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Abstract. In the context of proliferation of many logical systems in the area of
mathematical logic and computer science, we present a generalization of forcing
in institution-independent model theory which is used to prove an abstract Omit-
ting Types Theorem (OTT). We instantiate this general result to many first-order
logics, which are, roughly speaking, logics whose sentences can be constructed
from atomic formulae by means of Boolean connectives and classical first-order
quantifiers. These include first-order logic (FOL), logic of order-sorted algebra
(OSA), preorder algebra (POA), partial algebras (PA), as well as their infini-
tary variants FOLω1,ω, OSAω1,ω, POAω1,ω, PAω1,ω. In addition to the first tech-
nique for proving the OTT, we develop another one, in the spirit of institution-
independent model theory, which consists of borrowing the Omitting Types Prop-
erty (OTP) from a simpler institution across an institution comorphism. As a re-
sult we export the OTP from FOL to first-order partial algebras (FOPA) and
higher-order logic with Henkin semantics (HNK), and from the institution of
FOLω1,ω to FOPAω1,ω and HNKω1,ω. The second technique successfully ex-
tends the domain of application of OTT to (non classical) logical systems for
which the standard methods may fail.

Introduction

A type is a set of formulas in finite number of variables. A type ∆ with free variables
x1 . . .xn is principal for a theory T if there exists a finite set of formulas p with free
variables x1 . . .xn such that T ∪ p |= ∆. The classical OTT states that if T is a complete
theory and (∆n : n ∈N) is a sequence of non-principal types of T , then there is a model
of T omitting all the types ∆n. The OTT was proved by Henkin [31] and Orey [38]
using the method of diagrams and it has many applications in classical model theory.
Forcing is a technique invented by Paul Cohen, for proving the independence of the
continuum hypothesis from the other axioms of Zermelo-Fraenkel set theory [12,13]. A.
Robinson [42] developed an analogous theory of forcing in model theory, and Barwise
[6] extended Robinson’s theory to infinitary logic and used it to give a new proof of the
OTT. An early contribution on forcing and the omitting types for infinitary logic Lω1,ω

is [32]. For recent developments of the result see [2,3,4].
The framework adopted here is the theory of institutions [23] which is a category-

based formalization of the intuitive notion of logical system. Institutions constitute a
meta-theory on logical systems similar to how universal algebra constitute a meta-
theory for groups and rings. The institution theory arose within computing science,



by abstracting away from the realities of conventional logics, with the ambition of do-
ing as much as possible at the level of abstraction, independent of the details of any
particular logical system. In addition to the large use in algebraic specification theory
where institutions became the most fundamental mathematical structure underlying the
formal specification languages, there have been substantial developments towards an
abstract institutional model theory [44,46,15,18,16,28,40,29,39,11,27]. See [19] for a
monography dedicated to this topic.

The present paper studies the abstract notions of OTP and forcing in the frame-
work of institutions, and points out many particular instances to concrete logics. In
institutional model theory the forcing technique was introduced in [27] and it was
used to prove an abstract first-order completeness theorem. The result was obtained
as a consequence of the research on a syntactic forcing property. In the present paper
we investigate a semantic forcing property which was studied in classical model the-
ory by Robinson, Barwise and Keisler. As an outcome of this investigation we obtain
institution-independent versions of some well-known results in classical model theory:

1. Downward Löwenheim-Skolem Theorem (”any consistent theory has a countable
model”), and

2. Omitting Types Theorem (“any non-principal type has a model which omits it”).

The categorical assumptions used here are easy to check in concrete logics such that
the abstract theorems can be instantiated to many institutions, some of them described
explicitly here, and others just mentioned. Another advantage of the present research is
the applicability to both finitary and infinitary cases which is due to the use of forcing
technique.

However, there are examples of more refined institutions which cannot be cast in
this abstract framework and for which we believe that the standard methods of proving
OTT cannot be replicated. Therefore, in addition to the first technique for establish-
ing OTP, we develop another one, in the spirit of institutional model theory. Instead
of developing directly the result within a given institution, one may “borrow” it from
a simpler institution via an adequate encoding, expressed as institution comorphisms
[26]. More concretely, here we prove a generic theorem for OTP along an institution
comorphisms I → I ′ such that if I ′ has the OTP and the institution comorphism is
conservative, then I can be established to have the OTP. We illustrate the applicability
of our borrowing result with examples: we “export” the OTP from first-order logic to
higher order logic with Henkin semantics and from the first-order logic to first-order
partial algebras.

The paper is organized as follows. The first technical section introduces the institu-
tion theoretic preliminaries and recalls necessary fundamental concepts of institution-
independent model theory such as internal logic, basic sets of sentences, reachable mod-
els. The next section recalls the forcing technique of institutional model theory. In Sec-
tion 3 we develop an institution-independent version of the OTT applicable uniformly
to both finitary and inifinitary cases. Section 4 studies the translation of the OTP along
the institution comorphisms and illustrates its applicability power with examples which
cannot be captured in the previous abstract setting. Section 5 concludes the paper and
discusses the future work.
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We assume that the reader is familiar with the basic notions of category theory. See
[33] for the standard definitions of category, functor, pushout, etc., which are omitted
here.

1 Institutions

The concept of institution formalizes the intuitive notion of logical system, and has been
defined by Goguen and Burstall in the seminal paper [23].

Definition 1. An institution I = (SigI ,SenI ,ModI , |=I ) consists of

1. a category SigI , whose objects are called signatures,
2. a functor SenI : SigI → Set, providing for each signature a set whose elements are

called (Σ-)sentences,
3. a functor ModI : (SigI )op → CAT, providing for each signature Σ a category

whose objects are called (Σ-)models and whose arrows are called
(Σ-)morphisms,

4. a relation |=I
Σ
⊆ |ModI (Σ)| × SenI (Σ) for each signature Σ ∈ |SigI |, called (Σ-

)satisfaction, such that for each morphism ϕ : Σ→ Σ′ in SigI , the following satis-
faction condition holds:

M′ |=I
Σ′ SenI (ϕ)(e) iff ModI (ϕ)(M′) |=I

Σ e

for all M′ ∈ |ModI (Σ′)| and e ∈ SenI (Σ).

We denote the reduct functor ModI (ϕ) by �ϕ and the sentence translation SenI (ϕ) by
ϕ( ). When M = M′ �ϕ we say that M is a ϕ-reduct of M′ and M′ is a ϕ-expansion of
M. When there is no danger of confusion, we omit the superscript from the notations of
the institution components; for example SigI may be simply denoted by Sig.

Example 1 (First Order Logic (FOL) [23]). Signatures are first-order many-sorted sig-
natures (with sort names, operation names and predicate names); sentences are the usual
closed formulae of first-order logic built over atomic formulae given either as equalities
or atomic predicate formulae; models are the usual first-order structures; satisfaction of
a formula in a structure is defined in the standard way.

Example 2 (Preorder Algebra (POA) [21,22]). The POA signatures are just the ordi-
nary algebraic signatures. The POA models are preordered algebras which are inter-
pretations of the signatures into the category of preorders Pre rather than the category
of sets Set. This means that each sort gets interpreted as a preorder, and each operation
as a preorder functor, which means a preorder-preserving (i.e. monotonic) function. A
preordered algebra morphism is just a family of preorder functors (preorder-preserving
functions) which is also an algebra morphism.

The sentences have two kinds of atoms: equations and preorder atoms. A preorder
atom t ≤ t ′ is satisfied by a preorder algebra M when the interpretations of the terms
are in the preorder relation of the carrier, i.e. Mt ≤Mt ′ . Full sentences are constructed
from equational and preorder atoms by using Boolean connectives and first-order quan-
tification.
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Example 3 (Order Sorted Algebra (OSA) [25]). An order-sorted signature (S,≤,F)
consist of an algebraic signature (S,F) with a partial ordering (S,≤) such that the fol-
lowing monotonicity condition is satisfied: σ∈Fw1→s1∩Fw2→s2 and w1≤w2 imply s1≤
s2. A morphism of OSA-signatures ϕ : (S,≤,F)→ (S′,≤′,F ′) is just a morphism of al-
gebraic signatures (S,F)→ (S′,F ′) such that the ordering is preserved, i.e. ϕ(s1) ≤′
ϕ(s2) whenever s1 ≤ s2. Given an order-sorted signature (S,≤,F), an order-sorted
(S,≤,F)-algebra is a (S,F)-algebra M such that s1 ≤ s2 implies Ms1 ⊆ Ms2 , and σ ∈
Fw1→s1 ∪Fw2→s2 and w1 ≤ w2 imply Mw1,s1

σ = Mw2,s2
σ |Mw1

. Given two order-sorted (S,≤
,F)-algebras M and N, an order-sorted (S,≤,F)-morphism h : M → N is a (S,F)-
morphism such that s1 ≤ s2 implies hs1 = hs2 |Ms1

.
An OSA signature (S,≤,F) is regular iff for each σ ∈ Fw1→s1 and each w0 ≤ w1

there is a unique least element in the set {(w,s) | σ ∈ Fw→s and w0 ≤ w}. For regular
signatures (S,≤,F), any F-term t has a least sort LS(t) and the initial (S,≤,F)-algebra
can be defined as a term algebra, cf. [25]. Let (S,≤,F) be an order-sorted signature. We
say that the sorts s1 and s2 are in the same connected component of S iff s1 ≡ s2, where
≡ is the least equivalence on S that contains ≤. A partial ordering (S,≤) is filtered iff
for all s1,s2 ∈ S, there is some s ∈ S such that s1 ≤ s and s2 ≤ s. A partial ordering is
locally filtered iff every connected component of it is filtered. An order-sorted signature
(S,≤,F) is locally filtered iff (S,≤) is locally filtered, and it is coherent iff it is both
locally filtered and regular. Hereafter we assume that all OSA signatures are coherent.

The atoms of the signature (S,≤,F) are equations of the form t1 = t2 such that the
least sort of the terms t1 and t2 are in the same connected component. The sentences are
closed formulas built by application of Boolean connectives and quantification to the
equational atoms. Order sorted algebras were extensively studied in [25,24,35].

Example 4 (Partial Algebra (PA) [41,7]). A partial algebraic signature (S,F) consists
of a set S of sorts and a set F of partial operations. We assume that there is a distin-
guished constant on each sort⊥s : s. Signature morphisms map the sorts and operations
in a compatible way, preserving ⊥s. A partial algebra is just like an ordinary algebra
but interpreting the operations of F as partial rather than total functions; ⊥s is always
interpreted as undefined. A partial algebra homomorphism h : A→ B is a family of
(total) functions {hs : As → Bs}s∈S indexed by the set of sorts S of the signature such
that hs(Aσ(a)) = Bσ(hw(a)) for each operation σ : w→ s and each string of arguments
a ∈ Aw for which Aσ(a) is defined.

We consider one kind of “base” sentences: existence equality t e
= t ′. The existence

equality t e
= t ′ holds when both terms are defined and are equal. The definedness predi-

cate and strong equality can be introduced as notations: def (t) stands for t e
= t and t s

= t ′

stands for (t e
= t ′)∨ (¬def (t)∧¬def (t′)). The sentences are formed from these “base”

sentences by Boolean connectives and quantification over variables.

Example 5 (First Order Partial Algebra (FOPA)). Here we consider the institution
FOPA as employed by the specification language CASL [5].

Its signatures consist of tuples (S,T F,PF), where T F is a family of sets of to-
tal function symbols and PF is a family of sets of partial function symbols such that
T Fw→s ∩PFw→s = /0 for each arity w and any sort s. Models consist of algebras inter-
preting each total symbol in T F as a total function and each partial symbol in PF as a
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partial function. The sentences are constructed from existence equalities t e
= t ′ by means

of Boolean connectives and first-order quantification over total constant symbols.

Example 6 (Higher order logic with Henkin semantics (HNK)). Higher order logic
with Henkin semantics has been introduced and studied in [9] and [30]. In the present
paper we consider a simplified version close to the “higher order algebra” of [43] which
does not consider λ-abstractions. This is not loss of power, since λx.t can always be re-
placed by a new constant symbol f together with the axiom (∀x) f x = t.

For any set S of sorts, let
−→
S be the set of S-types defined as the least set such that

S⊆−→S and s1→ s2 ∈
−→
S when s1,s2 ∈

−→
S . A HNK-signature is a tuple (S,F), where S is

a set of sorts and F is a family of sets of constants F = (Fs)s∈−→S . A signature morphism
ϕ : (S,F)→ (S′,F ′) consists of a function ϕst : S→ S′ and a family of functions be-
tween operation symbols (ϕop

s : Fs→ F ′
ϕtype(s))s∈−→S where ϕtype :

−→
S →−→S is the natural

extension of ϕst to
−→
S . For every signature (S,F), a (S,F)-model interprets each

1. sort s ∈ S as a set, and
2. function symbol σ ∈ Fs as a an element of Ms, where for each types s1,s2 ∈

−→
S ,

Ms1→s2 ⊆ [Ms1 →Ms2 ] = { f function | f : Ms1 →Ms2}.

An (S,F)-model morphism h : M → N interprets each type s ∈ −→S as a function hs :
Ms→ Ns such that h(Mσ) = Nσ, for all function symbols σ ∈ F , and the following dia-

gram commutes Ms1

f //

hs1
��

Ms2

hs2
��

Ns1 hs1→s2 ( f )
// Ns2

for all types s1,s2 ∈
−→
S and functions f ∈Ms1→s2 .

An (S,F)-equation is of the form t1 = t2 where t1 and t2 are terms of the same type.
Sentences are constructed from equations by iteration of Boolean connectives and of
higher order quantification.

Assumption 1 For all institutions above we assume that:

• the signatures consist of countable number of symbols,
• the models have non-empty carriers, and
• the signature morphisms allow mapping constants to terms.

The first condition implies that the sets of sentences of any signature of the institu-
tions above are countable. The second condition assures that every injective signature
morphism ϕ : Σ→ Σ′ is conservative, i.e. every Σ-model has a ϕ-expansion. The last
condition allows us to treat substitutions in the comma category of signature morphisms
(see subsection 1.3 for details).

Example 7 (Infinitary logic FOLω1,ω). This is the infinitary version of first-order logic
allowing disjunctions of countable sets of sentences. Similarly we may define POAω1,ω,
OSAω1,ω, PAω1,ω, FOPAω1,ω, and HNKω1,ω. Note that the set of sentences over a sig-
nature is uncountable even if the signatures consist of a countable number of symbols.
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Example 8 (Institution of presentations). In any institution I = (Sig,Sen, Mod, |=), a
presentation is a pair (Σ,E) consisting of a signature Σ ∈ |Sig| and a set of Σ-sentences
E. A presentation morphism ϕ : (Σ,E)→ (Σ′,E ′) is a signature morphism such that
E ′ |= ϕ(E). Note that presentation morphisms are closed under the composition. The
institution of presentations of I , denoted by I pres = (Sigpres,Senpres,Modpres, |=pres) is
defined as follows:

– Sigpres is the category of presentations of I ,
– Senpres(Σ,E) = Sen(Σ),
– Modpres(Σ,E) is the full subcategory of Mod(Σ) of models satisfying E, and
– M |=pres

(Σ,E) e iff M |=Σ e, for each (Σ,E)-model M and Σ-sentence e.

Let Sigcpres be the full subcategory of Sigpres consisting of countable presentations, i.e.
presentations (Σ,E) for which the set of Σ-sentences E is countable. One can easily
define the institution I cpres of countable presentations over an arbitrary institution I .

Definition 2 (Compactness). An institution I = (Sig,Sen,Mod, |=) is compact when-
ever E |=Σ e implies the existence of a finite subset E f ⊆ E such that E f |=Σ e.

Definition 3 (Finitary sentences). In any institution a Σ-sentence ρ is finitary iff it can
be written as ϕ(ρ f ) where ϕ : Σ f → Σ is a signature morphism such that Σ f is a finitely
presented signature 1 and ρ f is a Σ f sentence. An institution has finitary sentences when
all its sentences are finitary.

This condition usually means that the sentences contain only a finite number of sym-
bols. Only the infinitary logics, such as FOLω1,ω, do not fulfill this condition.

Definition 4 (Finitary signature morphisms). We say that a signature morphism ϕ :
Σ→ Σ′ is finitary if it is finitely presented in the category Σ/Sig.

In typical institutions the extensions of signatures with finite number of symbols are
finitary.

1.1 Basic sets of sentences

A set of sentences E ⊆ Sen(Σ) is called basic [15] if there exists a Σ-model ME such
that

M |= E iff there exists a morphism ME →M

for all Σ-models M. If in addition the morphism ME → M is unique then the set E is
called epi basic.

Lemma 1. Any set of atomic sentences in FOL, POA, OSA and PA is basic.

1An object A in a category C is called finitely presented ([1]) if
- for each directed diagram D : (J,≤)→ C with co-limit {Di

µi→ B}i∈J , and for each morphism
A

g→ B, there exists i ∈ J and A
gi→ Di such that gi;µ j = g,

- for any two arrows gi and g j as above, there exists i ≤ k, j ≤ k ∈ J such that gi;D(i ≤ k) =
g j;D( j ≤ k) = g.
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Proof. In FOL the basic model ME for a set E of atomic (S,F,P)-sentences is con-
structed a follows: on the quotient (TF)/≡E of the term model TF by the congruence
generated by the equational atoms of E, we interpret each relation symbol π ∈ P by
(ME)π = {(t1/≡E , . . . , tn/≡E ) | π(t1, . . . , tn) ∈ E}. A similar construction as the preced-
ing holds for OSA provided that the order-sorted signatures are coherent. By defining
an appropriate notion of congruence for POA-models compatible with the preorder
(see [20] or [11]) one may obtain the same result for POA. In PA for a set of exis-
tence equations E we define TE as the set of the sub-terms appearing in E. Note that
TE can be organized as a partial algebra by defining each partial operation symbol σ by

(TE)σ(t) =
{

σ(t) if σ(t) ∈ TE
undefined, otherwise , for all appropriate strings of terms t. The basic

model ME will be the quotient of TE by the partial congruence induced by the existence
equations in E.

In FOPA, any set of ground existence equations is basic (a proof of this fact can be
found in [11]) . In HNK, not every set of ground equations is basic [10].

1.2 Internal logic

The following institutional notions dealing with the logical connectives and quantifiers
were defined in [45]. Let Σ be a signature of an institution,

– a Σ-sentence ¬e is a (semantic) negation of the Σ-sentence e when for every Σ-
model M we have M |=Σ ¬e iff M 2Σ e,

– a Σ-sentence e1∨ e2 is a (semantic) disjunction of the Σ-sentences e1 and e2 when
for every Σ-model M we have M |=Σ e1∨ e2 iff M |=Σ e1 or M |=Σ e2, and

– a Σ-sentence (∃χ)e′, where Σ
χ→ Σ′ ∈ Sig and e′ ∈ Sen(Σ′), is a (semantic) exis-

tential χ-quantification of e′ when for every Σ-model M we have M |=Σ (∃χ)e′ iff
M′ |=Σ′ e′ for some χ-expansion M′ of M.

Distinguished negation ¬ , disjunction
∨ 2, and existential quantification (∃χ) are

called first-order constructors and they have the semantical meaning defined above.
Throughout this paper we assume the following commutativity of the first-order con-
structors with the signature morphisms: for each ϕ : Σ→ Σ1 and any Σ-sentence

– ¬e we have ϕ(¬e) = ¬ϕ(e);
–

∨
E we have ϕ(

∨
E) =

∨
ϕ(E);

– (∃χ)e′, where χ : Σ→ Σ′, there exists Σ′
ϕ′ // Σ′1

Σ

χ

OO

ϕ
//

pushout

Σ1

χ′

OO
s.t. ϕ((∃χ)e′) = (∃χ′)ϕ′(e′).

Since in concrete examples of institutions the quantified sentences are identified modulo
renaming of variables we assume another rather mild condition: for every signature
morphism ϕ : Σ→ Σ1, each Σ-sentence (∃χ)e′ and any Σ1-sentence (∃χ′)e′1

2We will use the symbol
∨

to represent the most general kind of disjunction even if it is
finitary.
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– if ϕ((∃χ)e′) = (∃χ′)e′1, where χ : Σ→ Σ′ and χ′ : Σ′ → Σ′1, then there exists ϕ′ :

Σ′→ Σ′1 such that Σ′
ϕ′ // Σ′1

Σ

χ

OO

ϕ
// Σ1

χ′

OO
is a pushout and ϕ′(e′) = e′1.

Very often quantification is considered only for a restricted class of signature mor-
phisms. For example, quantification in FOL considers only the finitary signature ex-
tensions with constants. Based on these constructors for sentences we can also define∧
, false, (∀χ) using the classical definitions.

1.3 Reachable models

Definition 5. Consider two signature morphisms χ1 : Σ→ Σ1 and χ2 : Σ→ Σ2. A sig-
nature morphisms θ : Σ1 → Σ2 such that χ1;θ = χ2 is called a substitution morphism
between χ1 and χ2.

A more general treatment of substitutions may be found in [17]. However, in order to
keep the presentation as simple as possible, we treat substitutions in the comma category
of signature morphisms.

Definition 6. Let D be a subcategory of signature morphism. We say that a Σ-model M
is D-reachable if for each signature morphism χ : Σ→ Σ′ in D , each χ-expansion M′

of M determines a substitution θ : χ→ 1Σ such that M �θ= M′.

In concrete examples of institutions D consists of signature morphisms used for quan-
tifications, i.e. extensions of signatures with finite number of constants. A model M is
reachable if the elements of M are exactly the interpretations of the terms.

Proposition 1. [27] In FOL, OSA, POA and PA, a model is D-reachable iff its ele-
ments consist only of interpretations of terms, where D is the class of signature mor-
phisms used for quantification, i.e. signature extensions with finite number of constants.

Remark 1. For any set E of atomic sentences in FOL, POA, OSA and PA, there exists a
model ME , defining E as basic set of sentences, which is D-reachable, where D consists
of signature extensions with finite number of constants.

In FOPA, the basic models defining the sets of ground existence equations as basic sets
of sentences, are not D-reachable in the sense of Definition 6 (see [11]).

2 Forcing and Generic Models

All the results in this section can be found in [27].

Definition 7 (First order fragments). Let I = (Sig,Sen,Mod, |=) be an institution,
D ⊆ Sig a broad subcategory of signature morphisms, and Σ ∈ |Sig| a signature. A D-
first-order fragment (D-fragment, for short) over Γ, where Γ is a set of Σ-sentences, is
an extension L of Γ such that
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1. every sentence of L is constructed from the sentences of Γ by means of negation,
disjunction (possible infinitary) and existential quantification over the signature
morphisms in D , and

2. L is closed to
(a) negation, i.e. if e ∈ L then ¬e ∈ L .
(b) “sub-sentence” relation, i.e.

– if ¬e ∈ L then e ∈ L ,
– if

∨
E ∈ L then e ∈ L for all e ∈ E, and

– if (∃χ)e′ ∈ L , where χ ∈D and θ : χ→ 1Σ, then θ(e′) ∈ L .

Framework 1 Throughout this section we consider

– an institution I = (Sig,Sen,Mod, |=),
– a sub-functor Sen0 of Sen,
– a broad subcategory D ⊆ Sig of signature morphisms, and

we work within a D-fragment L over Sen0(Σ).

An instance of this abstract framework is FOL, where

– Sen0 is the sentence functor which associates to each signature the set of all atomic
sentences, and

– D is the subcategory of signature morphisms which consists of signature extensions
with a finite number of constant symbols.

Definition 8. A forcing property for Sen0(Σ) is a tuple P= 〈P,≤, f 〉 such that:

1. 〈P,≤〉 is a partially ordered set with a least element 0,
2. f is a function which associates with each p∈ P a set f (p) of sentences in Sen0(Σ),
3. f (p)⊆ f (q) whenever p≤ q, and
4. for each set of sentences E ⊆ Sen0(Σ) and any sentence e ∈ Sen0(Σ) if E ⊆ f (p)

and E |= e then there is q≥ p such that e ∈ f (q).

The elements of P are called conditions. We will define the forcing relation ⊆ P×L
associated to a forcing property P= (P, f ,≤).

Definition 9. Let P = 〈P, f ,≤〉 be a forcing property for Sen0(Σ). The relation p  e,
read p forces e, is defined by induction on e, for p ∈ P and e ∈ L , as follows:

– For e ∈ Sen0(Σ). p  e if e ∈ f (p).
– For ¬e ∈ L . p  ¬e if there is no q≥ p such that q  e.
– For

∨
E ∈ L . p 

∨
E if p  e for some e ∈ E.

– For (∃χ)e ∈ L . p  (∃χ)e if p  θ(e) for some substitution θ : χ→ 1Σ.

We say that p weakly forces e, in symbols p w e, iff p  ¬¬e. The above definition is
a generalization of the forcing studied in [42], [6] and [32].

Lemma 2. Let P= (P, f ,≤) be a forcing property for Sen0(Σ), and e ∈ L .

1. p w e iff for each q≥ p there is a condition r ≥ q such that r  e.
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2. If p≤ q and p  e then q  e.
3. If p  e then p w e.
4. We can not have both p  e and p  ¬e.

Definition 10. Let P = (P, f ,≤) be a forcing property for Sen0(Σ). A subset G ⊆ P is
said to be a generic iff

1. p ∈ G and q≤ p implies q ∈ G.
2. p,q ∈ G implies that there exists r ∈ G such that p≤ r and q≤ r.
3. for each sentence e ∈ L there exists a condition p ∈ G such that either p  e or

p  ¬e.

Lemma 3. If L is countable then every p belongs to a generic set.

Definition 11. Let P= 〈P,≤, f 〉 be a forcing property for Sen0(Σ).

1. M is a model for G⊆ P if for every sentence e ∈ L

M |= e iff G  e

2. M is a generic model for p ∈ P if there is a generic set G⊆ P such that p ∈ G and
M is a model for G.

Proposition 2. Assume that

1. I0 is compact,
2. every set of sentences in I0 is basic, and
3. for each E ⊆ Sen0(Σ) there exists a basic model ME that is D-reachable.

Then there is a D-reachable model for every generic set G.

Theorem 1. (Generic model theorem) Under the conditions of Proposition 2, if L is
countable then there is a generic D-reachable model for each condition p ∈ P.

The following is a corollary of the generic model theorem.

Corollary 1. Under the condition Theorem 1 for every condition p ∈ P and any sen-
tence e ∈ L we have that p w e iff M |= e for each generic model M for p which is
D-reachable.

3 Omitting Types

In this section we investigate a forcing property studied by Robinson [42] and Barwise
[6] in classical model theory and we use it to prove a very general form of OTT.
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3.1 Preliminaries

Given an institution I = (Sig,Sen,Mod, |=), for each signature morphism χ : Σ→ Σ′,
a Σ-model M χ-realizes a set ∆ of Σ′-sentences, if there exists a χ-expansion M′ of M
which satisfies ∆. We say that M χ-omits ∆ if does not χ-realize ∆. The key theorem of
this section gives sufficient institution-independent conditions for a theory Γ⊆ Sen(Σ)
to have a model which omits ∆. As in classical model theory, the central idea is the
notion of a theory locally omitting a set of sentences. For each signature morphism
χ : Σ→ Σ′, a set Γ of Σ-sentences locally χ-realizes a set ∆ of Σ′-sentences iff there is a
finite set p of Σ′-sentences such that:

1. χ(Γ)∪ p is consistent, and
2. χ(Γ)∪ p |=′

Σ
∆

Γ locally χ-omits ∆ if does not locally χ-realize ∆.

Definition 12. An institution I = (Sig,Sen,Mod, |=) has the D-Omitting Types Prop-
erty (D-OTP), where D ⊆ Sig is a broad subcategory of signature morphisms, when for
any

– countable set of sentences Γ⊆ Sen(Σ),
– sequence of signature morphisms (Σ

χn→ Σn ∈D : n ∈ N), and
– countable sets of sentences (∆n ⊆ Sen(Σn) : n ∈ N)

if Γ locally χn-omits ∆n, for all n ∈ N, then there is a Σ-model M of Γ which χn-omits
∆n, for all n ∈ N.

In classical model theory, the models of interest are constructed in an extension
LC of the initial language L with an infinite but countable set of constants C (see
[32,38,31,8]). The following definition is from [27] and it gives the categorical proper-
ties of the extension L ↪→ LC that we need to obtain our results.

Definition 13. Let D ⊆ Sig be a subcategory of signature morphisms. We say that Σ
v→

Σ′ is a D-extension of Σ if it is the vertex of a directed co-limit (ui
vi→ v)i∈J of a directed

diagram (ui
ui, j→ u j)(i≤ j)∈(J,≤) in Σ/D 3 such that

1. for all i ∈ J, vi is conservative, and
2. for all signature morphisms Σi

χi→ Σ′i ∈ D there exists a conservative substitution

χi
χi, j→ ui, j ∈ (Σi/Sig).

Take for example FOL and assume that D is the class of signature extensions with finite
number of constants. For every signature Σ = (S,F,P) consider a set C of new constant
symbols (C does not contain any symbol from Σ) such that

– Cs is an infinite set for all sorts s ∈ S, and
– Cs∩Cs′ = /0 for all sorts s,s′ ∈ S.

3Σ
ui→ Σi ∈D for all i ∈ J and Σi

ui, j→ Σ j ∈D for all (i, j) ∈ (J,≤).

11



The inclusion Σ
u
↪→ Σ(C), where the signature Σ(C) = (S,F ∪C,P), is the vertex of the

directed co-limit ((Σ
ui
↪→ Σ(Ci))

vi
↪→ (Σ

v
↪→ Σ(C)))Ci⊆C f inite of the directed diagram ((Σ

ui
↪→

Σ(Ci))
ui, j
↪→ (Σ

u j
↪→ Σ(C j))Ci⊆C j⊆C f inite. Since C is infinite, for every signature extension

χi : Σ(Ci) ↪→ Σ(Ci∪X), where X is a finite set of new constants, there exists an injective
mapping χi, j : Ci ∪X →C j for some j ∈ J such that the restriction χi, j |Ci : Ci →C j is
the inclusion. Hence, the following diagram commutes.

Σ(Ci∪X)
χi, j // Σ(C j)

Σ(Ci)
2 R

χi

ddJJJJJJJJJ - 
ui, j

;;wwwwwwww

Since χi, j : Σ(Ci ∪X)→ Σ(C j) is injective and the models have non empty carriers,
χi, j : Σ(Ci∪X)→ Σ(C j) is conservative.

Definition 14. Let I = (Sig,Sen,Mod, |=) be an institution, D ⊆ Sig a broad subcate-
gory of signature morphisms, and Sen0 a sub-functor of Sen. We say that I is a D-first-
order institution over I0 = (Sig,Sen0,Mod, |=) if Sen(Σ) is a D-fragment over Sen0(Σ),
for all signatures Σ ∈ |Sig|.

For example FOL is a D-first-order institution over FOL0, where

– FOL0 is the restriction of FOL to atomic sentences, and
– D is the subcategory of signature morphisms which consists of signature extensions

with a finite number of constant symbols.

3.2 A semantic forcing property

Framework 2 In this section we work within a D-first-order institution I = (Sig,Sen,
Mod, |=) over I0, with Sen0 the sub-functor of Sen, such that

1. the sentences in I0 are finitary,
2. the sentences in I0 are not formed by applying the first-order constructors,
3. every signature Σ has a D-extension, and
4. every signature morphism in D is conservative and finitary.

We have the following consequence of the finiteness of the “atomic” sentences.

Lemma 4. For any D-extension v : Σ→ Σ′ as in Definition 13 we have Sen0(Σ
′) =⋃

i∈J

vi(Sen0(Σi)).

Similar results as the above Lemma can be found also in [39] or [27].
If v : Σ→ Σ′ is a D-extension as in Definition 13 then we denote by Lv the set

of sentences
⋃
i∈J

vi(Sen(Σi)). We have the following consequence of Lemma 4 and the

finiteness of signature morphisms in D .

12



Proposition 3. [27] Lv is a D-fragment over Sen0(Σ), where v : Σ→Σ′ is a D-extension
as in Definition 13.

Definition 15. Let v : Σ→Σ′ be a signature morphism, M ⊆Mod(Σ) a class of models,
and L ⊆ Sen(Σ′) a D-fragment. We define the forcing property P(v,M ,L) = 〈P,≤, f 〉
as follows

1. P = {p⊆ L finite | there is M′ ∈Mod(Σ′) s.t. M′ �v∈M and M′ |= p},
2. f (p) = p∩Sen0(Σ

′) for all p ∈ P, and
3. ≤ is the inclusion between sets of sentences.

In [32] the conditions of P are called finite pieces of M .

Proposition 4. P(v,M ,L) = 〈P,≤, f 〉 defined above is a forcing property.

Proof. Assume a condition p ∈ P and a set of sentences E ⊆ f (p) such that E |= e
where e ∈ Sen0(Σ). There is M′ ∈Mod(Σ′) such that M′ �v∈M and M′ |= p. We have
M′ |= E which implies M′ |= e meaning that p∪{e} ∈ P and p∪{e}  e.

Lemma 5. Let v : Σ→ Σ′ be a D-extension as in Definition 13, M a class of Σ-models,
and L ⊆ Lv a D-fragment. P(v,M ,L) has the following properties:

1. if p ∈ P and
∨

E ∈ p then p∪{e} ∈ P for some e ∈ E.
2. if p ∈ P and (∃χ)e ∈ p (where χ : Σ′→ Σ′1) there exists a substitution θ : χ→ 1Σ′

such that p∪{θ(e)} ∈ P.

Proof. We proceed as follows:

1. Assume
∨

E ∈ p, where p is a condition in P. There is a Σ′-model M′ such that
M′ �v∈M and M′ |= p. We have M |=

∨
E which implies M′ |= e for some e ∈ E

and we get p∪{e} ∈ P.
2. Assume (∃χ)e ∈ p, where p ∈ P. There is a Σ′-model M′ such that M′ �v∈M and

M′ |= p. Since p⊆
⋃
i∈J

vi(Sen(Σi)) is finite there is pi ⊆ Sen(Σi), where i ∈ J, such

that vi(pi) = p. We have vi((∃χi)ei) = (∃χ)e for some (∃χi)ei ∈ Sen(Σi) (where

χi : Σi→ Σ′i). By our assumptions there exists v′i : Σ′i→ Σ′1 such that Σ′i
v′i // Σ′1

Σi

χi

OO

vi
//
Σ′

χ

OO

is a pushout and e = v′i(ei). By Definition 13 there exists (i ≤ j) ∈ (J,≤) and a
substitution χi, j : χi→ ui, j with χi, j conservative as a signature morphism.

Σ′i
v′i //

χi, j

��

Σ′1

Σi

χi

??

ui, j
// Σ j v j

//
Σ′

χ

??�������
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Because Σ′i
v′i // Σ′1

Σi

χi

OO

vi
//
Σ′

χ

OO
is a pushout and χi;(χi, j;v j) = vi;1Σ′ there exists θ : Σ′1→

Σ′ such that v′i;θ = (χi, j;v j) and χ;θ = 1Σ′ .

Σ′i
v′i //

χi, j

��

Σ′1

θ

��
Σi

χi

??

ui, j
// Σ j v j

//
Σ′

χ

??�������

1′
Σ

//
Σ′

By the satisfaction condition M′ �vi |=Σi pi and we have M′ �vi |=Σi (∃χi)ei. There
exists a χi-expansion M′i of M′ �vi such that M′i |=Σ′i

ei. Because χi, j is conservative
there exists a χi, j-expansion M j of M′i and by the satisfaction condition M j |=Σ j

χi, j(χi(pi)∪{ei}). Since v j is conservative there exists a v j-expansion M′′ of M j
and by satisfaction condition M′′ |=Σ′ (χi, j;v j)(χi(pi)∪{ei}) = p∪{θ(e)}. Note
that M′′ �vi= M′ �vi which implies M′′ �v∈M and because M′′ |=Σ′ p∪{θ(e)} we
obtain p∪{θ(e)} ∈ P.

Proposition 5. Let v : Σ→ Σ′ be a D-extension as in Definition 13, M a class of Σ-
models, and L ⊆ Lv a D-fragment. P(v,M ,L) has the following property:

there exists q≥ p such that q  e iff p∪{e} ∈ P

for every sentence e ∈ L and each condition p ∈ P.

Proof. We proceed by induction on the structure of the sentence e.
For e ∈ Sen0(Σ

′). If there is q≥ p such that q  e then e ∈ q. We have p∪{e} ⊆ q
and by the definition of P(v,M ,L) we obtain p∪{e} ∈ P. For the converse implication
take q = p∪{e}.

For ¬e. By the induction hypothesis applied to e, for all q ∈ P we have

for every r ≥ q,r 1 e ⇐⇒ q∪{e} /∈ P

which implies that for all q ∈ P we have

q  ¬e ⇐⇒ q∪{e} /∈ P

We need to prove

there exists q≥ p such that q∪{e} /∈ P ⇐⇒ p∪{¬e} ∈ P

Assume that there is q ≥ p such that q∪{e} /∈ P. There exists a Σ′-model M′ such
that M′ �v∈M and M |=Σ′ q and since q∪{e} /∈ P we have M′ |= ¬e. We obtain M′ |=Σ′

q∪{¬e} and in particular M′ |=Σ′ p∪{¬e}meaning that p∪{¬e} ∈P. For the converse
implication, take q = p∪{¬e}.
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For
∨

E. If there is q≥ p such that q 
∨

E, then there is e ∈ E such that q  e. By
the induction hypothesis, p∪{e} ∈ P. There exists a Σ′-model M′ such that M′ �v∈M
and M′ |=Σ′ p∪{e}. We obtain M′ |=Σ′ p∪{

∨
E} meaning that p∪{

∨
E} ∈ P.

For the converse implication assume that p∪{
∨

E} ∈ P. By Lemma 5 (1) there is
e ∈ E such that p∪{

∨
E,e} ∈ P. By induction hypothesis applied to e we have q  e

for some q≥ p∪{
∨

E}. Hence there exists q≥ p such that q 
∨

E.
For (∃χ)e. Assume that there is q ≥ p such that q  (∃χ)e. By the definition of

forcing relation there exists a substitution χ′ : χ→ 1Σ′ such that q  χ′(e). By induction
p∪{χ′(e)}∈P. There exists a Σ′-model M′ such that M′ �v∈M and M′ |=Σ′ p∪{χ′(e)}.
We obtain M′ |=Σ′ p∪{(∃χ)e} meaning that p∪{(∃χ)e} ∈ P.

For the converse implication assume that p∪{(∃χ)e} ∈ P where χ : Σ→ Σ′. By
Lemma 5 (2) there exists a substitution χ′ : χ→ 1Σ such that p∪{(∃χ)e, χ′(e)} ∈ P.
By the induction hypothesis applied to χ′(e), there exists q ≥ p∪ {(∃χ)e} such that
q  χ′(e). Therefore, by the definition of forcing relation q  (∃χ)e.

Corollary 2. For each each forcing property P(v,M ,L), where v, M and L are as in
Proposition 5, we have:

1. For each condition p ∈ P, any generic model M for p satisfies p, and
2. If M =Mod(Σ,Γ) and v(Γ)⊆ L then every generic model satisfies Γ.

Proof. We proceed as follows:

1. Let G ⊆ P be the generic set such that p ∈ G and M a model for G. We prove that
M |= e for all e ∈ p.
Let e be an arbitrary sentence in p. Since G⊆ P is a generic set there exists q ∈ G
such that either q  e or q  ¬e. Suppose that q  ¬e then there is r ∈ G such
that r ≥ p and r ≥ q. By Lemma 2 (2) r  ¬e. By Proposition 5 since e ∈ r there
exists r′ ≥ r such that r′  e. Using Lemma 2 (2) again we get r′  ¬e which is a
contradiction. Therefore q  e and since M is a model for G we have that M |= e.

2. Let M be a a generic model for G and e ∈ Γ. Since G is generic there is p ∈G such
that p  e or p  ¬e. Assuming that p  ¬e since p∪{e} ∈ P, by Proposition 5
there exists q≥ p such that q  e. By Lemma 2 (2) q ¬e which is a contradiction.
Therefore p  e which implies M |=Σ′ e. Since e was arbitrary we get M |=Σ′ Γ.

3.3 Main results

Theorem 2 (Downward Löwenheim-Skolem Theorem). Let I = (Sig,Sen,Mod, |=)
be a D-first-order institution with Sen0 the sub-functor of Sen such that all conditions
in Framework 2 are fulfilled:

1. the sentences in I0 are finitary,
2. the sentences in I0 are not formed by applying the first-order constructors,
3. every signature has a D-extension, and
4. every signature morphism in D is conservative and finitary.

In addition we assume that
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5. for all signature morphisms Σ
χ→ Σ′ ∈D , the substitutions θ : χ→ 1Σ′ form a count-

able set.

For every countable and consistent set Γ of Σ-sentences and each D-extension v : Σ→Σ′

there exists a D-reachable Σ′-model M′ such that M′ �v|=Σ Γ.

Proof. Consider an extension v : Σ→ Σ′ of Σ as in Definition 13 and let L ⊆ Sen(Σ′)
be the least fragment which contains v(Γ).

Using the condition “for all Σ′
χ→ Σ′1 ∈D the substitutions θ : χ→ 1Σ′ form a count-

able set”, one can easily prove by induction that L is countable. Let M =Mod(Σ,Γ)
and consider the forcing property P(v,M ,L) defined in the previous subsection. By
Theorem 1 there is a generic D-reachable Σ′-model M′ for /0, by Corollary 2, M′ |= v(Γ),
and by the satisfaction condition M′ �v|= Γ.

Corollary 3. In FOL, any consistent set of sentences has a countable model.

Proof. Let D be the subcategory of signature morphisms which consists of signature
extensions with a finite number of constants, and Γ a set of Σ-sentences. Let C be a
set of new constant symbols, such that Cs is infinite and countable for all sorts s, and
Cs ∩Cs′ = /0 for all sorts s and s′ such that s 6= s′. The inclusion Σ ↪→ Σ(C) is a D-
extension and since Σ consists of a countable set of symbols

1. Γ is countable, and
2. the substitutions θ : C→ Σ(C) form a countable set.

By Theorem 2 there is a D-reachable Σ(C)-model M which satisfies Γ. By Proposi-
tion 1, the elements of M consist only of interpretations of terms, and since Σ(C) is
countable, we have that M is countable.

Similar corollaries as above hold also for POA, OSA and PA. As for their infinitary
variants, we obtain that any consistent and countable set of sentences has a countable
model.

Theorem 3 (Omitting Types). Let I = (Sig,Sen,Mod, |=) be a D-first-order insti-
tution with Sen0 the sub-functor of Sen such that all conditions in Framework 2 are
fulfilled:

1. the sentences in I0 are finitary,
2. the sentences in I0 are not formed by applying the first-order constructors,
3. every signature has a D-extension, and
4. every signature morphism in D is conservative and finitary.

In addition we assume that

5. for all signature morphisms Σ
χ→ Σ′ ∈D , the substitutions θ : χ→ 1Σ′ form a count-

able set,
6. for all Σ-sentences e1 and e2 there is a Σ-sentence ρ semantic equivalent with e1∧

e2, and
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7. for every substitution θ : χ1 → χ2, where Σ
χ1→ Σ1,Σ

χ2→ Σ2 ∈ D , and each Σ2-
sentence e2 there exists a Σ1-sentence e1 semantic equivalent with (∃θ)e2.

The institution I has the D-OTP.

Proof. Let v : Σ→ Σ′ be an extension of Σ as in Definition 13. Let Γ ⊆ Sen(Σ), Σ
χn→

Σn ∈ D and ∆n ⊆ Sen(Σn) be as in Definition 12. For all n ∈ N consider the following

pushout of signature morphisms Σn
vn // Σ′n

Σ

χn

OO

v
//
Σ′

χ′n

OO
such that v((∃χn)ρ) = (∃χ′n)vn(ρ) for

all sentences (∃χn)ρ ∈ Sen(Σ). For the sake of simplicity we will make the following
notations Γ′ = v(Γ), and ∆′n = vn(∆n), for all n ∈ N.

Let L ⊆ Sen(Σ′) be the least fragment which includes

1. Γ′, and
2. θ(∆′n), for all n ∈ N and any θ : χ′n→ 1Σ′ .

Since the substitutions θ : χn→ 1Σ′ form a countable set, L is countable. Consider the
forcing property P(v,M ,L) with M =Mod(Σ,Γ).

Firstly we prove that for all natural numbers n ∈ N, conditions p ∈ P, and substitu-
tions θ : χ′n→ 1χ′ there exists δ ∈ ∆′n such that p∪{¬θ(δ)} ∈ P. Let n ∈ N, p ∈ P, and

χ′n
θ→ 1Σ′ ∈ Σ′/Sig. Since χn is finitary, there exists a substitution θi : χn → ui, where

i ∈ J, such that θi;vi = vn;θ. By the definition of P(v,M ,L) there exists p j ⊆ Sen(Σ j),
where j ∈ J, such that p = v j(p j). Let k ∈ J such that k ≥ i and k ≥ j and we have
θk;vk = vn;θ and p = vk(pk), where θk = θi;ui,k and pk = u j,k(p j).

Σn
vn //

θk

��

Σ′n

θ

��
Σ

χn

@@

uk
// Σk vk

//
Σ′

χ′n
??�������

1
Σ′

//
Σ′

By our hypothesis, there is a Σn-sentence ρn semantically equivalent with (∃θk)
∧

pk.
uk(Γ)∪ pk consistent implies χn(Γ)∪ {ρn} consistent. Since Γ locally χn-omits ∆n
there exists δ ∈ ∆n such that χn(Γ)∪ {ρn,¬δ} is consistent which implies uk(Γ)∪
pk ∪{¬θk(δ)} is consistent. Since vk is conservative, Γ′ = vk(uk(Γ)), vk(pk) = p and
vk(¬θk(δ)) = ¬θ(vn(δ)), we have δ′ = vn(δ) ∈ ∆′n and Γ′∪ p∪{¬θ(δ′)} is consistent.

Secondly, we construct a generic set G such that all generic D-reachable models for
G will χ′n-omit ∆′n, for all n ∈ N. Note that the substitutions θ : χ′n→ 1Σ′ , where n ∈ N,
form a countable set. Let (θm : m∈N) be an enumeration of all such substitutions. Since
the fragment L is also countable let (em : m ∈ N) be an enumeration of L . We form an
increasing chain of conditions p0 ≤ p1 . . .≤ pm . . . such that for all m ∈ N

1. pm+1  em or pm+1  ¬em, and
2. there exists δ ∈ ∆′n such that ¬θm(δ) ∈ pm+1, where θm : χ′n→ 1Σ′ .
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Let p0 = /0 and assuming that we already have the condition pm we construct pm+1 as
follows: if pm  ¬em then take q = pm else take q≥ pm such that q  em; assuming that
θm : χ′n→ 1Σ′ , by the first part of the proof there exists δ ∈ ∆′n such that q∪{¬θm(δ)} ∈
P; take pm+1 = q∪{¬θm(δ)}. The set G = {q | q≤ pm for some m ∈N} is generic. Let
M be a D-reachable model for G. We show that M χ′n-omits ∆′n for all n ∈N. Let Mn be
an χ′n-expansion of M. Since M is D-reachable there exists a substitution θm : χ′n→ 1Σ′

such that M �θm= Mn.

Σ′n
θm //

Σ′

Σ′
1

Σ′

??��������χ′n

__???????

By the definition of G there exists δ∈ ∆′n such that ¬θm(δ)∈ pm+1. Since M is a generic
model for pm+1 by Corollary 2 M |=Σ′ pm+1 and we have M |=Σ′ ¬θm(δ). By the satis-
faction condition Mn |=Σ′n ¬δ.

Finally, by Proposition 2 there is a generic D-reachable model M for G and by the
satisfaction condition (M �v) χn-omits ∆n for all n ∈ N.

In the following we discuss the applicability of Theorem 3 by making an analysis
of its underlying conditions in the typical example of FOL.

Condition 5. In FOL holds because we assumed that the symbols of any signature
form a countable set.

Condition 6. FOL has finite conjunctions.
Condition 7. Given the signature morphisms Σ ↪→ Σ(X) and Σ ↪→ Σ(Y ), where Σ =

(S,F,P), and X ,Y are finite sets of constant symbols, for each substitution θ : X →
TF(Y ) and any Σ(Y )-sentence e2, (∃θ)e2 is semantically equivalent to (∃Y )e2∧(

∧
x∈X

x =

θ(x)).

Corollary 4. FOL, POA, OSA, PA and their infinitary variants FOLω1,ω, POAω1,ω,
OSAω1,ω, PAω1,ω have the D-omitting types property, where D consists of signature
extensions with finite number of constants.

In FOPA, the models defining the sets of ground existential atoms as basic sets of
sentences are not D-reachable in the sense of Definition 6. In HNK, not all sets of
atoms are basic. Hence, FOPA and HNK do not fall into the framework of Theorem 3.

4 Borrowing Omitting Types

In this section we borrow the OTP along institution mappings for more expressive log-
ical systems which are encoded into the institutions of presentations of less refined
institutions. Therefore we also need to lift the OTP from a base institution to the insti-
tution of (countable) presentations. The institution mappings used here for borrowing
results is that of institution comorphisms [26] previously known as plain maps [34] or
representations [47].
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Definition 16. Let I ′ = (Sig′,Sen′,Mod′, |=′) and I = (Sig,Sen,Mod, |=) be two in-
stitutions. An institution comorphism (φ,α,β) : I → I ′ consists of

– a functor φ : Sig→ Sig′, and
– two natural transformations α : Sen⇒ φ;Sen′ and β : φop;Mod′⇒Mod such that

the following satisfaction condition for institution morphisms holds:

M′ |=′
φ(Σ) αΣ(e) iff βΣ(M′) |=Σ e

for every signature Σ ∈ Sig, each φ(Σ)-model M′, and any Σ-sentence e.

4.1 Main results

Theorem 4. Let (φ,α,β) : I → I ′ be an institution comorphism as in Definition 16 such
that

– I and I ′ have negations and αΣ(¬e) = ¬αΣ(e) for all Σ-sentence e, and
– for all signatures Σ ∈ |Sig|
• αΣ is surjective modulo |=| 4, i.e. for all φ(Σ)-sentences ρ′ there exists a Σ-

sentence ρ such that αΣ(ρ) |=| ρ′, and
• βΣ is conservative 5.

Then I has the D-OTP if I ′ has the D ′-omitting type property for some broad subcate-
gory D ′ ⊆ Sig′ of signature morphisms such that φ(D)⊆D ′.

Proof. Assume Γ ⊆ Sen(Σ) locally χn-omits ∆n for all n ∈ N, where Σ ∈ |Sig|, (Σ χn→
Σn ∈D : n ∈ N) and (∆n ⊆ Sen(Σn) : n ∈ N).

We show that Γ′ locally χ′n-omits ∆′n, where Γ′ = αΣ(Γ), χ′n = φ(χn) and ∆′n =
αΣn(∆n). Let p′ ⊆ Sen′(φ(Σn)) finite. Since αΣn is surjective modulo |=| there is p ⊆
Sen(Σn) finite such that αΣn(p) |=| p′. There is δ ∈ ∆n such that χn(Γ)∪ p∪{¬δ} is
consistent. Since βΣn is conservative, χ′n(Γ

′)∪αΣn(p)∪{¬αΣn(δ)} is consistent which
implies χ′n(Γ

′)∪ p′∪{¬δ′} is consistent, where δ′ = αΣn(δ) ∈ ∆′.
φ(D) ⊆ D ′ implies χ′n ∈ D ′. Since I ′ has D ′-OTP, there is a φ(Σ)-model M′ of Γ′

which χ′n-omits ∆′n, for all n ∈ N. This implies that βΣ(M′) satisfies Γ and χn-omits ∆n,
for all n ∈ N.

Proposition 6 (Lifting OTP to Presentations). For any institution I which has D-
OTP, the institution I cpres of countable presentations of I has Dcpres-OTP, where Dcpres

consists of signature morphisms of the form χ : (Σ,E)→ (Σ′,E ′) such that χ ∈ D and
E ′ |=| χ(E).

Proof. For every signature morphism (Σ,E)
χ→ (Σ′,E ′) ∈Dcpres, each countable set of

Σ-sentences Γ, and any countable set ∆ of Σ′-sentences, the following are equivalent:

4In any institution I = (Sig,Sen,Mod, |=), E |=| E ′ when E |= E ′ and E ′ |= E, for all sets of
Σ-sentences E and E ′, where Σ ∈ |Σ|.

5For all Σ-models M there exists a φ(Σ)-model M′ such that βΣ(M′) = M.
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1. In I cpres, Γ locally χ-omits ∆, where χ : (Σ,E)→ (Σ,E ′).
2. In I , Γ∪E locally χ-omits ∆, where χ : Σ→ Σ.

Let Γ⊆ Sen(Σ) countable, ((Σ,E)
χn→ (Σn,En)∈Dcpres : n∈N) and (∆n ⊆ Sen(Σn) : n∈

N) such that ∆n is countable. Assume Γ χn-omits ∆n in I cpres. We have Γ∪E χn-omits
∆n in I . Since I has D-OTP, there exists a Σ-model M of Γ∪E such that M χn-omits
∆n, where χn : Σ→ Σn is regarded as a signature morphism in D . Then in I cpres, M is
a (Σ,E)-model of Γ which χn-omits ∆n, where χn : (Σ,E)→ (Σn,En) is regarded as a
signature morphism in Dcpres.

4.2 Omitting Types in FOPA

In order to establish that FOPA has the D-OTP, where D consists of signature exten-
sions with finite number of total constant symbols, we need to set the parameters of
Theorem 4. We recall the definition of a comorphism (φ,α,β) : FOPA→ FOLcpres

which can be found, for example, in [40] or [37].

– Each FOPA-signature (S,T F,PF) is mapped to the FOL presentation ((S,T F,
PF),E(S,T F,PF)) where PFws = PFw→s for all w ∈ S∗ and s ∈ S, and E(S,T F,PF) =
{(∀X ]{y,z})σ(X ,y)∧σ(X ,z)⇒ (y = z) | σ ∈ PF}.

– Each ((S,T F,PF),E(S,T F,PF))-model M is mapped to the algebra β(S,T F,PF)(M)
such that
• β(S,T F,PF)(M)x = Mx for each x ∈ S or x ∈ T F ,
• for each σ ∈ PF , β(S,T F,PF)(M)σ(m) = n when (m,n) ∈Mσ.

– For all FOPA-signatures (S,T F,PF)

• α(t e
= t ′) = (∃X ]{x0})bind(t,x0)∧ bind(t ′,x0), where for each (S,T F,PF)-

term t and variable x, bind(t,x) is a finite conjunction of atoms defined by

bind(σ(t1, . . . , tn),x) =
∧

1≤i≤n

bind(ti,xi)∧
{

σ(x1, . . . ,xn) = x if σ ∈ T F
σ(x1, . . . ,xn,x) if σ ∈ PF

where X is the set of new constant symbols introduced by bind(t,x0) and
bind(t ′,x0).

• commutes with the first-order constructors on sentences.

Corollary 5. FOPA has the D-OTP, where D consists of signature extensions with
finite number of total constant symbols.

Proof. By Proposition 6, we lift the OTP from FOL to FOLcpres. Then we apply The-
orem 4 to the above comorphism. Note that for all FOPA-signatures we have

– β(S,T F,PF) is conservative because it is an isomorphism, and
– α(S,T F,PF) is surjective modulo |=| because it is surjective modulo |=| on atoms and

it commutes with the first-order constructors on sentences.

Therefore the conditions of Theorem 4 are fulfilled and we infer that FOPA has the
OTP.

Similarly one can define a comorphism FOPAω1,ω→ FOLcpres
ω1,ω and establish in a sim-

ilar manner as above that FOPAω1,ω has the OTP.
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4.3 Omitting Types in HNK

We borrow the OTP for HNK along a comorphism (φ,α,β) : HNK→ FOEQLcpres

which is defined using the ideas from [36].

– Each HNK-signature (S,F) is mapped to the presentation ((
−→
S ,
−→
F ), E(S,F)) where

• −→S is the set of all types over S,
• −→F s =Fs for each s∈−→S ,

−→
F [(s→s′)s]→s′ = {apps,s′} for all s,s′ ∈−→S and Fw→s = /0

otherwise.
• E(S,F) = {(∀{ f ,g,x})apps,s′( f ,x) = apps,s′(g,x)⇒ ( f = g) | s,s′ ∈ −→S }

– β(S,F)(M) = M, where Ms = {m | m ∈Ms} for all types s ∈ −→S , such that
• for each s ∈ S and m ∈Ms, we have m = m, and
• for each s→ s′ ∈ −→S and m ∈Ms→s′ , the function m : Ms →Ms′ is defined as

follows: m(x) = applys,s′(m,x), for all x ∈Ms.
– α is defined as the canonical extension of the mapping on the terms αterm defined

by αterm(tt ′) = apply(αterm(t),αterm(t ′)).

The reader may complete the details of this definition (such as the definitions of φ on
the signature morphisms and of the β(S,F) on the model morphisms) by herself/himself
or may look into [10].

Now we have established all the necessary conditions for the applications of Theo-
rem 4 for the comorphism HNK→ FOEQLcpres.

Corollary 6. HNK has the D-OTP, where D consists of signature extensions with finite
numbers of types.

5 Conclusions and Future Work

We have lifted the OTP from the conventional model theory to the institution indepen-
dent framework and we have developed two ways of obtaining the OTP

1. within an arbitrary institution by using the forcing technique introduced in [27]; as
instances of our abstract results we have obtained the OTP for first-order logic, pre-
order algebra, order-sorted algebra, partial algebra and also their infinitary variants.

2. by transporting it (backwards) along the institution comorphisms; we have illus-
trated the applicability power of our method by deriving the OTP to first-order
partial algebra and higher-order logic with Henkin semantics; as in the previous
case, the abstract results can be applied to infinitary variants of the institutions we
have just mentioned.

Our work is justified by the the institution-independent status of the results, and the mul-
titude of instances of the abstract theorems. Due to the use of forcing, our work covers
uniformly both finitary and ininitary case. We obtained also an abstract version of the
famous Downward Löwenheim-Skolem Theorem. The interested reader may complete
the details for borrowing this result along instition comorphisms to first-order partial
algebra and higher-order logic with Henkin semantics.
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In the future we are planning to apply our results to other logics such as institutions
with predefined types [14]. We expect our methods to be applicable to most of the mul-
titude of combinations between the logics discussed here, such as order-sorted algebra
with transitions. An interesting topic for the future work would be forcing and the OTP
for modal logics.
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6 Exiled proofs

Section 2:

Proof (Lemma 2).

1. p w e iff p  ¬¬e iff for each q≥ p, q 1 ¬e iff for each q≥ p, there exists r ≥ q
such that r  e.

2. By induction on e.
For e ∈ Sen0(Σ). The conclusion follows from f (p)⊆ f (q).
For ¬e ∈ L . We have p  ¬e. Suppose towards a contradiction q 1 ¬e, then by
definition of forcing there is q′ ≥ q such that q′  e. Therefore there is q′ ≥ p such
that q′  e, thus p 1 ¬e, which is a contradiction.
For

∨
E ∈ L . p  e for some e ∈ E. By induction q  e which implies q 

∨
E.

For (∃χ)e ∈ L . Since p  (∃χ)e then p  θ(e) for some substitution θ : χ→ 1Σ. By
induction q  θ(e), and by the definition of forcing relation q  (∃χ)e.

3. It follows easily from 1 and 2.
4. Obvious.

Proof (Lemma 3). The proof of this lemma is similar to the one in [32]. Since L is
countable let {en | n < ω} be an enumeration of L . We form a chain of conditions
p0 ≤ p1 ≤ . . . in P as follows. Let p0 = p. If pn  ¬en, let pn+1 = pn, otherwise choose
pn+1 ≥ pn such that pn+1  en. The set G = {q ∈ P | q≤ pn for some n < ω} is generic
and contains p.

Proof (Proposition 2). Let T be the set of all sentences of L which are forced by G. Let
B = Sen0(Σ)∩T . We prove that for each e ∈ L MB |= e iff e ∈ T by induction on e.

For e∈ Sen0(Σ). Suppose MB |= e then we have B |= e and by the hypothesis there is
B′ ⊆ B finite such that B′ |= e. Since G is generic there exists p∈G such that B′ ⊆ f (p).
Suppose towards a contradiction that e /∈ T which because G is generic leads to ¬e∈ T .
Then there is q ∈ G such that q  ¬e. Since G is generic there is r ∈ G such that r ≥ p
and r≥ q. We have B′ ⊆ f (r) and using Lemma 2(2) we obtain r ¬e. By the definition
of forcing property r′  e for some r′ ≥ r and and by Lemma 2(2) r′  ¬e which is a
contradiction. If e ∈ T then e ∈ B and MB |= e.

For ¬e ∈ L . Exactly one of e, ¬e is in T . Since G is generic there is p ∈G such that
either p  e or p ¬e. Therefore e∈ T or ¬e∈ T . Suppose towards a contradiction that
e ,¬e ∈ T , then there exists p,q ∈ G such that p  e and q  ¬e. By the definition of
generic sets there is r ∈ G such that r ≥ p and r ≥ q. By Lemma 1(2) r  e and r  ¬e
which is a contradiction.

Let ¬e ∈ T . Suppose that MB |= e, then by induction we have e ∈ T , which is a
contradiction. Therefore MB |= ¬e. Now if MB |= ¬e, then e is not in T , therefore ¬e ∈
T .

For
∨

E ∈ L . If MB |=
∨

E then MB |= e for some e ∈ E. By induction e ∈ T . We
have p  e for some p∈G and we obtain p 

∨
E. Thus,

∨
E ∈ T . Now if

∨
E ∈ T then

e ∈ T , for some e ∈ E. Therefore, by induction, MB |= e and thus MB |=
∨

E.
For (∃χ)e ∈ L . Assume that MB |= (∃χ)e where χ : Σ → Σ′. There exists a χ-

expansion N of MB such that N |= e. Because MB is D-reachable there exists a substi-
tution θ : χ→ 1Σ such that MB �θ= N. By the satisfaction condition MB = N �χ|= θ(e).
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By induction θ(e) ∈ T which implies (∃χ)e ∈ T . For the converse implication assume
that p  (∃χ)e for some p ∈G. We have that p  θ(e) for some substitution θ : χ→ 1Σ.
By induction MB |= θ(e) which implies MB �θ|= e. Since (MB �θ) �χ= MB we obtain
MB |= (∃χ)e.

Proof (Theorem 2). By Lemma 3 there is a generic set G ⊆ P such that p ∈ G and by
Proposition 2 there is a D-reachable model M for G.

Proof (Corollary 1). Suppose p w e and M is a generic model for p which is also D-
reachable. We have p ¬¬e which implies M |=¬¬e and M |= e. Now for the converse
implication suppose that p 1w e. There is q ¬e for some q≥ p. By Proposition 2 there
is a generic model M for q which is also D-reachable; this implies M |= ¬e. But M is
also a generic model for p.

Section 3:

Proof (Lemma 4). We show Sen0(Σ
′) ⊆

⋃
i∈J

vi(Sen0(Σi)). Let e ∈ Sen0(Σ
′). Since e is

finitary it can be written as ϕ(e f ) where ϕ : Σ f → Σ′ is a signature morphism such that
Σ f is finitely presented in the category Sig. By finiteness of Σ f there exists a signature
morphism ϕi : Σ f → Σi such that ϕi;vi = ϕ. We have that e = vi(ϕi(e f )). Therefore
Sen0(Σ

′) =
⋃
i∈J

vi(Sen0(Σi)).

Proof (Proposition 3). By Lemma 4 we have that Sen0(Σ)⊆ Lv.
The most difficult closer property to prove is the closure of Lv to substitutions. The

remaining cases are straightforward. Let (∃χ)e ∈ Lv, where χ : Σ′→ Σ′1, and a substi-
tution θ : χ→ 1Σ′ . By the definition of Lv, (∃χ)e = vk((∃χk)ek) for some (∃χk)ek ∈
Sen(Σk), where χk : Σk→ Σ′k. By our assumptions, there exists v′k : Σ′k→ Σ′1 such that

Σ′k
v′k // Σ′1

Σk

χk
??�������

vk
//
Σ′

χ

??�������

is a pushout. Since χk is finitary and (uk,i
vi→ vk)(k≤i)∈(J,≤) is a directed co-limit in the

category Σk/Sig, there exists θk : χk→ uk, j, where k ≤ j such that θk;v j = v′k;θ.

Σ′k
v′k //

θk

��

Σ′1

θ

��
Σk

χk

??��������

uk, j
// Σ j v j

//
Σ′

χ

??��������

1Σ

//
Σ′

Therefore θ(e) = θ(v′k(ek)) = v j(θk(ek)) ∈ Lv.
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