Completeness Theorems for Program-oriented Algebraased
Logics of Partial Quasiary Predicates

Mykola S. Nikitchenk@nd Stepan S. Skylniak

Department of Theory and Technology of Programming
Taras Shevchenko National University of Kyiv
64, Volodymyrska Street, 01601 Kyiv, Ukraine

{nikitchenko, sssh}@unicyb.kiev.ua

Abstract. We provide motivation for developing and studyprggram-oriented logics of partial predicates. Shagfics
are algebra-based logics constructed in a semsaytikactic style on the methodological basis thaoismon with pro-
gramming; they can be considered as generalizatibtraditional logics on classes of partial predis that do not have
fixed arity. Such predicates, called quasiary aidis, are defined over partial variable assignsn@ver partial data).
We describe the hierarchy of different logics oésjary predicates. For the constructed logics dame of classical log-
ic fail because of partiality of predicates andad&Ve construct sequent calculi for a number oiheefflogics and prove
their soundness and completeness. The methodssewman be useful for construction and investigatiblogics for
program reasoning.

Keywords: Partial predicate, partial logic, first-order logvalidity, sequent calculus, soundness, compésten

1 Introduction

Mathematical logic is widely used for investigatiohprograms [1, 2]. Still, there are certaiscrepanciedetween prob-
lems to be solved in this area and a logic in Bse.example, such program propertiepartiality of functionselaborated
system of data typgbehaviouralnon-determinisnetc. are difficult to investigate by traditionalgic. To cope with such
discrepancies we propose to consttagics based directly on program models

To realize this idea we first construct models @fggams usingomposition-nominative approag8]. Principles of the
approach developmenbf program notiongrom abstract to concretgriority of semanticscompositionalityof programs,
and nominativity of program data) form a methodological base ofjam model construction. These principles specify
program models asomposition-nominative systen®ich a system may be considered as a triplargfier systemscom-
position description anddenotationsystems. Acompositionsystem defines semantic aspects of prograndgsaription
system defines program descriptions (syntacticaspeand alenotationsystem specifies meanings (referents) of descrip-
tions. We consider semantics of programs as pdutngtions over a class of data processed by pnagraompositions are
n-ary operations over functions. Thus, a compositigsiem can be specified by two algebdeta algebraandfunction
algebra Function algebra is the magemantic notiorin program formalizationTermsof this algebra defineyntaxof
programs (description system), and ordinary prosedfiterm interpretation givestenotationsystem.

The constructed formal program models form a baseléveloping of a rigorous mathematical formalifemreasoning
about programs, in other wordsaprogram logic It is not possible to invent one universal progfagic that would have
all necessary properties. Therefore a hierarcHggi€s, oriented on the hierarchy of program modeds to be developed.
Here we briefly introduce such a hierarchy. Obtdilegics are calledomposition-nominative logi¢€NL).

It is important to admit that CNL better reflecbgram properties, but the opposite side of thitufeais that the methods
of logic investigation turn out to be more complézh In this paper we continue our work on study@idi. focusing on the
completeness problems for the first-order CNL.

The rest of the paper is structured as followssdation 2 we give a motivational example of progfarmalization and
logic construction. In section 3 we briefly intramua hierarchy of logics of quasiary predicates.d&fne first-order pure
CNL in section 4. In section 5 we consider progsriof the consequence relation. In section 6 aesgaalculus for first-
order pure CNL is defined; its soundness and campdss are demonstrated. In section 7 conclusierfermulated.

Proofs are omitted here and will be provided ireatended version of the paper.

2 Constructing Program Algebras and Logics: a Motivaing Example

Let us consider the example language EL which ésl lere to demonstrate how program logics can bstiewted. EL is

similar to such languages as WHILE [4], IMP [5f.et
The grammar of the language is defined as follows:
s:=x=a|s; ; s if b thens, elses, |whileb dos| beginsend
a=k|x|ayta|ag—ay|a;« a | a;diva, |a; moda; | @)
b::=a1= ay |a1>a2 |b1|:|b2 |_| b | (b),
where:

- kranges over integetst={..., -2,-1,0, 1, 2, ...},

— Xxranges over variables (nam&s){ N, R, X, Y, Z, ...}

— aranges over arithmetic expressigxexpr,

- branges over Boolean expressi&@expr,

— sranges over statements (progra®sj

As an example consider an EL-progr&@&for calculating a function = x" (n=0) usingExponentiation by Squaring Al-
gorithm In this program variables, X, andR denote integer values x, andr respectively:

R=1,
while N>0 do
if (N mod2)=1
then begirRi=R.X; N:=N-1 end
else begirK:=X.X; N:=N div 2 end

Starting from this example we construct progranehigs of three forms:

— first, we define semantics &Sin the style ofdenotational semanticsis a result we obtainpmogram algebra with n-
ary mappingoriented on EL;

— then we represemtary mappings bguasiary mappingsbtaining a simpleprogram algebra

— at last, we define generalclassof quasiary program algebras. This class of algelsra semantic base fquasiary
program logics It captures main program properties that areriamaof such programs’ specifics as variable tgpin-
terpreted predicates and functions, etc.

Analyzing the structure of the program we see thit constructed from 1) symbols ofary operationg+, —, «, div,
mod =, >), 2)Boolean(N>0, (N mod 2)=1) andarithmetic (1, 2,N-1, N div 2, Nmod2, R-X , X.X) expressionsand 3)
statementsobtained with the help of structuring construish as assignment, sequence, selection, andNod@ thatdiv

is partial onint. To emphasize mappingigartiality/totality we write the signDd’q for partial mappings and the sign

f - for total mappings.
We usedenotational semantigsee, e.g. [4, 5]) to formalize the meaning ofgpamn components. Semantic mapping is

represented agl.] . Three program components identified above deteriree types of mappings called respectively
ary, quasiary andbi-quasiarymappings.

2.1 Classes oh-ary mappings

Symbols of arithmetic operations, relations, an@lBan connectives represenary mappings defined dnt or on the
setBooE{T, F} of Boolean values.
For our language EL we define the following typés-@ary mappings:

Fn™"=int " OF = Int, Pr™"™=Int " OF — Bool, Pr &= Bool" O - Bool, n=0.
Using the same notation for language symbols dbuartypes and mappings they represent, we cae ittt

+,—,» ,div, mod Fn®'"™, =, >: pr2i" [pr28e°l . py18ool

2.2 Classes of quasiary mappings

Quasiary mappings are defined over classes ofsstatesidered as sets of named values. For exathplexpressiom. X
specifies a function which given a statef the form R —r, X— X], wherer andx are integers, evaluates a vatue
Examples of states ar¥f> 8,N 1 4], [X> 8,N > 4,R - 8], [X—> 8]. In a statal a variablev can have a value (this is
denotedd(v)!) or be undefined (denotetfv)1); thus, X — 8, N — 4](X)! and X~ 8, N — 4](R)t. Formally, the set of

statesStateis defined as the sé&=V O — Int of all partial mappings frond to Int.
Having described states we are able to represemafcsemantics of Boolean and arithmetic expressiBoolean ex-

pressions denote predicates (caltedtial quasiary predicatésof the setPr" "_State O} — Bool, thus forbOBexprwe
have [b] O Pr”'™ Integer expressions denote functions (callpdrtial quasiary functions of the set

Fn" "=Stated - Int; thus, foreDAexprwe havelel O Fn“'"™ In the sequel we omit the term ‘partial’ for giaag

mappings. Since states are constructed with thedignaming (nominative) relation, they are alstled nominative sets
Functions fromFn" '™ are calledbrdinary functionssince their ranges are sets of atomic (non-stredjwalues.

To represent semantics of variables in arithmetfressions we will use parametricdenomination(denaming) func-
tions'x: Fn"'™. For a given program state, the functigmeturns the value of the variabten that state. For instance, de-
nomination function that yields the value of nalés denoted byN. Such values may or may not be defined, so denomi-
nation functions are partial.

Semantics of integer numbers is treatedj@asiary constant functionSuch functions are represented by constiants

written in bold font; thus, [1] =1. Itis clear thatd Fn""'™

For specifying semantics of complex expressiongiaheompositions calleduperpositionsare used. Superposition
SPF™M x(FnV'™) " i - Fn¥'™ of functionsg,..., g, into ann-ary functionf" is an operator such tha&? (f", gs....,
g)(d) = f" (gu(d),....g,(d)) where d is a state. The same formula can be used for idgfirsuperposition
S8 PrMx(Fn™" mf - PrY'™ of functions gy,..., g, into n-ary predicate p”, and for superposition S§:

PrBoo(prVim™ " i _, PR of predicatespy,..., p into ann-ary Boolean functionfg . Thus, [IN-1] =SZ (-, 'N, 1),
IN>0] = S3(>,'N,0), [(Nmod2)=1] = S3 (=,S2 (mod'N, 2), 1).

2.3 Classes of bi-quasiary mappings

Programs (statements) fra&tmdenotebi-quasiary functiongprogramfunctiong of the cIassFPrgV""EStateDd)a State

=VInt O ~ VInt. Such functions are also callbdnominative
Semantics of structured statements is defined dydfiowing compositions with conventional meaning:

1. assignment compositiokS*: Fn¥'™ I _, FPrg“"™ (x is a parameter froi);

2. composition of sequential executiarFPrg*'™xFPrg"™ I -, FPrg"™:

3. conditional compositiotF: Pr¥"xFPrg""xFPrg"™ mf . FPrg*"™:

4. loop compositioWH: Pr*™xFPrg"™ i . FPrg"™

For instance, [Ri=R.X; N:=N-1] = A (S (,'R 'X)) » ASN (S2 (- 'N, 1)).

Note, that we define by commuting arguments of conventional functicc@hposition: feg=go f.

2.4 Program algebra with n-ary mappings
The definitions introduced permit to conclude ttieg followingprogram algebra with n-ary mappingsiented on ET has
been constructed (we omit types of compositions):
API’(V Int) - <Fn2,|nt PrZ,BooI Prl,BooI Prz,lnt PrV,Int FnV,Int FPrgV,Int.
+, -, div,mod =,>, 0~ , k,S¢, S3, S5, Sk,x ASY +, IF, WH> .

Note that notation for parametric compositionsgltkenominations, assignments etc.) representsclesses of composi-
tions. Thus,x represents the class of compositions for varigusrepresents the class of integer constants trestepia-
siary constant functions.

We would like to emphasize the fact that semamfdsL-programs (or EL-expressions) can be represkas terms of
this algebra. This simplifies investigations of ptograms because the constructed algebra compkgelifies their se-
mantics.

The term for EL-prograr&Sis as follows:

AS(1) « WH(S3 (>'N,0), IF(S3 (=,SZ (mod 'N, 2), 1),

ASY(S2 (-/R'X)) » AS(SZ (=N, 1)), AS(SE (-,/X/X)) » ASY(SZ (div, 'N, 2)))).
Note that this term and its sub-terms can denat@gapanappings, as the functiativand denomination functions can be
undefined; als&WH composition can be a source of undefinedness.
Having specified this algebra we can study propentif programs; this can be used in program reagoRor example,
it is possible to prove commutativity of the assigmt statement®=R.X andN:=N-1 by proving in the algebraPn(V,
Int) the corresponding property of composition ofussdial execution:

ASY(SE (/R'X) » ASI(SE (=N, 1) =ASY(SE (='N, 1)) » ASY(SE (-/R'X))
We can also prove more general properties; sayawgmove associativity of sequential executiontafesnents:

begins; ; s, end;s; = s begins; ; 3 end

by proving in the algebrAPn(V, Int) the corresponding property of composition ofusatial executionfe (geh)=(feg)eh
(f, g, hOFN"'™). Another example is the following distributiviproperty:

begin ifb thens, elses, end;s; = if b then begirs;; s; end else begis; s; end.

Its validity is based on the property&Pn(V, Int) thatIF (p,f,g)*h=IF(p, f*h, geh). (Heref, g, h OFn""™, pOPr"'™)

Still, the constructed program algebra witary mappings looks overcomplicated; therefore westruct asimpler al-
gebra without n-ary mappingst is possible becauseary mappings can be mimicked by quasiary mappisgt, we
should first split the set of operation symbolstaé algebra into two parts: logical symbols, whithve relatively type-
independent interpretations, and non-logical (cscdptive) symbols, which represent specifics af ttarriers. Logical
symbols will be treated as compositions and deteeisymbols as quasiary mappings. Trivial inspctdf definitions
shows that symbols +, =, div, mod =, > are descriptive symbols in the signatureA®n(V, Int). They are defined over
integer numbers, and may be considered constatitsialgebra. Other symbols may be considered#dbgi

2.5 Program algebra without n-ary mappings

The considerations described above open the sqitagb of program algebra development. To makelgfedbia simpler
we can exclude from it the classesnediry functions and predicates, thus concentratimdpgical symbols that are inter-
preted as compositions over nominative carrers™, Fn'™ andFPrg"'™. Still, n-ary functions and predicates can be
represented in these classes of nominative mappings

We explain the idea of representatiomedry mappings on the example of binary multiplicatfunction. First, we rep-
resent a pairg, x,) as a state [x3, 2 > X5], where 1 and 2 should be treated as standardhblas that represent the
arguments of a binary function symbol. This perrtatéreat multiplication as a quasiary functionhem, in order to avoid
usage of standard names 1 and 2 and to obtain leaitg of names we can introduce a parametric goaginctionx.y

(printed in bold font) such thaty = SE (+, "%, 'y); herex andy are parameters froiwi
Therefore instead of binary functions we introdpeeametric quasiary functionsy, x-y, x-y, x div y, and x mod y

overlnt; also instead of relations we introduce new patdmequasiary predicatessy and x>y (with x andy as parame-

ters).
This step permits to represent evergry function defined ovdnt as a parametric quasiary function. But now, toeep

sent the semantics of complex expressions we shioulitiuce special superpositior@ "1 (or S{) and Sg "1 (or

S‘g), which are calledsuperpositions into quasiary functicend predicate respectively: S¥1 """ Y (£9 gy,..., go)(d) =

f (dO[Va—>ga(d),... va—=>au(d)]) and SE (p%, gy, 9)(d) = p (AO[Vs—G1(0), .. V—>Gn(D)]), wheref “TFRY"™, pOPrY"™,

Intuitive meaning of these formulas is that we a®ind the values of names,..., v, to g;(d),...g.(d) respectively
(partiality should be taken into account). Thusnaetics, say, of the expressiBi(R-X), can be represented $q¥ (R+Y,
RX).

Now let us consider logical symbdls Boof I Bool and-: Bool [- Bool. We cannot directly represent them
as quasiary predicates, therefore we advocate enatiproach. We will treat them as binary compmsgiover quasiary

predicates (denoted by the same sighgdr’"xPr'™ mf . P¥'™ and-: Pr¥™ [- Pr*'™ Such representations also
provide better possibilities to work with partialeglicates. For example, consider a Boolean exmregliX)>R O (R>X).

Its semantics iPn(V, Int) is represented by the terSﬁ(D, S,% >, S,% (- 'R 'X),'R), S,% (> ,'R, 'X))). But superposi-
tion into ann-ary mapping is strict: when one argument is ndindd then the result is also undefined. This propee-
stricts possibilities of construction of new pdrfiaedicates. For example, for Kleene’s strongutisjion [6] it is allowed
that one argument may be undefined if the otheri@m®aluated to true. When we represent connectigecompositions,
we avoid the above considered difficulties.

Thus, we can now consider a simpler algebthe-program algebra of quasiary predicates with stants(without n-
ary mappings

APQQV, Int) = <Pr¥™ Fn"'™ FPrg""™;

X=Y, X+y, x:y, n div m n mod mk; x=y, x>y ; 0, =, Sg , S‘g %, ASY e IF, WH>.

In this algebra we have@arametric descriptive symbatensidered as algebra’s constants, alwyj@al symbolsNote,
that alllogical symbols are treated as compositiopsssibly null-ary compositions (as in the case@fomination func-
tions).

Semantics oESprogram is represented by the following term dg Higebra:

AS(1) « WH(N>0, IF(N mod2)=1, AS(R-X) » ASY(N-1), AS{(X-X) « AS(N div 2))).

2.6 Program algebra without descriptive constants

The next step of constructing more “logical” algebiconsists of eliminating fromPQQV, Int) descriptive symbolg+y,
x=y, X<y, X div y, X mod y k, x=y, x>y with fixed interpretations. We obtainpgogram algebra of quasiary predicates
APQV, Int) without constants

APQV, Int)= < Pr!™ FnY'™ FPrg”'™ [0, -, SE, Sp,'x, ASY e, IF, WH >,

As to eliminated descriptive symbols, we can indteansider setBs Fs, andFPs of predicate, ordinary function, and
program function symbols that do not have preddfinéerpretations, and consequently, can denotegaagiary predicate
or function or bi-quasiary function.

The algebraAPQ(V, Int) is based on integer numbers, though it is cleatr we can consider other data types, sasgl,
nat, etc. Also, new operations over such data typaseaconsidered. So, one can ask a question: whptdgram prop-
erties remain valid under type and operation vianat

2.7 General program algebras (with arbitrary classes obasic values)

Being interested in general laws of reasoning alpoograms we should make the next step and deéingaositions for
any setA of basic (atomic) values. In this case we obtlaenfollowingprogram algebra of quasiary mappings

APQV, A= < Pr'A FnYA FPrg" 0, -, SE, SB,'x, AS, «, IF, WH>.

Symbols fromPs Fs, andFPsare used to construct terms of this algebra. Ptiegeof such terms are general properties
because they should be valid under any interpogtsitbf function and predicate symbols.

It means that we have constructed a class of qyasiagram algebras (for variodg, representing program semantics
for languages with different domains. Such algelonay be calledjeneral program modelshey form the semantic base
for program logics.

For example, we can consideguational program logicby defining formulas of these logics as formal &dies of the
form t,;=t,, wheret, andt, are terms of the typePrg“”. Such logics definequivalent transformations of programs

Another conventional program logic Boyd—Hoare logi¢ which is based on assertions of the folg §{ b,}. Seman-

tics of such assertions can be represented by Fléyare compositioffH: PrVxFPrg"xPrVA I - PrA We define this
composition under assumption that predicates amctifuns can be partial [7]. Then

5

T, if g(prg(d)) \=Torp(d) I=F,
FH(p, prg, g)(d)=1F, if p(d) 1=Tandq(prg(d)) \=F,
undefinedin othercases.
Extending the algebraPQ(V, A) with FH composition, unary parametric compositions of reimationR} , existential
guantification[X (to be defined in the next sections), and a coitipasof equality = we obtain tiaree-sorted algebra
APQFHV, A) = < Pr'A Fn"A FPrg"4 0,-,RY, SL, S%,'x, X, =,AS" «, IF, WH, FH >
presented in Fig. 1.

Predicate
Level

Ordinary
Function
Level

Program
Function
Level

Figure 1. Three-sorted algebra of quasiary preésatrdinary and program functions.

2.8 General program algebras as a semantic base of pn@gn logics

The class of algebra&PQFHV, A) forms the semantic base for quite powerful Fldydare-like logics of quasiary map-
pings. It is important to admit that by restrictitigs algebra on one and two carriers we obtaipaetsvely the following
two algebras:
- propositional algebraAP(V, A) = <Pr¥* 0O, - >;
- first-order algebra of quasiary predicates and avdiy functions
AQFQYV, A) = <PrVA FnVA 04, RY, SY, S%,'x, [k, = >.

Based on classes of such algebras various prapuaitifirst-order, and program CNL can be definsek(the next sec-

tions). We can go further and defim®adal and temporal CNI8].

All logics are constructed in a semantic-syntastyde: first, semantic component of a logic is defl as a class of certain
algebras, then syntactic component (a logic languisgdescribed, and, at last, interpretationalpoment is specified.

2.9 Special features of quasiary predicates and functits

Before continuing with formal definitions it is degble to give an intuitive understanding of logafsquasiary predicates
and to compare them with classical logiaedry predicates.

We identify the following properties of quasiaryegicates:

— partiality of predicates;

— unrestricted(possibly infinite)arity of predicates;

— sensitivityof predicates to unassigned variables (sensitivifyartiality of data).

These features complicate investigation of logitguasiary predicates comparing with classicaldagid violate some
laws of classical logic.

In particular, partiality of predicatesolates Modus Ponerj8]. Indeed, leundbe interpreted as a nowhere defined predi-
cate andd be interpreted as a refutable predicate. We waatity as irrefutability, thereforand andund- & are valid (ir-
refutable), but® is refutable.

Unrestricted arity of quasiary predicatgslatesthe propertythat a sentence (a closed formula) hasrastant valuen a
fixed interpretation because a predicate, obtametbrmula interpretation, can depend upon vargiat do not occur in
that formula.

Sensitivity also affects the logic laws. Let usslrate this with a simple example. Define a patempredicateez] Pr'*
(zZDV) by the following formulasez (d) | =F if zis assigned il andez (d)! =T if zis unassigned. This quasiary predicate is
called variable unassignment predicati has different values depending whether a value is assigned or unassigned;
thus, it is sensitive to unassigned variables. @enghe following phrase as one of intuitive ipestations of a predicate
efood ‘My cat is unhappy only in situations when he dadshave any fodd Thus, this phrase evaluatesTtan situations
(states) in whichfood is not assigned; when this variable is assignexh tthe phrase evaluates Fo The formula
(Ofood-efood) — —efood mayfail in situations (states) when my cat does not hayefewd. In Tarski's semantics of
classical logic we have double totality: predicades total and variable assignments (data) aré fOiterefore in classical
logic the formula [Jfood-¢food) —» —efood is always valid. Such sensitivity complicates togalculus therefore more
powerful instruments should be introduced. As sastruments we will use an infinite set of unessg¢nariables and vari-
able unassignment predicates (see the next sections

Summing up, we would like to say that semanticprofjrams can be presented by terms of program ragetith com-
positions as operations in these algebras; proguantions, ordinary functions, and predicates araséary mappings de-
fined on nominative sets (nominative data); werdefirogram logics directly on program algebrastigreding their signa-
tures with special “logical” compositions.

3 Hierarchy of Composition-Nominative Logics

Three kinds of logics can be constructed from pgogmodels over nominative sets (see Fig. 1):
1) pure quasiary predicate logics based on algebrah wne sortPr'~;
2) quasiary predicate-function logics based on algsbséth two sortsPr ¥ andFn";
3) quasiary program logics based on algebras with ¢hserts Pr'*, Fn'*, andFPrg*".
For logics of pure quasiary predicatpsie CNL) we identify renominative, quantifier, and qtifier-equational levels.
Renominativdogics [8] are the most abstract among above-roeat logics. The main new compositions for these

Vi

predicatep and a nominative setthe value oR‘X’i """)q: (p)(d) is evaluated in the following way: first, a neaminative set

d' is constructed frond by changing the values of the names. Vv, in d to the values of the names, ..., x, respectively;

composition we will also use a simplified notatig} . The basic compositions of renominative logics Gre,, andRY .

Note, that renomination (primarily in syntacticapacts) is widely used in classical logic, lambdkdus, and specification
languages like Z-notation [10], B [11], TLA [12]ARSE [13], ASM [14] etc.

At the quantifier level, all basic values can be used to constriffgrdnt nominative sets to which quasiary predisat
can be applied. This allows one to introduce thmmasitions of quantification of the forfk in style of Kleene’s strong
quantifiers.The basic compositions of logics of the quantifesel arel, -, RY,, andlx.

At the quantifier-equationalevel, new possibilities arise for equating anifledéntiating values with special 0-ary com-
positions of the form 5 called equality predicates. Basic composition®gics of the quantifier-equational level &g,
Ry, X and 5,.

All specified logics (renominative, quantifier, agdantifier-equational) are based on algebras thet lonly one sort: a
class of quasiary predicates.

For quasiary predicate-function logie® identify thefunction level and the function-equational level.

At the functionlevel, we have extended capabilities of formatidbmew arguments for functions and predicateshis t
case it is possible to introduce the superposithnmpositionss‘; and S‘; (see [8]), which formalize substitution of func-
tions into function and predicate respectively.cAtpecial 0-ary denomination parametric compositinrare introduced
Introduction of such functions allows one to morEiomination compositions with the help of supeitgmss. The basic
compositions of logics of the function level alre—, S‘; , Sg, [x, and'x.

At the function-equational level, a special eqyatibmposition = can be introduced additionally [Bhe basic composi-
tions of logics of the function-equational leve¢dr, -, Sg , S‘; , X, 'x, and = At this level different classes of first-order

logics can be presented.
This means that two-sorted algebras (with setsedipates and functions as sorts and above-mentioompositions as
operations) form a semantic base for first-ordet. CN

To preserve properties of classical first-orderidag first-order CNL we should restrict the clags(I? - Bool of qua-
siary predicates. Namely, we introduce a classjoftene predicates and its different variationshsas maxitotal equitone

predicates, equicompatible predicates, etc. [Shrédicatep: YA [IF - Bool is calledequitoneif for everyd, d '0VA such

thatdd ' from p(d): =b follows thatp(d’)! =b; if an equitone predicageis defined on all elements @t thenp is said to
be maxitotal equitongif a predicatep is a restriction of some equitone predicate thémequicompatiblegoredicate. Here
A" denotes all total mappings frovhto A (total assignments). Logics based on maxitotaltene, equitone, and equicom-
patible predicates are the “closest” generalizatioihthe classical first-order logic that preseitgemain properties. These
logics are calledheoclassical logic$8].

The level ofprogram logicsis quite rich. Investigation of such logics is @esial challenge; here we only mention
Floyd-Hoare-type logibased on a monotone Floyd-Hoare composition [7].

In the rest of the paper we considdirst-order composition-nominative pure quasianggicate logicdenoted_°. Such

logic plays a central role in logic hierarchy ascbased on algebrdg(V, A) = <Pr"* [, -, Ry, Ox> (for variousA).
We will construct a sequent calculus for this logiw prove its soundness and completeness.

4 Formal Definitions of First-Order Composition-Nominative Pure Quasiary Predicate Logic

To define the logit.° we have to specify its semantic, syntactic, atetjmetational components [15, 16].

4.1 Semantic component

LetV be aset ofnames According to tradition, names froxhare also callestariables Let A be a set of basic values. Given

V andA, the class’A of nominative sets is defined as the class of aliglartappings fronV to A, thus,"A=V o -~ A. In-
formally speaking, nominative sets represent stiteariables.

Though nominative sets are defined as mappingdoli@v mathematical traditions and also use seg-lilotation for
these objects. In particular, the notatiba [vi+—>g; | i0I] describes a nominative s&tthe notationv;—a [, d means that
d(v) is defined and its value & (d(v;)! =a). The main operation for nominative sets is altotary parametricenomina-

tion r)‘(’ll)\:” VA m - VA wherevy,...,Vy, Xj,.o X, OV, V...V, are distinct namesn = 0, which is defined by the
..... n

operation yields a new nominative set changingvtiees of v;,...,v,, on the values of ,..., X, respectivelyTheset of
assigned nameia d is defined by the formulasn(d) = {vOV | wal,d for somealJA}.

Let Bool={ F, T} be a set of Boolean values. IRt"*='A O - Bool be a set of all partial predicates oVér Such

predicates are callgzhrtial quasiary predicatesThe term ‘partial’ is usually omitted.
For pO P4 dO0"A, vOV, alA wewrite:

— p(d) ¢ to denote thab is defined on a nominative st
— p(d) ¢ =b to denote thap is defined ord with a Boolean valué;
— p(d) t to denote thap is undefined orml;

— d(v) | to denote that a component with a nanie present ird;
— d(v) {=a to denote thav+— all, d;
— d(v) 1 to denote that the value of the nawie undefined ird.
The truth and falsity domains pfare respectivel§ii(p) = {d0A | p(d): =T} and F(p) = {d0 YA |p(d): =F}. A predi-
catep is irrefutable, or partially valid, if F(p) = O.
types Operations ové?r”* are calledcompositionsFor L° the setC(V) of compositions i, -, R¥, (X} . Composi-

tions have the followingz: Pr¥A x Pr-A M . Pr¥A =, Fg‘&\;: ,Ox PV~ f - Pr¥* and are defined by the following
formulas p, qOPr*4):

= T(plg) =T(p)IT(a); F(pta) =F(p)nF(a);

= TP =F@E); FEP =T0): B

- TRy M) = rx (TO); F(Ry () =rx (F(P);

— T(Cxp) = {d0"A | p(dOx—a) =T for someaA}; F(Cxp) = {d0"A | p(d0x—a) = F for everyalA}.
HeredOx— a =[vi>cO,d|vZX] O[x+— a].

Note that parametric compositions of existentigmification and renomination can also represessas of composi-
tions. Thus, notatiorix can represent one composition, wheis fixed, or a class{x| xOV } of such compositions for

into { xq,..., X, } thus parameters obtained by pairs permutatioesdentical.

A pair AQV, A) = <Pr”* | C(V)> is calleda first-order algebra of quasiary predicateSuch algebras form a semantic
base for the constructed first-order compositiomimative pure quasiary predicate logié Let us now proceed with syn-
tactic and interpretational components of thisdogi

4.2 Syntactic component

A syntactic component specifies the language“fLet C{V) bea set of composition symbdlstrepresent compositions
in algebras defined aboveqV)={0, -, RY, O« . For simplicity, we use the same notation for symtadlcompositions and
compositions themselves.

Let Psbe a set opredicate symbolsA triple 5Q = (V, Cs(V),Ps) is asignatureof a language of°. Given a language

signa\turezQ , we inductively define the languageldt— the set of formulasFr(ZQ) :

1) if POPs then POFr(=9);

2) if &, WOFr(EQ) then(® OW)OFr(z9);

3) if ®OFr(EQ) then-® OFr(=9);

4) if ®OFr(E9), Vi Vi X, Xq OV, Vp,..0, v, are distinct namesi20, then R)‘g """ X:CDD Fr(z9);

5) if ®OFr(E?), xOV then xd OFr(=9).

4.3 Interpretational component

Given zQand a sef we can define an algebra of quasiary predicA®g/, A) = < Pr"#, C(V)>. Composition symbols
have fixed interpretation, but we additionally neetrpretationl PS. psf_ Pr*of predicate symbols to obtain a lan-
guage interpretatior corresponding tupld = (ZQ,I F’S) is calledan L%interpretation

Given a formulab and arL? -interpretation] we can speak of anterpretationof ® in J. It is denoted byd ;.

For the logid.? derived compositions (such as conjunction &, ursaequantificatiorilx, etc.) are defined in a traditional
way.

Formulas and interpretations li? are called_® -formulasandL® -interpretationsrespectively. Usually the prefi® is
omitted. A formula® is calledvalid in interpretationJ if there is no nominative sefl'A such thatb; (d)|= F. This is de-
noted J |=®, which means thab is not refutable id. A formula® is calledvalid if J |=® for every interpretation]. We
shall denote thi$:LQ @, orjust|=® if the logicin hand is understood from the context.

4.4 Extensions ofL®

The logicL? being a rather powerful logic still is not expiiess enough to represent transformations requicecpfoving
its completeness. Therefore we introduce its tweresions: LY —a logic with unessential variableand Lg — a logic with

unessential variables ancparametric variable unassignment predicatewhich checks whether a varialdés unassigned
in a given nominative set.

To defineL.” we should specify its semantic, syntactic, anerpretational components.

Let U be an infinite set of variables such thah U =0 . Variables fromJ are calledunessential variableg@nalogs of

fresh variables in classical logic) that should affect the formula meanings [15]. Algebra@(VOU, A) = < PrvoUA
C(V)> (for differentA) form a semantic base fof. A syntactic component is specified by the sefoofulas Fr(ZU)

where =Y = (Vv OU, Cs(V OU),Ps)is thesignatureof LY. An interpretational component bf restricts the class df“-

interpretations in such a way that interpretatiohgredicate symbols are neither sensitive to #ilees of the component
with an unessential variablein nominative sets, nor to presence of such comptsn Formally, a variable JU is unes-

sential in an interpretatior 7% if 1 PS(P)(d) = 1 PS(P)(d0u > a) for all POPs, d0V™ A, alA .

The logic Ll;' is an extension of.Y by a null-ary parametric composition (predicaz)z 0V OU) defined by the
formulas: T(ezy) = {d|d(2)1} = {dO"A|z0asr(d)} and F(ezy) = {d|d(2):} = { dOA|z0asr(d)}. Thus, for this logic the
set of compositions is equal], -, RY, [k, 7). Algebras of the formAQEVOU, A) = < PrVPYA [0~ RY, [k ez>
constitute a semantic base fd.tg . A syntactic component is specified by the setfafmulas Fr(Zng) where

Zng =\ ou, {O-, RY, [X, ez}, P9 is the signature df”. An interpretational component cInLgJ is defined in the same

way as for.".
Predicategz specify cases whenis assigned or unassigned. This property can éé ios quantifier elimination that is
semantically supported for every algel@EVOU, A) by the following statement:

T(RIy(P) n Fey) OT(R}(OxP) and F (R} (OxP) n F(ey) OF (R7(P)).

Proof. Let dDT(FgU;;‘(P)) n F(ey), then d(y)! and I%U;(P)(d) =T, therefore d(y)ia for some alJA and
P(dOU dWOx— d y)=T. Hence,P(dOU d(V)Ox— g=T for somealA. Thus, D(P)(rg(d)) =T, therefore
R (OxP)(d =T; this means thatOT (R} (OxP) . So,T (RI"5(P)) n Fey) O T (R (OxP).

Let dDF(PVU(DxH) n F(ey), then d(y)! and PVU(DxFﬁ(d=F. From this [XP)(dOur d(V))=F, therefore
P(dOUm d(W)Ox— B=F for all bOA. Sinced(y)! we haved(y)! a for someallA, thenP (d0d0u~ d(WOx— d y)=F.

From this R} P)(d) =F, which givesdOF (R}}(P)) . So,F (R} (OxP) n F(ey) OF (R};(P).
As a special case we ge(R}(P)) n F(ey) OT(CkP) ta F(CkP) n F(ey) OF (R7(P)).

5 Consequence Relation for Sets of Formulas

Consequence relation is defined in the same wawglfdogics under consideration. So, we presenddfénition only for a
logic Lg .
Letl O Fr(Zng) and A Fr(Zg) be sets of formulasA is alogical consequencef I in an interpretationJ (denoted

by I ;|=4), if ﬂT(dJJ)ﬂ ﬂF(LIJJ) =0 .Ais a logical consequence df (denoted by |=4), if [;|=A in every inter-
oar woA

10

pretationJ . The set of names (variables) that occur ia denoted byym(I"), this notation is extended for a case of several
sets or formulas, sayym(T", A, RY (D)) .

General properties of the consequence relatiotharéllowing (, A, 2, A 0O Fr(Zlg')):

C) Letl nA#£0, thenl” |=A.
U) Letr DA and AOZ, thenl A= A|=Z.

General properties with their duals (co-rules)theefollowing (7, A, 20 Fr(Zng) , @, WO Fr(Zlg')):

0) oW, T |=A = ©,T [=ATa W,T |=4; () M=, 000 = T |=4A, 0, W;

RT)) RIX(®),F =4 = Ry (@), [=4; RT) T =4, RIR(®) = T [=4, RY(®);

ONp) RYY (@), T|=A= R (@), T|=4, if ydU\nm(®); ON_) I |24, R (D) = T |=4, R (@), if yOU\NM(P);
RR) RY (Ry (®),F =4 = Ry of (®),T [=4; RR) T =4, R} (R} (®)) = T |=4, R} J(®);

R-) R{(-®), T =4 « =Ry (D),T[=4; RA)T =0, R (-®) < T[=4,~Ry(D);

RO) RY(@OY), T =4 « RY(®)OR(Y),T =4, ROL) M =4, R{ (@ OY) < I'|=4, Ry (9) DR (¥);
RIR) Ry(D@), T [=A = RI(D®), T |=4; RR) T =4, Ry (Dx0) < T [=4, R} () ;

Rp) RI(DD),T [=A = kd, |=4; ROp) T =4, R(DO) = |=A, kd.

Properties related to elimination of quantifiers ttre following:
R) RI(D®),T[=A = RI@),T=48ez ifZ00\nn(T,4, R (D)) ;

O.) Ox®d, T |=A = RY(®),T =46z, ifZ0U\Nnm(T, A, kd);

[Rf)) =4, R (D) < I|=A, R (0Dx0), RX(®),ez, if Z0U\nm(T,A, R (D)) ;
) T =40, k® = T =4, kd, RX(®),ez, if ZIU\ nm(T, A, [kd);

[Rv) [[=4, R (xD), gy < T |=4, R (D0), R (D), ey.

Ov) [=4, Ged, ey = T |=4, Ged, RY(D), gy.

[Rdy) I [=A, RN ((xD) = gy, [=A, R (D) andr [=4, R (D), Ry(D), ey;
) M [=0, 0 < ey,[|=A,0® and T [=A, Grd, R (D), ey.

Let us prove, for example, the propey._ (L. is its special case) and the propé&fRd, ([t is its special case) consider-
ing an arbitrary interpretatioh

Property[R,_.

=. If RI(D®),T |=A thenT(T) n T(R (0x@) ;) n F(Ay) = 0. SinceT (R'(®) ;) n F(ez) OT(R' (Dx),), we have

T(C5) n F(A) n T(RS(®@) 5) n F(ez) =0. So, R (@), T |=A, ez

0. LetRJ(®),T|=A¢ez, then TI)nT(R'X(®);)nF@A)nFEz)=0. If we demonstrate that
T n T (R(OxD) ;) n F(Ay) =0 then we obtainRy ((xd), I |=A.

Assume thaf (I;) n T(I%U"Z"((D)J) n F(Ay) n F(ez) =0 and there existd such thatdOT(;) n T(RY (OxP) ;) n F(4,). In
this casedT(R ((xD) ;)), dOT(I;) anddOF(4,). By dOT(R (OxD) ;) we haveddu — d(V) OT(Ckd,); this means that
dOU — d(V)O x— alT(d;) for somealA. SincezZdU\nm(I", A, F@(D)«D)) we havedOU — d(W)O x— &l z—» {T(Dy),
dd0z—alT(I ;), ddz—alF(A;). From this follows thatlOz—aldT(PVU"Q((@)J); by definition ofezwe havedllz—allF(gz)),
therefore dOz—adT(l ;) n T(Fgﬁ"zx(d))J) n F(Aj) n F(ezy). This contradicts to the assumption that
T(M) N T(R'X(®) ;) n F(A) n F(ez) = 0.

Property[Rd.,

11

=.If [|=A, R} (ODxD), thenl” |=A, R (@), B'y(®),e y andey, I [=A, R} (0x0) by the general property U).

0. Assume thatey,l|=A R (D®) and I'[=A, R/ (D®), R'y(®),ey, but I'#A R (D®). Then we have
Ty nF@)n F(F@(D)«D)J) # 0; this implies that there existksuch thaddT(I";) n F(A;) n F(PVU(Dxd))J).

Two cases are possibti{y)t andd(y):. If d(y)+ thendOT(ey;); from thisdOT(ey;) n T(T35) n F(A;) n F (R (D) ;) that

contradicts to ey, I |=A, R} (D). If d(y)! then dOF(ey;). Let diy)=a. By dOF(R'(DxD),) we have
dOU — d(V) OF(Ckdy). From this follows dOU+— d(WOx— kOF(®;) for every bOA, in particular,

d0u - d(V)Ox— alF(®P,), thereforedOu— d(V)Ox— d yOF(Dy), thus,dDF(PvU";,‘(d))J). So,ddT(My) n F(Ay) n
n F (R (D)) n F(RY5(®) ;) n F(eyy) that contradicts =4, Ry (@), B'y(®), ¢ y.

6 The sequent calculus folL?

For the logicL? we build acalculus of sequent typ&equents are interpreted as setibéled (signed) formulasmarked
by one of two symbols or_. Such sequents are also denoted y_A, where all formulas df are labeled by the symbol
- (such formulasire calledT-formulas), ofA — by the symbal, (F-formulas). This notation for sequents is similamnbta-
tions used in tableau calculi.

Semantic properties of relation |= have their sstitaanalogues — sequent rules. These rules afeltbwing.

Sequent rules for propositional compositions:

40T -®,X
F L sox T e
ORI 40, WX
T o0v: T e0vs
Sequent rules for renomination compositions:
rr LR O L CLY
FRIx(@),2 (R (@),2
LON % if yOU\Nm(®); _®N %, if yOU\NM(®);
- R (D), RR LR (D), =
T RO, TRy Oe)x
ROp - X0, X ; RIp X0, X |
- Ri(D0), % L R(DxD), =
‘RR w ; RR M .
- R (R(9)),2 LR (R(0)),2
R~ —"ﬁ?@)'z; R~ —"ﬁ?@)'z.
Ry (= ®),% AR (D)X
RO FRU@)OR(Y).E RO JRU@) OR(Y). 2
CR(@0%),2 B LRi(@0%),2

Sequent rules for quantification compositions:

W eh e R 122 ey nme, D). JIRE Rz (D), ez
%S - R (D), =

, if ZOU\ nm(Z, RY (OxD)) .

12

X0, | R(D), _g22 LR(D®), _ R (@), e 22

) | if ZOU\ nm(Z, [k®). [Rf = it Z0UNnm(Z, RY :
| o if ZOU\ nm(Z, Ox®). R RO if ZOU\ nm(Z, R} (D))
o D@,E_;(qFjj (CD); _zleyz | Ry 4R (Di)(,m_),@Ff;;(qn,z_lg yI

XD, Y, 8 -8 ¥
oy DT -, _ | R(®), ey g EY: SR O). [ROR),_ | BY®),_g)
K |D,x L R (O0),x |

Additional condition for _[T and_[Rf: predicate symbolz do not belong-. Additional condition ford and_[Rd:ey,
€zdo not belong t& butX has at least one symbol of the fogm

Sequent calculus specified by the above writteasrig denoted &3-calculus

To define derivability imQ-calculus we should first introduce the notion loked sequent. Sequents closed if there exists
® such that®O> and_®OZ. Consequently, ifI_A is closed thefi |= A. Closed sequents aa@iomsof Q-calculus.

We also need an additional condition of closed eatpuwhich is calledinasclosenessGiven a sequentl_A we de-
fine unag A)= {uOV |eudr}. It is assumed that for variables frommag, I"_A) values are not assigned (for counter

models specified by a derivation tree [17]). GiyénA and two formulasR¥ (®) and R):S, (®) we say that these formulas
areunasequivalentif formal expressions obtained by deleting frt%mnd%, variables fromunag, I'_A) coincide (exact
definition is given in [17]). A sequenf _A is unasclosedif there exist twaunasequivalent formuIasR;’ (®) and R% (D)

such thatRy (®) O and RS (%) OA.

Derivation in theQ-calculus has the form of tree, the vertices ofolthdre sequents. Such trees are called sequest tree
A sequent tree islosed if every its leaf is a closed sequent. A seqieistderivable if there is a closed sequent tree with
the root>. Sequent calculus is constructed in such a wayathaquentl_A has a derivation if and onlyfif |= A. The deriva-

bility of a sequent for formulas &f is proved within Lg .

During construction of a sequent tree the followsages are possible:

1. All sequents on the leaves of the sequent neelased; we have a finite closed tree.

2. Procedure is not completed; we have a finitenfinite unclosed tree. Such tree has at leastpaik all vertices of
which are unclosed sequents. Such path is calleldsed.

Theorem (soundness)Let a sequentl'_A be derivable iQ-calculus. The |=A.

A proof is based on the semantic properties ottiresequence relation presented in the previoumsect

Theorem (completeness) et [=A. Thenthe sequen{I"_A is derivable irQ-calculus

A proof is based on the fact that a counter moodehfsequent can be constructed if its derivatimesdot exist. A de-
tailed proof is lengthy one and is omitted here.

Q-calculus is a new simplified version QG-calculus presented in [1MQG-calculus was constructed for a special con-
sequence relation, but here we adopt a traditidethition of this relation.

Using the ideas presented in this paper we plasoitstructin forthcoming papersalculi for composition-nominative
logics of quantifier-equational, function, and function-edqoiaal levels (see section 3) and give detailed fsrad their
soundness and completeness.

In our previous work we constructedlculi for different neoclassical logiand proved theisoundness and complete-
ness8]. Similar results were also proved for somessts of composition-nominative modal and tempaogith [8].

The obtained results can be used in logics foramgeasoning.

7 Conclusions

In the paper we have advocated the idea that Idgicprogram reasoning should be based directlfoomal program
models. In this case program logics should refeth program features as partiality, complex datectures, nondeter-
minism etc. Program-oriented logics developed m plaper are called composition-nominative progragick and are
algebra-based logics constructed in a semanti@stiatstyle on the methodological basis that is w@m with program-

13

ming; they can be considered as generalizatiortisaditional logics on classes of partial predicdtes do not have fixed
arity. Such predicates, called quasiary predicates,defined over partial variable assignmentstigdagata). We have
described the hierarchy of different logics of danspredicates. For the constructed logics somes laf classical logic
fail because of partiality of predicates and ddte have constructed a sequent calculus for adndgr composition-
nominative pure quasiary predicate logic which pléye central role in the logic hierarchy. We haveved soundness
and completeness of this calculus. The obtainadlteesan be generalized for a number of more pawésfjics. The pro-
posed methods can be useful for construction arekstigation of logics for program reasoning.

Future work on the topic will include constructiofisequent calculi for composition-nominative lagiaver hierarchic
nominative data. Hierarchic data permit to represeich complex structures as lists, stacks, aretgs, thus, such logics
will be closer to program models with more richadétpes. Also, prototypes of software systems lieotem proving in
composition-nominative logics should be developed.

References

1. Handbook of Logic in Computer Science, S. Abramékyy M. Gabbay, and T. S. E. Maibaum (eds.), in ines, Oxford
Univ. Press, Oxford (1993-2001)

2. Handbook of Philosophical Logic, D.M. Gabbay, F.eBthner (eds.), 2nd Edition, in 16 volumes, Sprnir{g601-2011)

3. Nikitchenko, N.(M.): A Composition Nominative Apprdato Program Semantics. Technical RepotTIR 1998-020, Tech-
nical University of Denmark, 103 p. (1998)

4. Nielson H.R., Nielson F.: Semantics with ApplicasoA Formal Introduction. John Wiley & Sons Inc 929

5. Winskel G.: The Formal Semantics of Programmingdueages. MIT Press, Cambridge (1993)

6. Kleene, S. C.: Introduction to Metamathematics. Wastrand, New York (1952)

7. Nikitchenko M., Kryvolop A.: Semantic properties wionotone Floyd-Hoare logics. Bulletin of Taras Sitnko National
University of Kyiv Series: Physics & Mathematics g. 215— 222 (in Ukrainian) (2012)

8. Nikitchenko M., Shkilnyak S.: Mathematical logiccatheory of algorithms. Publishing house of Tarasv&henko National
University of Kyiv, Kyiv, 528 p. (In Ukrainian) (ZiB)

9. Blamey, S., Partial Logic, In: Gabbay D., GuenthRe(Eds.), Handbook of Philosophical Logic, Voluttle D. Reidel Pub-
lishing Company, Dordrecht (1986)

10. Spivey M.: The Z Notation: A Reference Manual, 2diien. Prentice Hall International Series in Congguscience (1992)

11. Abrial J.-R.: The B-Book: Assigning Programs to Meeys. Cambridge University Press (1996)

12. Lamport L.: Specifying Systems: The TLA+ Languagel &ools for Hardware and Software Engineers. Aattig/esley
(2002)

13. George C., Haxthausen A.E., Hughes S., et al.: THERM®evelopment Method. Prentice Hall, London (1995

14. Gurevich Y.: Evolving Algebras 1993: Lipari Guide; E. Borger (Ed.), Specification and Validation tdeds. pp. 9-36, Ox-
ford University Press (1995)

15. NikitchenkoM., Tymofieiev V.: Satisfiability and Validity Problerma Many-sorted Composition-Nominative Pure Predicat
Logics. In: V. Ermolayev et al. (eds.): ICTERI 20CX0IS 347, pp. 89-110. Springer, Heidelberg (2012).

16. Nikitchenko M.S., Tymofieiev V.G.: SatisfiabilityhiComposition-Nominative Logics. Central Europeanrdaliof Computer
Science, vol. 2, issue 3, pp. 194-213 (2012)

17. Shkilniak S. S.: Fst-order logics of quasiary predicat&sbernetika | Sistemnyi Analiz, 6, 32-50 (in Rues) (2010)

14

