS↓↓ and that SfalseS↓↓ is the only antidesignated value. Suppose that p =S (st )S↓↓ .

Then p2Q
SS
↓↓ p, because Q-consequence requires that if premises are not antidesig-

nated, conclusions must be designated, which is not the case in this example.

4. Other variations in the internal logic

Consider now Frankowski’s P-consequence (“P” for “Plausible”; cf. [7], [8]):
P-consequence. q is a logical P-consequence from premises Γ, in symbols Γ |=P q, if
and only if any case in which each premise in Γ is designated is also a case in which
ϕ is not antidesignated. Or equivalently, there is no case in which each premise in
Γ is designated, but in which q fails to be antidesignated.

In general, P-consequence does affect the collection of theorems. Since theorems
are those propositions which are consequences of an empty set of premises, theorems
according to P-consequence are those propositions that are not antidesignated. So
theorems of the internal logic are not the same as those when Tarskian or Q-
consequence are assumed even if Etrue is taken as the only designated value. For
example, let us assume as above that StrueS↓↓ is the only designated value in SS↓↓

and that SfalseS↓↓ is the only antidesignated value. p ∨ ¬p would be a theorem
because there is no case in which it is antidesignated.

P-consequence affects also the validity of inferences. Remember that unlike
Tarskian consequence, P-consequence is not transitive. Suppose that p = StrueS↓↓ ,
q = S(st )S↓↓ and r = SfalseS↓↓ . Thus p |=P

SS
↓↓ q and q |=P

SS
↓↓ r, but p 2P

SS
↓↓ r,

because P-consequence requires that if premises are designated, conclusions must
be not antidesignated, which is not the case in this example.7

5. Is this logical consequence?

An obvious worry at this point is whether these strange notions of consequence
are notions of logical consequence at all. I sketch five arguments supporting the
idea that they do not lead us so far off the usual business of logic.

7Similar arguments to the above can be given to show how Q- and P-consequence modify the
internal logic of a complement-topos.
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First, one of the non-Tarskian notions of consequence is well-known, non-monotonic
logic, but non-reflexive and non-transitive consequence relations are not so popu-
lar. However, there is no prima facie reason as to why it is possible to do without
monotonicity but not without reflexivity or transitivity: As properties of a relation
of logical consequence they seem to be pari passu.

Beall and Restall [1] say that they are not on equal footing “because preservation
of designated values (from premises to conclusions) is a reflexive and transitive
relation”. This begs the question, for (and this is a second argument for non-
Tarskian logics) they are precisely asking for ways of logically connecting premises
and conclusions others than preservation of designated values.

Third, designatedness is a case of non-antidesignatedness, so Tarskian conse-
quence is a case of a more general notion which also encompasses Q- and P-
consequence: Preservation of non-antidesignatedness. For example, Q-consequence
deals with preservation of non-antidesignated values but in such a strong way that
it rather forces passing from non-antidesignated values to designated values. Simi-
larly, P-consequence is preservation of non-antidesignated values but in such a weak
way that it allows passing from designated values to some non-designated values
(but never from designated to antidesignated values!). Let me call this notion of
consequence TMF-consequence (for Tarski, Malinowski and Frankowski) and de-
fine it as follows: q is a logical TMF-consequence from premises Γ, in symbols
Γ |=TMF q, if and only if any case in which each premise in Γ is not antidesignated
is also a case in which q is not antidesignated. Or equivalently, there is no case in
which each premise in Γ is not antidesignated, but in which q fails to be antides-
ignated. Again equivalently, if there is a case in which q is antidesignated, then at
least one premise in Γ is also antidesignated.

Fourth, a good signal that we are not very far of logic is that under minimal clas-
sical constraints on the structure of truth values, these notions of consequence are
indistinguishable from the traditional one. If there are only two truth values, true
and false with their usual order, the collections of designated and antidesignated
values exhaust all the possible values, designated = not antidesignated and not des-
ignated = antidesignated. But if this were a feature merely of classical logic, surely
Q- and P-consequence would have arisen before they did. However, these notions
of consequence collapse if the collections of designated and antidesignated values
are supposed to be mutually exclusive and collectively exhaustive with respect to
the total collection of values given, as is assumed in most popular logics.

Finally, another good signal that we are still in the business of logic is that if one
uses cognitive states like acceptance and rejection to define validity, these different
notions of consequence arise almost naturally, for example:
- An argument is TMF-valid if and only if, if the premises are not rejected, then
conclusions are also not rejected. Equivalently, if the conclusions are rejected,
premises are rejected too. The relevant dialogical properties are those not rejected,
so there is more than one property that can be forwards-preserved. The preservation
of these properties is required, but the direction is not important since not rejected
determines another property, whose name depends of what the components of the
first property are taken to be (for example, it can be accepted or either accepted
or undecided), which makes the collections of properties mutually exclusive (but
probably not collectively exhaustive).
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- An argument is Tarskian-valid if and only if, if the premises are accepted, then
the conclusions are also accepted. Equivalently, if the conclusions are non-accepted,
the premises are non-accepted either. The relevant dialogical property is accepted,
so there is only one property forwards-preserved. That property determines a prop-
erty, not accepted, which makes the collections of properties mutually exclusive and
collectively exhaustive.

Similar variations can be obtained using also probabilistic, conceivability, epis-
temic or whatnot specifications of consequence. Thus, the easy answer to the
question of this section is that, at least technically, non-Tarskian notions of conse-
quence such as Q- and P-consequence are as legitimate as non-classical logics are.
More elaborate answers could be given along the lines of non-monotonic logics. For
example, Q-consequence would serve to “tie” to conclusions more certain than the
premises, whereas P-consequence would allow to “jump” to conclusions less certain
than the premises. Thus, the route of exploring notions of logical consequence other
than the Tarskian one provides a way to give Suszko’s thesis up.8

6. Logical m-valuedness

A problem at this point is whether those other notions of consequence can be
internalized in a topos. Without trying to settle that question here, I will probe an
idea at least for consequences based on some form of forwards-preservation.

A topos is said to be logically m-valued if
(1) the assumed notion of consequence, 
, implies that there are m logical values;
(2) there is an object V such that it is the codomain of exactly m morphisms with
domain 1 such that to each logical value implied by 
 corresponds one and only
one morphism from 1 to V; and
(3) there is a unique morphism sep : Ω−→V such that sep satisfies the following
properties:

(3.1) for every δi :1−→V there is a p :1−→Ω such that sep ◦ p = δi
(3.2) If p 
 q implies that p and q have certain 
-logical values vi and vj ,

respectively, then if sep ◦ p = δi, sep ◦ q = δj (where δi corresponds to vi and δj
corresponds to vj).

The morphisms δ1, . . . δm can be collectively denoted by m-val and are called a
logical m-valuation (based on 
). Thus, the diagram below commutes according to
the definition of m-val just given and the conditions (1)-(3):

1
p

> Ω

V

sep

∨m−val >

The morphism δi such that sep◦Etrue = δi will be called “morphism of designated
values” and will be denoted “δ+”.

8[24] is a good source of inspiration for other notions logical consequence. Abstraction on the

notions of logical consequence could go further up to a definition of a logical structure analogous
to that of an algebraic structure given in Universal Algebra such that other notions of consequence

and particular logics appear as specifications of that structure: That is the project of Universal

Logic, see [5] for an introduction. However, I will stop generalization here because of limitations
of space and because it has been enough to show that the many-valuedness of topos logic is not

an easy issue.
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[7] S. Frankowski. Formalization of a plausible inference. Bulletin of the Section of Logic, 33:41–

52, 2004.

[8] S. Frankowski. p-consequence versus q-consequence operations. Bulletin of the Section of
Logic, 33:197–207, 2004.

[9] R. Goldblatt. Topoi: The Categorial Analysis of Logic, volume 98 of Studies in Logic and

the Foundations of Mathematics. North Holland Publishing Co., Amsterdam, 1984. Revised
edition.

[10] J. Kotas and N. C. A. da Costa. Some problems on logical matrices and valorizations. In

A. Arruda, N. C. A. da Costa, and A. M. Sette, editors, Proceedings of the Third Brazilian
Conference on Mathematical Logic, pages 131–145. Sociedade Brasileira de Lógica, São Paulo,

1980.

[11] F. W. Lawvere and R. Rosebrugh. Sets for Mathematics. Cambridge University Press, Cam-
bridge, 2003.

[12] F. W. Lawvere and S. H. Schanuel. Conceptual Mathematics. A First Introduction to Cate-
gories. Cambridge University Press, 2000. Second reprint.

[13] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos

Theory. Springer-Verlag, 1992.
[14] G. Malinowski. Q-consequence operation. Reports on Mathematical Logic, 24:49–59, 1990.

[15] G. Malinowski. Towards the concept of logical many-valuedness. Folia Philosophica, 7:97–103,

1990.
[16] C. McLarty. Elementary Categories, Elementary Toposes. Oxford Clarendon Press, Toronto,

1995.

[17] C. Mortensen. Inconsistent Mathematics. Kluwer Mathematics and Its Applications Series.
Kluwer Academic Publishers, 1995.

[18] C. Mortensen. Closed set logic. In R. T. Brady, editor, Relevant Logics and Their Rivals,

volume II, pages 254–154. Ashgate Publishing, 2003.
[19] R. Routley and R. K. Meyer. Every sentential logic has a two-valued worlds semantics. Logique

et Analyse, 19(74–76):345–365, 1976.

[20] D. Scott. Background to formalization. In H. Leblanc, editor, Truth, Syntax and Modality,
pages 244–273. North Holland, 1973.

[21] D. Scott. Completeness and axiomatizability in many-valued logics. In L. H. et al., editor,
Proceedings of the Tarski Symposium, pages 411–436. American Mathematical Society, 1974.

[22] M. Tsuji. Many-valued logics and Suszko’s thesis revisited. Studia Logica, 60(2):299–309,
1998.

[23] S. Vigna. A guided tour in the topos of graphs. Technical Report 199–7, Uni-
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