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Abstract

In this paper we investigate the expressive power of Gentzen se-
quent calculi and the scope of Cut-elimination theorem. For this pur-
pose, we introduce (propositional, non-modal, with Associative and
Exchange) Saturated Logic, prove Cut-elimination and study the re-
lationship between connectives and Weakening or Contraction rules.
Compared to the most common logics, Saturated Logic maximizes,
within the ‘standard’ sequent calculi frame, the number of connectives
extending the language and expanding the stock of inference rules:
hence its name, as it fills, saturates the space of the inference forms.

Saturated Logic can be seen as a refinement of one or more known
logics, plausibly able to promote the development of new logics; more-
over, it can be seen not only as a ‘logic-to-use’, but above all as an
attempt to develop a ‘toolbox’, useful to reformulate the presentation
of logical calculi and make comparisons among them, as well as able to
shed new light on given logics or on the organization of the logic space.
See in this perspective, Saturated Logic might help to further under-
stand the Cut-elimination theorem, as well as the relationship between
Structural Rules and meta-language on the one side and Operational
Rules and object-language on the other side.
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1 Introduction: looking for unity in multiplicity

In the words of Béziau, ‘as universal algebra is a general theory of algebraic
structures, so the universal logic is a general theory of logical structures’.
According to this perspective, the universal logic is not a new logic, but a
way to unify the multiplicity of logics [2]. This research field embodies what
might be called weak assumption: the universal logic is a single theoretical
framework within which to deal with the multiplicity of logics.

On the other hand, the substructural logics [3, 8, 11, 12, 6, 9] are now
one of the most prolific areas of research and thus providing interesting
consequences to the field of logic as a whole, and not only. In this area
one can find a ‘propensity’ to the generalization that goes in the direction
of the themes and issues of universal logic. Overall, it can be concluded
that the sequent calculi (and their variants) have been a unifying element
for the wide and diverse range of so-called substructural logics, confirming
their position as an important and very fruitful tool in logic. This research
field invites us to make what might be called strong assumption: Universal
Logic is a unique logical system that subsumes the multiplicity of logics.
With different sensitivities, some systems that embody this ‘tension’ are:
Unified Logic of Girard [5], Display Logic of Belnap [7] and Basic Logic [13]
of Sambin. The present research lies in that trend.

1.1 Motivations

In a Gentzen sequent calculus1 for a logic [4, 15, 10], binary Operational
Rules are usually divided into:

� ‘context-sensitive rules’, where the binary component of the rule treats
the contexts by identification and the unary component takes only
one auxiliary formula, as for example in the following case for the
Conjunction (cf. ‘with’ & in Linear Logic)

Γ, χ ∈ {φ,ψ} ⊢ ∆
∧1

Γ, φ ∧1 ψ ⊢ ∆

Γ ⊢ φ,∆ Γ ⊢ ψ,∆
∧1

Γ ⊢ φ ∧1 ψ,∆
1Note: the sequents considered here are ‘finite sequences’.
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� ‘context-free rules’,2 where the binary component treats the contexts
by juxtaposition and the unary component takes two auxiliary formu-
las, as in the following case for the Conjunction (cf ‘times’ ⊗ in Linear
Logic)

Γ, φ, ψ ⊢ ∆
∧2

Γ, φ ∧2 ψ ⊢ ∆

Γ ⊢ φ,∆ Γ′ ⊢ ψ,∆′
∧2

Γ,Γ′ ⊢ φ ∧2 ψ,∆,∆′

With the advent of Linear Logic the use, respectively, of the expressions
‘additive rule’ and ‘multiplicative rule’3 has become well established: we use
the pair multiplicative/additive in a way compatible with its use in Linear
Logic and, although it is a little more specialized, immediately obvious.
It is immediate to observe that in literature, in order to define the rules
of inference, some left-right pairings between multiplicative and additive
form of the rules were simply not considered or were not considered in a
systematic way within a single framework (in particular, all the rules that
are here classified as heterogeneous). Let us see respectively two examples:

� among the Operational Rules, the pair (∧3L,∧3R)

Γ, φ, ψ ⊢ ∆
∧3

Γ, φ ∧3 ψ ⊢ ∆

Γ ⊢ φ,∆ Γ′ ⊢ ψ,∆
∧3

Γ,Γ′ ⊢ φ ∧3 ψ,∆

defines the behaviour of the binary connective ∧3, a sort of Conjun-
ction where the left component of the rule ∧3L is multiplicative, while
the right component of the rule ∧3R is multiplicative-to-left (of the
proof symbol or ‘turnstile’), and additive-to-right (of the proof sym-
bol), which classifies it as a heterogeneous rule;

� among the Structural Rules, the pair (⊢4 L,⊢4 R)
2The choice of the oppositional couple ‘context-sensitive/context-free’ for the nomen-

clature is motivated by the fact that the first type of rules applies if a certain condition
is met on the contexts, while the second type is free of conditions and it is borrowed
from the theory of Chomsky grammars. Similar oppositional expressions are ‘context-
sharing/context-private’, where the reference is clear in a paradigm that interprets formu-
las as resources that can be shared or not (cf. Bunched Logic). Conversely, in the case
of ‘extensional/intensional’ the reference is tied to historical reasons more than anything
else: starting from Boole, connectives of Conjunction and Disjunction expressed using
the first form were interpreted in the operations of sets intersection and sets union called
‘extensional’, then the modal logics have proved capable of handling even the so-called
intensional expressions as opposed to the extensional and, by similarity, the connectives
expressible in the second form are called ‘intensional’ as opposed to extensional connectives
(see Relevant Logic).

3The choice of the couple ‘multiplicative/additive’ is motivated by the fact that in the
so-called Phase semantics, the first semantics for Linear Logic proposed by Girard, each
context-free connective can be expressed by a ‘multiplication’ (i.e. a product of phases)
while each context-sensitive connective can be expressed by a ‘sum’ (i.e. a union of phases
also called direct sum).
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⊢4
φ ⊢4 φ

Γ ⊢4 φ,∆ Γ′, φ ⊢4 ∆
⊢4

Γ,Γ′ ⊢4 ∆

defines the behaviour of the metalinguistic turnstile ⊢4 (together with
the metalinguistic comma), a sort of relation where the left compo-
nent of the rule ⊢4 L (a sort of Identity) is multiplicative-to-left and
multiplicative-to-right, while the right component of the rule ⊢4 R (a
sort of Cut) is multiplicative-to-left and additive-to-right, which clas-
sifies it as a heterogeneous rule.

Therefore, a systematic treatment of possible inference rule forms is re-
quired: this is the main conceptual motivation for introducing Saturated
Logic. Here we shall only consider standard sequent calculi which require
few and ‘reasonable’ restrictions on the form of inference rules: Saturated
Logic is designed to exhaust the combinatorial space of inferential behaviours
in such frame.

1.2 Symmetries

In Saturated Logic each pair of Operational Rules corresponds to a sym-
metric pair of rules,4 therefore: each Conjunction form corresponds to a
Disjunction form and vice versa, so as each Implication form corresponds to
a Disimplication form and vice versa. Here are two examples:

� both (∧5L,∨6R) and (∨6L,∧5R) are symmetric pairs

Γ, χ ∈ {φ,ψ} ⊢ ∆
∧5

Γ, φ ∧5 ψ ⊢ ∆

Γ ⊢ χ ∈ {φ,ψ},∆
∨6

Γ ⊢ φ ∨6 ψ,∆

Γ, φ ⊢ ∆ Γ′, ψ ⊢ ∆′
∨6

Γ,Γ′, φ ∨6 ψ ⊢ ∆,∆′
Γ ⊢ φ,∆ Γ′ ⊢ ψ,∆′

∧5

Γ,Γ′ ⊢ φ ∧5 ψ,∆,∆′

in fact the component ∧5L (resp. ∧5R) corresponds to the symmetric
component ∨6R (resp. ∨6L) and vice versa, and therefore the connec-
tive ∧5 is the symmetric of ∨6 and vice versa;

� both (→7 L,←8 R) and (←8 L,→7 R) are symmetric pairs

Γ ⊢ φ,∆ Γ′, ψ ⊢ ∆→7

Γ,Γ′, φ→7 ψ ⊢ ∆

Γ, ψ ⊢ ∆ Γ ⊢ φ,∆′ ←8

Γ ⊢ φ←8 ψ,∆,∆
′

Γ, φ ⊢ ∆←8

Γ, φ←8 ψ ⊢ ∆

Γ ⊢ ψ,∆ →7

Γ ⊢ φ→7 ψ,∆

4See the concept of symmetry as developed in Linear Logic, Basic Logic and Display
Logic.
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in fact the component →7 L (resp. →7 R) corresponds to the sym-
metric component ←8 R (resp. ←8 L) and vice versa, and therefore
the connective →7 is the symmetric of ←8 and vice versa.

The Multiplicative (structure) Saturated Logic M.LSat results from tak-
ing multiplicative-to-left and to-right Identity and multiplicative-to-left and
to-right Cut, and by defining all the combinatorial predictable Operational
Rules in the sense previously specified.5 In this article, we consider explic-
itly only the Multiplicative Saturated Logic with Exchange and Associativity
AEM.LSat, i.e. we assume also associativity and commutativity of the
comma. Similar Structural Rules as primitive rules of calculus allow to
not consider systematically primitive Operational Rules that discriminate
in the way of order or assembly the contexts in the conclusion sequent or
the auxiliary formulas in the main formula.

1.3 Advantages

About the Cut-elimination we observe:

� in AEM.LSat some pairs of rules allow to derive Weakening W or
Contraction C (Left or Right): it becomes meaningful to identify such
pairs of rules (here classified as structured, in opposition to the others
classified as unstructured);

� in this article we sketch the proof of Cut-elimination (specified below as
‘Cut-containment’) for the system AEM.LSat: it becomes meaningful
to systematically investigate which subsystems are Cut-free, or what
constraints preserve the Cut-elimination;

� always about the syntactic side, we reserve to investigate the relation-
ship between the concept of Cut-containment and some attempts to
define general properties that guarantee the syntactic Cut-elimination
or its preservation.6

About the ‘space of logics’ organization we could argument:

� Basic Logic confirms to be a fundamental system, since its connec-
tives are ‘ambiguous’ in the sense that they can ‘evolve’ (going up in
the cube of the extensions of Basic Logic) in both their correspond-
ing homogeneous or heterogeneous version (in the sense of Saturated
Logic);

5Of course, it assumes that one has defined a language with as many symbols of con-
nectives as you need, i.e. one for each pair of rules of introduction.

6See the set of properties identified by Belnap in Display Logic [7, 12] or the propagation
property identified by Terui [14].
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� Classic Logic confirms more clearly to be a ‘superior limit’, since its
saturation coincides with AEM.LSat;7

� many logics (all those exhibit a standard sequent calculus?) would be
sublogics of Saturated Logic in a clear sense: that is, as appropriate
choices of a subset of the rules of LSat.

1.4 Structure of the paper

In section 2 crucial notation and terminology is introduced: note that a list
of connectives rules is not explicitly given in the paper, but they can be
unambiguously reconstructed from conventions on the shape of the symbols
given in this section. In section 3 some conceptual links are highlighted
between Structural and Operational rules: this discussion helps to assess the
meaning of Saturated Logic in the context of the Universal Logic research
program, but the reader who is only interested in the technical results can
skip it. In section 4 the system AEM.LSat is introduced and the derivability
of Weakening and Contraction as second rules (by use of some Operatio-
nal rules) and the interderivability between Conjunctions connectives are
studied. In section 5 the Cut-elimination for AEM.LSat is specified as
Cut-tradeoff theorem and it is sketched.

2 Introducing the notation

Part of this work has been the definition of a notation that would allow one to
easily and immediately manipulate and compare a large number of symbols
in a uniform way. In particular, the notational conventions established here
bring into correspondence the (form of) symbols of the formulas language
with the (form of) Operational Rules. Therefore, one can use the symbols
of language to refer to and, at the same time, instantly recall the rules of
calculus. In addition, it becomes possible to formulate or prove theorems by
directly referring to the form of symbols.

For the complete list of AEM.LSat connectives, see below Table 1: here
the connectives are divided into family and subfamily, where, for example,
the symbol ∧ belongs to the cancellative family and multiplicative subfamily,
the symbol ∧ belongs to the adjunctive family and (west-over-)sub-additive
subfamily, while the symbol ∧ belongs to the adjunctive family and (west-
east-over-)sub-additive subfamily.

7We reserve to investigate the space of the logics in a next job, so here we do not specify
over what we mean by ‘saturation’. If one is interested in keeping all the AEM.LSat
connectives in a single system and at the same time at preventing their ‘collapse’, it seems
likely to proceed in the direction of Linear Logic, namely: introducing modalities, or in
the direction of Display Logic, namely: considering further punctuation than the comma,
in order to deal with a lot of distinct families of connectives.
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cancellative family

muliplic.


∧ ∨
→ ←
⊤ ⊥

almost-mul.


∧| |∨
→| |←
⊤| |⊥

semi-mul.


|∧ ∨|
|→ ←|
|⊤ ⊥|

sub-mul.


|∧| |∨|
|→| |←|
|⊤| |⊥|

adjunctive family

sub-add.


∧ ∧ ∧ ∧ ∨ ∨ ∨ ∨
→ → → → → ← ← ← ← ←
← ← ← ← → → → →
⊤ ⊤ ⊥ ⊥
⊥ ⊤

semi-add.


∧| ∧| ∧| ∧| |∨ |∨ |∨ |∨
→| →| →| →| →| |← |← |← |← |←
|← |← |← |← →| →| →| →|
⊤| ⊤| |⊥ |⊥
|⊥ ⊤|

almost-add.


|∧ |∧ |∧ |∧ ∨| ∨| ∨| ∨|
|→ |→ |→ |→ |→ ←| ←| ←| ←| ←|
←| ←| ←| ←| |→ |→ |→ |→
|⊤ |⊤ ⊥| ⊥|
⊥| |⊤

additive


|∧| |∧| |∧| |∧| |∨| |∨| |∨| |∨|
|→| |→| |→| |→| |→| |←| |←| |←| |←| |←|
|←| |←| |←| |←| |→| |→| |→| |→|
|⊤| |⊤| |⊥| |⊥|
|⊥| |⊤|
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Table 1: connectives of AEM.LSat
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In Table 1 the connectives of each subfamily are listed in the following
order:

� first the connectives of the genus ‘junction’ and, respectively, of species
‘Conjunction’ and ‘Disjunction’

� then the connectives of the genus ‘implicature’ and, respectively, of
species ‘Implication’ and ‘Disimplication’

� finally the connectives of the genus ‘truth constants’ and, respectively,
of species ‘Truth’ and ‘False’

For each row of table, proceeding from the extremes toward the center,
the symbols occur in pairs with a double symmetry: along a horizontal axis
and along a vertical axis that orthogonally meet each other at the midpoint
of each symbol. For example, each symbol in the pair ( |→ ,←| ) is the
symmetric of the other, both along the vertical axis and along the horizontal
axis that cross them in the midpoint. Similarly for (∧,∨) and so on.

Such observation is meaningful in Saturated Logic since the notation, i.e.
the form of symbols, mirrors the form of the rules and therefore ‘symmetry
into notation’ corresponds to ‘symmetry into rules’.

Definition 2.1 The unary (resp. zero-ary) rule for a binary (resp. zero-
ary) connective introduces a main formula that consists of two subformulas
(resp. contexts8), which we call

� visible-formula (resp. -context) if it is already in the premise sequent

� gosth-formula (resp. -context) if it appears for the first time in the
conclusion sequent

The rules having at least one ghost component (i.e. a formula or context)
can be ‘simulated’ in two steps by an application of Weakening that intro-
duces the ghost-components and by the application of the multiplicative rule
corresponding to the considered connective. Therefore, we say that such a
main component is obtained by adjunction (hence the name of ‘adjunctive
family’).

Definition 2.2 The binary (resp. zero-ary) rule for a binary (resp. zero-
ary) connective introduces a main formula and a context in each side, which
we call

� as-it-is-context if it consists of the concatenation of contexts on the
same side in the premise sequents (resp. if it consists of the copy of
the context on the same side in the premise sequent);

8To left and to right of the turnstile.
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� halved-context if it consists of one and only one copy of contexts on
the same side in the premise sequents (resp. in the premise sequent)
and if these are equal to each other.

The rules having at least a halved-context can be ‘simulated’ in two steps
by an application of the multiplicative rule corresponding to the consid-
ered connective and by a suitable number of applications of Contraction
(and eventually Exchange). Therefore, we say that such a main context is
obtained by cancellation (hence the name of ‘cancellative family’).

For the symbolic notation of a connective - binary or zero-ary - we adopt
the following conventions (see below for some examples):

� a horizontal dash, eventually compounded, is named horizontal bar.
It means that the rule with a smaller number of premises - unary in
the case of a binary connective and zero-ary in the case of a zero-ary
connective - is additive, in particular:

the horizontal bar that looks long, centered and superscribed is
named over bar (resp. under bar if subscribed) and it means that the
ghost-component can be ‘simulated’ to the left (resp. to the right) of
the turnstile, without discriminating whether it will appear to the left
or to the right of the connective - binary or zero-ary;

the horizontal bar that looks compounded by an over bar and by
an under bar is named over-under bar or under-over bar and it means
that the ghost-component can be ‘simulated’ both to the left and to
the right of the turnstile;9

the horizontal bar that looks short and left-aligned is named west
bar (resp. east bar if right-aligned) and it discriminates more than a
long horizontal bar indicating also that the ghost-formula appears to
the left (resp. to right) of the binary connective;10

the horizontal bar that looks compounded by a west bar and by an
east bar is named west-east bar or east-west bar and it means that the
ghost-formula appears both to the left and to the right of the binary
connective;11

� the vertical bar that looks to left is named left bar (resp. right bar
if to right). It means that the rule with a major number of premises

9i.e. it happens that: the main formula is compounded by two ghost-formulas, a sort
of limited Weakening introducing just formulas with the considered connective as main;
or it happens that: a ghost-context is introduced to right and another one is introduced
to left.

10In more details, as the case, here we consider: west-over or west-under bar, east-over
or east-under bar. We do not regard contexts because the Exchange rule allow to forget
similar rules in the case of zero-ary connectives.

11In more details, as the case, here we consider: west-east-over, east-under-west-over,
west-under-east-over, east-over-west-under, west-over-east-under, east-west-under.

9



- binary in the case of a binary connective and unary in the case of
a zero-ary connective - is multiplicative to left (resp. to right) of the
turnstile, i.e. the halved-context can be ‘simulated’ to left (resp. to
right).

Consider the Conjunction almost-additive |∧

� the symbol exhibits an over bar, the correspondent rule with the minor
number of premises is |∧L, which is unary and it has to be written in
additive form to left of the turnstile, but without discriminating if the
ghost-formula appears to the left or to the right of the visible-formula

Γ, A ⊢ ∆

Γ, A |∧B ⊢ ∆
or

Γ, B ⊢ ∆

Γ, A |∧B ⊢ ∆

this rule can be simulated in this way

Γ, A ⊢ ∆
W

Γ, A,B ⊢ ∆

Γ, A ∧B ⊢ ∆

or
Γ, B ⊢ ∆

W
Γ, A,B ⊢ ∆

Γ, A ∧B ⊢ ∆

where the horizontal bar has a mnemonic value: in some sense it is
as if this bar were the marker of an empty seat, which has to be
immediately filled with a new occurrence of formula;

� the symbol exhibits a left bar, the correspondent rule with the major
number of premises is |∧R, this is binary and it has to be written in
additive form to the left of the turnstile

Γ ⊢ A,∆ Γ ⊢ B,∆′

Γ ⊢ A |∧B,∆,∆′

this rule can be simulated in this way

Γ ⊢ A,∆ Γ ⊢ B,∆′

Γ,Γ ⊢ A ∧B,∆,∆′
C,E

| Γ ⊢ A ∧B,∆,∆′

where the vertical bar has a mnemonic value: in some sense it is as
if this bar marked the cancellation of a copy of the occurrences in
as-it-is-context.

By symmetry, similar considerations apply in respect of over-bar, right bar
and the right side of the turnstile.12

12If we consider modal expansions of the Saturated Logic, the notation for exponentials
of the Linear Logic ‘of course !A’ and ‘why not ?A’ can be uniformly replaced respectively
by A and B. Note that Γ, A∧B ⊢ ∆ is not the same as Γ, A∧B ⊢ ∆, as a possible proof
that involves the first sequent must first verify that Γ, A,B ⊢ ∆ with the ‘formula’ A in
additive form and freely in the context, while in the latter case the formula A is only a
‘subformula’ of a formula in additive form.
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At this point, the ratio of adopted notational conventions should be clear
and other few examples follow. In the case of almost-additive Conjunction
|∧ , the expression ‘to right of the auxiliary visible-formula’ for |∧L results
in the following rule

Γ, A ⊢ ∆

Γ, A |∧B ⊢ ∆

In the case of almost-additive Conjunction |∧ , the expression ‘both to
left and to right of the (eventual) auxiliary visible-formula’ for |∧L results
in the following rule

Γ ⊢ ∆
Γ, A |∧B ⊢ ∆

Finally, in the case of almost-additive constant for Truth |⊤

� the symbol exhibits an over bar, the correspondent rule with a minor
number of premises is |⊤R, which is zero-ary and it has to be written
in additive form to the left of turnstile

Γ ⊢ |⊤

� the symbol exhibits a left bar, the correspondent rule with a major
number of premises is |⊤R, which is unary and it has to be written in
additive form to the left of turnstile

Γ,Γ ⊢ ∆

Γ, |⊤ ⊢ ∆

3 Structure and operations

In the natural deduction calculi and in the sequent calculi the status of
Operational Rules (RO) is clear: in accordance with Gentzen, it can be
argued that they specify, in whole or in part, the meaning of the connectives
symbols. Conversely, the status of Structural Rules (RS) is not entirely
clear: of course it can be said that they specify the allowable manipulations
of the structure of a sequent, while one can see that they do not involve
a direct manipulation of any symbol for the connectives. Therefore, one
may asks what is the connection between Structural Rules and Operational
Rules.

3.1 Structural and operational viewpoint

If one refuses a holistic viewpoint (so to say, in the spirit of the calculi
à la Hilbert) and embraces instead an inferential viewpoint (so to say, in
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the spirit of natural deduction and sequent calculi), it becomes possible to
distinguish between an operational meaning (given by the introduction rules
for each connective) and a global meaning (given by the provable sequents
containing each connective).

The positions expressed in contemporary research differ considerably
depending on the weight accorded to the Structural Rules and may vary
between the following two extremes that we might call

� operational viewpoint : the SR correspond to restrictions on discharge
of assumptions and are tied to a particular formalism, therefore: they
do not play any role in determining the content of the connectives, the
OR specify the operational content of the logical constants;

� structural viewpoint : the SR specify different ways to ‘compose’ or
‘assembly’ the premises (at a higher-level language, the language of
punctuation marks), the OR explicit these possibilities (in a lower-
level language, the language of formulas), therefore: they have to be
considered as ‘translation rules’.

The Linear Logic, now one of the most influential research fields, encom-
passes the structural viewpoint: Girard’s statement ‘a logic is essentially a
set of structural rules’ is renown.

A third and alternative viewpoint, respectively, in both its versions, is
fundamental and important in two general approaches to the logic: the
Display Logic and the Basic Logic, and probably it is no coincidence if both
these logics aim to ‘unification’ in the field of logic. We can distinguish
between those we might call

� interactionist-from-above viewpoint : the OR are not sufficiently selec-
tive, because they say something about the metalinguistic signs and
the contexts on the same side of the main formula. Therefore, it is
desirable to find systems that meet the display property :

each part of a sequent is isolable, since one can always switch to an
equivalent sequent within which it represents the whole precedent or
the whole succedent

namely that, for each sequent S1, there exists an equivalent sequent
S2 such that both of the following hold

for all Π ⊆ Γ, S1 = Γ ⊢ ∆⇔ Π ⊢ Σ = S2

for all Σ ⊆ ∆, S1 = Γ ⊢ ∆⇔ Π ⊢ Σ = S2

� interactionist-from-below viewpoint :13 the meaning of a connective ‘is
also determined by the contexts in its rules, which may be carriers of

13About the four ‘views’ exposed, respectively see the viewpoint i) nihilistic, ii) rela-
tivistic, iii) of indeterminacy (of the meaning) - first version, e iv) - second version in
[11].
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hidden information on the behaviour of the connective ’. Therefore, it
is desirable that a system satisfies the visibility property :

the OR do not have any context on the same side of the main formula
and auxiliary formulas

namely that, for each sequent S = Γ ⊢ ∆ in a proof,14 at least one of
the following holds

Γ = φ or Γ = ∅
∆ = ψ or ∆ = ∅

One can see a certain analogy between the first version and how to pro-
ceed ‘from above’ characteristic of coinductive definition and recursion, as
well as between the second version and how to proceed ‘from below’ cha-
racteristic of inductive definition and recursion. Note that: if definitions
and recursion are performed on a inductive set, proceeding by induction
or by coinduction makes no difference, otherwise distinguishing among An-
tifoundation principles and investigating the relationship between not-well-
founded and well-founded objects become important.15 In order to feed this
suggestion and for the moment no further, we propose the following diagram

induction principle coinduction principle
compositional principle of meaning holistic principle of meaning

operational meaning global meaning
Operational Rules Structural Rules

operational viewpoint structural viewpoint
interactionist-from-below viewpoint interactionist-from-above viewpoint

︸ ︷︷ ︸
interactionistic viewpoint

The Structural Rules are the bearers of global meaning and the rules
for the connectives or Operational Rules are the bearers of the operational
meaning. Only within a calculus it makes sense to question about the mean-
ing of a connective that is generated in the interaction between Structural
Rules and Operational Rules.

Given a calculus, if a connective is always isolable on the one side of the
sequent in which it appears (displaying property) or a connective is always
introduced in isolation on the one side (visibility property), then the role
of active contexts (i.e. contexts on the same side of the main and auxiliary
formulas) becomes easier to control because it can be reduced to the role
of passive contexts (i.e. the contexts on the opposite side of the main and
auxiliary formulas).

14It does not happen that Γ = ∆ = ∅, because the empty sequents are not allowed.
15In the scope of set theory see [1] on various Antifoundation axioms.
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The Saturated Logic allows that a connective may be heterogeneous, i.e.
‘multiplicative-to-left and additive-to-right’ or ‘additive-to-left and multipli-
cative-to-right’ and, as such, it is both (pre-)determined by passive contexts
of its rules and (over-)determined by the active contexts of its rules.

3.2 Saturated calculi and saturation matrix

Definition 3.1 A standard sequent calculus is a sequent calculus where for
each primitive left (resp. right) Operational Rule, the auxiliary formulas are
generic16 and the main formula introduces to left (resp. to right) one and
only one zero-ary or binary connective (the unary connettives, i.e. Negations
and Denegations, are not primitive but defined).

A saturated sequent calculus, if not otherwise specified, is a standard se-
quent calculus whereWeakening, Contraction, Associativity and Exchange
are not allowed as primitive rules but, eventually, as derived rules.

Definition 3.2 In a saturated sequent calculus the primitive Operational
Rules take a finite number of forms, that can be grouped according to two
antonymous features:

� homogeneous, if both to left and to right the behaviour is the same
(multiplicative on the either sides or, exclusively, additive on the either
sides)

� heterogeneous, if to left and to right the behaviour is different (multi-
plicative on one side and additive on the other side)

A finer classification is obtained by considering two other antonymous fea-
tures:

� unstructured, if the rule does not allow to derive Weakening, Contrac-
tion, Associativity or Exchange (on any sides)

� structured, if the rule allows to derive Weakening, Contraction, Asso-
ciativity or Exchange (at least on one side)

Definition 3.3 A saturation matrix is a matrix where the features ‘homo-
geneous’ and ‘heterogeneous’ correspond to the columns, and the features
‘unstructured’ and ‘structured’ to the rows.

Therefore: each rule Inf of a saturated sequent calculus is framed into
one and only one crossing of the saturation matrix.

16I.e. they are atomic or compound without any constraint on the main connective and,
therefore, they can be representable by a metavariable for formulas.
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homogeneous heterogeneous

Inf1 Inf2 unstructured

Inf3 Inf4 structured

Table 2: saturation matrix

4 The system AEM.LSat

From a syntactic perspective, the Multiplicative (structure) Saturated Logic
with Exchange and Associativity AEM.LSat is a saturated calculus where
the primitive Structural Rules are: Multiplicative Identity and Multiplica-
tive Cut; Associativity to left and to right; Exchange to left and to right;
and the primitive Operational Rules are all those corresponding to the in-
troduction of connectives in Table 1 (73 to left and 73 to right, with a total
of 146), that is: 40 junctions, of which 20 Conjunctions and 20 Disjunc-
tions; 80 implicatures, of which 40 Implications and 40 Disimplications; 32
truth constants, of which 16 constants for the Truth and 16 constants for
the False.

The notational conventions introduced in the section 2 allow us to uniquely
reconstruct the rules pair of each connective out of its symbol shape.

4.1 The form of Operational Rules

In regard to the static binary connectives, let us consider the case of Con-
junction (the case of Disjunction is totally symmetric). The proposed sys-
tematic classification distinguishes 20 connectives divided into two subsets,
which we called cancellative family and adjunctive family : the 4 Conjunc-
tions of the first family do not exhibit any horizontal bar, on the contrary
of the 16 Conjunctions of the second family, which is further divisible in
subfamilies. Each (sub)family respect to the x-axis of Table 1 exhibits a
gradation of left bar and right bar ordered according to the diagrams in
Table 3.

The bars may be regarded as parameters, where the presence or absence
of the over bar determines the membership to either one or the other of two
families, while the presence or absence of vertical bars measures the degree
of membership to each family (maximum for the vertices with two outgoing
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cancellative family

mul.

∧

semi
↙ ↘

almost
-mul. |∧ ∧| -mul.

↘ ↙
|∧|

sub-mul.

adjunctive family

subfam. over-

sub-add.

∧

almost
↗ ↖

semi
-add. |∧ ∧| -add.

↖ ↗
|∧|
add.

su
b
fa
m
.
w
es
t-
ov
er
- sub-add.

∧

almost
↗ ↖

semi
-add. |∧ ∧| -add.

↖ ↗
|∧|
add.

sub-add.
su
b
fa
m
.
ea
st
-o
v
er
-

∧

almost
↗ ↖

semi
-add. |∧ ∧| -add.

↖ ↗
|∧|
add.

sub-add.

∧

almost
↗ ↖

semi
-add. |∧ ∧| -add.

↖ ↗
|∧|
add.

subfam. west-east-over-

Table 3: families of Conjunctions

16



arcs, intermediate for the vertices with an ingoing arc and an outgoing arc,
minimum for the vertices with two ingoing arcs).

Table 4 shows the saturation matrix for the junctions grouped into the
subfamilies respect to the y-axis of Table 1), where the correspondent deriv-
able17 rule of Weakening or Contraction is reported under each structured
rule; in particular, below each structured rule ‘sub conditione’ the derivable
rule is labeled by a superscript indicating a specification.

homogeneous
mul. add.

|∧| |∨|

∧ ∨ |∧| |∨|
|∧| |∨|
|∧| |∨|
sub-add.

∧ ∨

sub-mul. LWwwlRWwwr

∧ ∨

|∧| |∨| ∧ ∨

∧ ∨
LC RC LW RW

heterogeneous
almost-mul. almost-add.

|∧ ∨|

∧| |∨ |∧ ∨|
unstructured|∧ ∨|

|∧ ∨|
semi-add.

∧| |∨ structured
sub conditione

semi-mul. LWwwlRWwwr

∧| |∨

|∧ ∨| ∧| |∨ structured

∧| |∨
LC RC LW RW

Table 4: saturation matrix for junctions

In regard to dynamic binary connectives, let us consider the case of
Implication (the case of Disimplication is totally symmetric). The proposed
systematic classification distinguishes 40 connectives: the 4 Implications of
the cancellative family do not exhibit any horizontal bar, on the contrary
of the 36 Implications of the adjunctive family, which is further divisible in
subfamilies.

Each (sub)family respect to the x-axis of Table 1 exhibits a gradation of
left bar and right bar ordered according to the diagrams in Table 5.18

17Assuming the structural rules of multiplicative Identity and multiplicative Cut.
18Even here, the bars can be considered as the parameters according to the same con-

ventions established in the case of the static connectives.
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cancellative family

mul.

→

semi
↙ ↘

almost
-mul. |→ →| -mul.

↘ ↙
|→|

sub-mul.

adjunctive family

subfam. over-

w
es
t-
ov
er
-

sub-add.

→

almost
↗ ↖

semi
-add. |→ →| -add.

↖ ↗
|→|
add.

sub-add.

→

almost
↗ ↖

semi
-add. |→ →| -add.

↖ ↗
|→|
add.

sub-add.

→

almost
↗ ↖

semi
-add. |→ →| -add.

↖ ↗
|→|
add.

ea
st
-o
v
er
-

w
es
t-
u
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d
er
-

sub-add.

→

almost
↗ ↖

semi
-add. |→ →| -add.

↖ ↗
|→|
add.

sub-add.

→

almost
↗ ↖

semi
-add. |→ →| -add.

↖ ↗
|→|
add.

ea
st
-u
n
d
er
-

ea
st
-u
n
d
er
-w

es
t-
ov
er
-

sub-add.

→

almost
↗ ↖

semi
-add. |→ →| -add.

↖ ↗
|→|
add.

sub-add.

→

almost
↗ ↖

semi
-add. |→ →| -add.

↖ ↗
|→|
add.

sub-add.

→

almost
↗ ↖

semi
-add. |→ →| -add.

↖ ↗
|→|
add.

ea
st
-o
v
er
-w

es
t-
u
n
d
er

subfam. under-over-

Table 5: families of Implications

Table 6 shows the saturation matrix for the implicatures grouped into
the subfamilies respect to the y-axis of Table 1: even here, the correspondent
derivable rule of Weakening or Contraction is reported under each structured
rule and structured rule ‘sub conditione’; in particular in the last case, the
derivable rule is labeled by a superscript indicating a specification or its
derivability under a certain condition.
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homogeneous
mul. add.

|→| |←|
|→| |←|
|→| |←|

→ ←
|→| |←|
|→| |←|
|→| |←|

sub-mul. sub add.

|→| |←|
→ ←
→ ←
→ ←

L/RCcap L/RWwwlr

→ ←
→ ←
→ ←
← →
← →
← →

LW RW

heterogeneous
almost-add. semi-add.

|→ ←| →| |←

unstructured

|→ ←| →| |←
|→ ←| →| |←
|→ ←| →| |←
|→ ←| →| |←
|→ ←| →| |←
|→ ←| →| |←
|→ ←| →| |←
|→ ←| →| |←
almost-mul. semi-mul.

|→ ←| |← →| structured
sub conditione

LCca RCca LCca RCca

structured

Table 6: saturation matrix for implicatures

In regard to the zero-ary connectives, let us consider the case of the Truth
(the case of the False is totally symmetric). The systematic classification
proposed distinguishes 16 connectives: the 4 constants for the Truth of the
cancellative family do not exhibit any horizontal bar, on the contrary of the
12 constants for the Truth of the adjunctive family, which is further divisible
in subfamilies. Each (sub)family respect to the x-axis of Table 1 exhibits
a gradation of left bar and right bar ordered according to the diagrams in
Table 7.19

19Even here, the bars can be considered as the parameters according to the same con-
ventions established in the case of the binary connectives.
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cancellative family

mul.

⊤

semi
↙ ↘

almost
-mul.|⊤ ⊤|-mul.

↘ ↙
|⊤|

sub-mul.

adjunctive family

su
b
fa
m
.
ov
er
-

sub-add.

⊤

almost
↗ ↖

semi
-add.|⊤ ⊤|-add.

↖ ↗
|⊤|
add.

sub-add.

su
b
fa
m
.
u
n
d
er
-

⊤

almost
↗ ↖

semi
-add.|⊤ ⊤|-add.

↖ ↗
|⊤|
add.

sub-add.

⊤

almost
↗ ↖

semi
-add.|⊤ ⊤|-add.

↖ ↗
|⊤|
add.

subfam. under-over-

Table 7: families of constants for Truth

Table 8 shows the saturation matrix for the truth constants grouped into
the subfamilies respect to the y-axis of Table 1: even here, the correspondent
derivable rule of Weakening or Contraction is reported under each structured
rule.
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homogeneous
mul.

⊤ ⊥

sub-mul. additive sub-add.

|⊤| |⊥| |⊤| |⊥| ⊤ ⊥
|⊥| |⊤| ⊥ ⊤

L/RC LW RW LW RW

L/RC

|⊤| |⊥| ⊤ ⊥

L/RW L/RW

L/RC

heterogeneous

unstructured

semi-mul. almost-add. almost-add.

almost-mul. semi-add. semi-add.

structured

|⊤ ⊥| |⊤ ⊥| |⊤ ⊥|
|⊥ ⊤| |⊥ ⊤| |⊥ ⊤|

LC RC RW LW LW RW

LC RC LC RC

|⊤ ⊥|
|⊥ ⊤|

L/RW

LC RC

Table 8: saturation matrix for truth constants

4.2 Derivability of Weakening and Contraction

The distinction between structured and unstructured rules is justified by the
following two theorems.

Theorem 4.1 Assume multiplicative Identity and multiplicative Cut. Left
Contraction and Right Contraction can be obtained as derived rules in the
following cases:

orizontal- orizontal- derived sub-
left bar right bar over bar under bar rules con.

Cong. X indifferent × impossible LC
Disg. indifferent X impossible × RC

implic. X × × × LC ca
implic. × X × × RC ca
implic. X X × × L/RC cap
truth c. X × indifferent indifferent LC
truth c. × X indifferent indifferent RC
truth c. X X indifferent indifferent L/RC

The abbreviations marked by ‘c’ specify that the Contraction can be ob-
tained as a derived rule only under certain constraints ( sub-conditione), in
particular ‘ca’: the occurrences which must be contracted do not exhibit any

21



active context; ‘cap’: the occurrences which must be contracted do not exhibit
any context (active or passive).

Below there are some examples of short proofs

Proof

Contraction
Left Right

A ⊢ A A ⊢ A
A ⊢ A |∧A

...
Γ, A,A ⊢ ∆

Γ, A |∧A ⊢ ∆

Γ, (A) ⊢ ∆

...
Γ ⊢ A,A,∆
Γ ⊢ A∨|A,∆

A ⊢ A A ⊢ A
A∨|A ⊢ A

Γ ⊢ (A),∆

A ⊢ A
⊢ A |→A

A ⊢ A

...
A,A ⊢ ∆

A,A |→A ⊢ ∆

(A) ⊢ ∆

A ⊢ A
⊢ A→|A

...
Γ ⊢ A,A A ⊢ A

Γ, A→|A ⊢ A
Γ ⊢ (A)

⊢ |⊤

...
Γ,Γ ⊢ ∆

Γ, |⊤ ⊢ ∆

(Γ) ⊢ ∆

⊢ ⊤|

...
Γ ⊢ ∆,∆

Γ,⊤| ⊢ ∆

Γ ⊢ (∆)

Theorem 4.2 Assume multiplicative Identity and multiplicative Cut. Left
Weakening and Right Weakening can be obtained as derived rules in the
following cases:

orizontal- orizontal- derived sub-
left bar right bar over bar under bar rules con.

Cong. × indifferent X impossible LW (wwl)*
Disg. indifferent × impossible X RW (wwr)*

implic. × × X × LW
implic. × × × X RW
implic. × × X X L/RW wwlr
truth c. indifferent indifferent X × LW
truth c. indifferent indifferent × X RW
truth c. indifferent indifferent X X L/RW

The abbreviations marked by ‘ww’ specify that the derived rule is special
form of Weakening introducing two occurrences of formulas (also different),
in particular ‘wwl’: either to left, ‘wwr’: either to right, ‘wwlr’: one to left
and the other to right (of the turnstile).

*Note: the constraints ‘wwl’ applies iff the horizontal over bar is a west-
east-over bar, and the ‘wwr’ applies iff the orizontal under bar is a east-west-
under bar, otherwise there are not constraints for junctions.
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Below there are some examples of the shorts proofs

Proof

Weakening
Left Right

A ⊢ A B ⊢ B
A,B ⊢ A ∧|B

...
Γ, B ⊢ ∆

Γ, A ∧|B ⊢ ∆

Γ, (A), B ⊢ ∆

...
Γ ⊢ A,∆
Γ ⊢ A |∨B,∆

A ⊢ A B ⊢ B
A |∨B ⊢ A,B

Γ ⊢ A, (B),∆

...
Γ ⊢ B,∆
Γ ⊢ A→B,∆

A ⊢ A B ⊢ B
A,A→B ⊢ B

Γ, (A) ⊢ B,∆

...
Γ, A ⊢ ∆

Γ ⊢ A→B,∆
A ⊢ A B ⊢ B
A,A→B ⊢ B

Γ, A ⊢ (B),∆

Γ ⊢ ⊤|

...

Γ′ ⊢ ∆,∆

Γ′,⊤| ⊢ ∆

(Γ),Γ′ ⊢ ∆

⊢ ⊤|,∆

...

Γ ⊢ ∆′,∆′

Γ,⊤| ⊢ ∆′

Γ ⊢ ∆′, (∆)

Finally, the 16 symbols for the connectives of Negation are defined via
multiplicative Implication and constant for the False, while the 16 symbols
for the connectives of Denegation are defined via multiplicative Disimplica-
tion and constants for the True as follows

A⊥ ≡ A→ ⊥ ⊤ ← A ≡ ⊤A
A|⊥ ≡ A→ |⊥ ⊤| ← A ≡ ⊤|A
A⊥| ≡ A→ ⊥| |⊤ ← A ≡ |⊤A
A|⊥| ≡ A→ |⊥| |⊤| ← A ≡ |⊤|A

A⊥ ≡ A→ ⊥ ⊤ ← A ≡ ⊤A

A|⊥ ≡ A→ |⊥ ⊤| ← A ≡ ⊤|A

A⊥| ≡ A→ ⊥| |⊤ ← A ≡ |⊤A

A|⊥| ≡ A→ |⊥| |⊤| ← A ≡ |⊤|A

A⊥ ≡ A→ ⊥ ⊤ ← A ≡ ⊤A

A|⊥ ≡ A→ |⊥ ⊤| ← A ≡ ⊤|A

A⊥| ≡ A→ ⊥| |⊤ ← A ≡ |⊤A

A|⊥| ≡ A→ |⊥| |⊤| ← A ≡ |⊤|A

A⊥ ≡ A→ ⊥ ⊤ ← A ≡ ⊤A

A|⊥ ≡ A→ |⊥ ⊤| ← A ≡ ⊤|A

A⊥| ≡ A→ ⊥| |⊤ ← A ≡ |⊤A

A|⊥| ≡ A→ |⊥| |⊤| ← A ≡ |⊤|A

4.3 Derivability between Conjunction connectives

Definition 4.3 Inf is a rule among Weakening or Contraction (Left or
Right). If a proof π uses Inf and at least one connective inducing (i.e.
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making derivable) Inf , then we say that the use of Inf in π is endogenous.
If a proof π uses Inf but does not use at least one connective inducing

Inf , then we say that the use of Inf in π is exogenous.

In Figures below the derivability relation between connectives are showed
by directed graphs in according to the conventions:

� a continuous arrow from A to B means that A ⊢ B is derivable without
the use of Weakening or Contraction

� a dashed arrow from A a B means that A ⊢ B is derivable only with
an exogenous use of Weakening

� a dotted arrow from A a B means that A ⊢ B is derivable only with
an exogenous use of Contraction

The derivability relation between Conjunction connectives are deter-
mined by the following three theorems.

Theorem 4.4 Each Conjunction connective of the cancellative family ◦ de-
rives each Conjunction connective of the cancellative family and of west-
over-, east-over- and west-east-over-adjunctive subfamilies ◦′, i.e. A ◦ B ⊢
A ◦′ B. The use or not of W and C is specified in Figure 1.

Figure 1: derivability between Cong. without subf. over-adjunctive

Note that, given an arbitrary pair of Conjunctions (◦, ◦′) by excluding the
over-adjunctive subfamily, if A◦B 0 A◦′B, then the sequent Γ, A◦B ⊢ A◦′B
is always derivable where for all C ∈ Γ, C = A or C = B.

Below there are some examples of the shorts proofs
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Proof

A ⊢ A
W

A,B ⊢ A
A∧|B ⊢ A

B ⊢ B
W

A,B ⊢ B
A∧|B ⊢ B

A∧|B ⊢ A |∧|B

A ⊢ A B ⊢ B
A,B ⊢ A∧|B

A |∧|B ⊢ A∧|B

A ⊢ A B ⊢ B
A,B ⊢ A ∧|B

A |∧B ⊢ A ∧|B

A ⊢ A
W

A,B ⊢ A
B ⊢ B

W
A,B ⊢ B

A,B ⊢ A |∧B
(A), A ∧|B ⊢ A |∧B

Theorem 4.5 Each Conjunction connective of the over-adjunctive subfam-
ily ◦ derives each Conjunction connective of the over-adjunctive and west-
east-over-adjunctive subfamily ◦′, i.e. A ◦B ⊢ A ◦′ B. The use or not of W
and C is specified in Figure 2.

Figure 2: derivability between Cong. of subf. over- and west-east-over-adj.

Theorem 4.6 Each Conjunction connective of the cancellative family or
the over-adjunctive subfamily ◦ derives each Conjunction connective of the
cancellative family or of the over-adjunctive subfamily ◦′, i.e. A◦B ⊢ A◦′B.
The use or not of W and C is specified in Figure 3.
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Figure 3: derivability between Cong. of (sub)f. canc. and over-adj.

5 Cut-tradeoff theorem for AEM.LSat

Usually the Cut-elimination theorem for a Logic L is formulated as: If a
sequent is derivable in the Logic L, then it is derivable in L without the use
of Cut.

From the Saturated Logic perspective, the Structural Rules different
from Identity and Cut should not be considered among the primitive rules
but they are, so to speak, second rules, and they are useful precisely be-
cause guarantee of ‘circumscribing’ the use of Cut rule in a proof. In this
perspective, it makes sense to speak of a theorem of Cut-tradeoff for a Logic
L that can be formulated as: If a sequent is derivable in the Logic L, then it
is derivable in L by restricting the possible use of Cut to subproofs of some
Tradeoff (Structural) Rules.

Note that the first formulation coincides with the particular case of the
second formulation where the Tradeoff set is empty.

Now, we can state the following Cut-tradeoff theorem for the system
considered:

Theorem 5.1 If a sequent is derivable in AEM.LSat, then it is derivable
in AEM.LSat by restricting the possible use of Cut to subproofs of WL,
WR, CL or CR.
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The traditional Cut-elimination strategy devised by Gentzen is adapt-
able to AEM.LSat,20 except for the need to consider a much larger number
of subcases. Broadly, the strategy is simple and, given a proof π that con-
tains an application of the rule Cut as the last rule, provides only two
circumstances:

� if one of the Cut premises is an axiom, then we proceed to ‘elimination’
of Cut by the containment procedure [basic step], that is we exhibit a
proof π′ with the same terminal sequent and ‘without’ any Cut (in the
sense that: when possible, we completely ‘eliminate’ the Cut, other-
wise we ‘circumscribe’ the Cut by replacing it with the application of a
Tradeoff Rule, understood as an abbreviation of the previous subproof
with Cut);

� otherwise, we proceed to the ‘upward shift’ Cut by the shifting proce-
dure [inductive step: by induction on the degree or the rank of Cut],
that is we exhibit a proof π′′ with the same terminal sequent and one
or more Cut with lower degree - i.e. involving simpler formulas - or
Cut with the same degree but lower rank - i.e. appearing at a lower
height in the proof - (also, when necessary, we ‘circumscribe’ some Cut
by replacing them with the application of one or more Tradeoff Rules).

The Cut-tradeoff proof proceeds by double induction on two parameters:
the Cut degree and the Cut rank. We distinguish two cases:

1. ρ = 2: the Cut rank equals two. We distinguish two subcases:

1a. if one of Cut premises is an axiom, then we can directly
eliminate the Cut (containment procedure)

1b. if each the Cut premises are the conclusion of a unary or
binary connectives rule, then we proceed by induction on degree: as-
suming that the Cut elimination holds for proofs with lower Cut de-
gree, we can transform the proof into another with lower Cut degree
(shifting procedure)

2. ρ > 2: the Cut rank is greater than two. We want to reduce us to
the previous case ρ = 2. Because of ρ > 2, it holds that the left rank
Lρ > 1 or the right rank Rρ > 1, we distinguish two subcases:

20In order to treat the case of Contraction in Classical Logic, Gentzen considers an

equivalent system with the rule so-calledmultiCut
Γ ⊢ φ,∆ Γ′, φ ⊢ ∆′

Π,Γ ⊢ ∆′,Σ
with Π = Γ′

without any occurrence φ, and Σ = ∆ without any occurrence φ. As for the Classical
Logic, it is immediate to show that a sequent is derivable in AEM.LSat iff the same
sequent is derivable in AEM.LSat \ Cut ∪multiCut, because in either cases we have W
and C (Left and Right). Note that if one considers subsystem of AEM.LSat without
one or more of such Structural Rules, it is no longer possible to use multiCut with equal
nonchalance.
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2a. if the rank Lρ > 1 and Rρ > 1, then, by the Lemma on the
history of an occurrence and the substitution Lemma, we can tran-
sform the proof into another with the same conclusion and Xρ = 1
with X ∈ {L,R} (shifting procedure)

2b. if the rank Xρ = 1 and the rank Y ρ > 1 with X,Y ∈ {L,R}
and X ̸= Y , then we proceed by induction on the rank Y ρ: assuming
that the Cut-elimination holds for proof with the same Cut degree
but lower Cut rank, we can transform the proof into another with the
same Cut degree but lower Cut rank (shifting procedure)

In regard to the connectives, let us observe that for each connective we
need to consider all the rules of introduction on the left and on the right,
since to apply Cut we have to introduce the same connective both on the left
and on the right and we have also to consider what happens to the contexts
on each side of the involved sequents.21

Below there are few examples among the connectives rule subcases

Proof

⊢ ⊤|,∆′

... π

Γ ⊢ ∆,∆

Γ,⊤| ⊢ ∆

Γ ⊢ ∆,∆′ ⇒

... π

Γ ⊢ ∆,∆
C

Γ ⊢ ∆
W

Γ ⊢ ∆,∆′

... π

Γ′ ⊢ A,∆′
... σ

Γ′′ ⊢ B,∆′′

Γ′,Γ′′ ⊢ A∧B,∆′,∆′′

... τ

Γ, C ∈ {A,B} ⊢ ∆

Γ, A∧B ⊢ ∆

Γ,Γ′,Γ′′ ⊢ ∆,∆′,∆′′

⇓
... π

Γ′ ⊢ A,∆′
... τ

Γ, C = A ⊢ ∆

Γ,Γ′ ⊢ ∆,∆′
W

Γ,Γ′,Γ′′ ⊢ ∆,∆′
W

Γ,Γ′,Γ′′ ⊢ ∆,∆′,∆′′

21However, we can make some observations at least partially useful to limit the number
of checks. We observe that: i) with regard to junctions and implicatures the distinc-
tion among over, over-west-, east-over-adjunctive and among under-, under-west-, east-
under-adjunctive subfamilies loses relevance because the Cut-elimination proofs structure
is substantially similar, so it is sufficient to check one of the above (remember that Ex-
change is a primitive rule of AEM.LSat); ii) conversely, with regard to all three kinds of
connectives, if one has Weakening and Contraction both Left and Right, as in the case
of full AEM.LSat, the distinction among the remaining subfamilies loses relevance for
the Cut-elimination, but becomes important when one considers AEM.LSat subsystems
that do not have some of these second Structural Rules (remember that Weakening and
Contraction rules are not AEM.LSat primitives).
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... π

Γ′ ⊢ B,C,∆′

Γ′ ⊢ A→|B,C,∆′
E

Γ′ ⊢ C,A→|B,∆′
τ

Γ, C ⊢ ∆

Γ,Γ′ ⊢ ∆, A→|B,∆′
E

Γ,Γ′ ⊢ A→|B,∆,∆′ ⇒

... π

Γ′ ⊢ B,C,∆′
E

Γ′ ⊢ C,B,∆′
τ

Γ, C ⊢ ∆

Γ,Γ′ ⊢ ∆, B,∆′
E

Γ,Γ′ ⊢ B,∆,∆′

Γ,Γ′ ⊢ A→|B,∆,∆′
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