

Completeness Theorems for Program-oriented Algebra-based
Logics of Partial Quasiary Predicates

Mykola S. Nikitchenko and Stepan S. Skylniak

Department of Theory and Technology of Programming
Taras Shevchenko National University of Kyiv
64, Volodymyrska Street, 01601 Kyiv, Ukraine

{nikitchenko, sssh}@unicyb.kiev.ua

Abstract. We provide motivation for developing and studying program-oriented logics of partial predicates. Such logics
are algebra-based logics constructed in a semantic-syntactic style on the methodological basis that is common with pro-
gramming; they can be considered as generalizations of traditional logics on classes of partial predicates that do not have
fixed arity. Such predicates, called quasiary predicates, are defined over partial variable assignments (over partial data).
We describe the hierarchy of different logics of quasiary predicates. For the constructed logics some laws of classical log-
ic fail because of partiality of predicates and data. We construct sequent calculi for a number of defined logics and prove
their soundness and completeness. The methods proposed can be useful for construction and investigation of logics for
program reasoning.

Keywords: Partial predicate, partial logic, first-order logic, validity, sequent calculus, soundness, completeness.

1 Introduction

Mathematical logic is widely used for investigation of programs [1, 2]. Still, there are certain discrepancies between prob-
lems to be solved in this area and a logic in use. For example, such program properties as partiality of functions, elaborated
system of data types, behavioural non-determinism etc. are difficult to investigate by traditional logic. To cope with such
discrepancies we propose to construct logics based directly on program models.

To realize this idea we first construct models of programs using composition-nominative approach [3]. Principles of the
approach (development of program notions from abstract to concrete, priority of semantics, compositionality of programs,
and nominativity of program data) form a methodological base of program model construction. These principles specify
program models as composition-nominative systems. Such a system may be considered as a triple of simpler systems: com-
position, description, and denotation systems. A composition system defines semantic aspects of programs, a description
system defines program descriptions (syntactic aspects), and a denotation system specifies meanings (referents) of descrip-
tions. We consider semantics of programs as partial functions over a class of data processed by programs; compositions are
n-ary operations over functions. Thus, a composition system can be specified by two algebras: data algebra and function
algebra. Function algebra is the main semantic notion in program formalization. Terms of this algebra define syntax of
programs (description system), and ordinary procedure of term interpretation gives a denotation system.

The constructed formal program models form a base for developing of a rigorous mathematical formalism for reasoning
about programs, in other words – a program logic. It is not possible to invent one universal program logic that would have
all necessary properties. Therefore a hierarchy of logics, oriented on the hierarchy of program models, has to be developed.
Here we briefly introduce such a hierarchy. Obtained logics are called composition-nominative logics (CNL).

It is important to admit that CNL better reflect program properties, but the opposite side of this feature is that the methods
of logic investigation turn out to be more complicated. In this paper we continue our work on studying CNL focusing on the
completeness problems for the first-order CNL.

The rest of the paper is structured as follows. In section 2 we give a motivational example of program formalization and
logic construction. In section 3 we briefly introduce a hierarchy of logics of quasiary predicates. We define first-order pure
CNL in section 4. In section 5 we consider properties of the consequence relation. In section 6 a sequent calculus for first-
order pure CNL is defined; its soundness and completeness are demonstrated. In section 7 conclusions are formulated.

Proofs are omitted here and will be provided in an extended version of the paper.

 2

2 Constructing Program Algebras and Logics: a Motivating Example

Let us consider the example language EL which is used here to demonstrate how program logics can be constructed. EL is
similar to such languages as WHILE [4], IMP [5], etc.

The grammar of the language is defined as follows:
s::= x:=a | s1 ; s2| if b then s1 else s2 |while b do s | begin s end
a::= k | x | a1 + a2 | a1 – a2 | a1 * a2 | a1 div a2 | a1 mod a2 | (a)
b::=a1= a2 |a1>a2 | b1∨b2 |¬b | (b),
where:

− k ranges over integers Int={…, –2, –1, 0, 1, 2, …},
− x ranges over variables (names) V={ N, R, X, Y, Z, …}
− a ranges over arithmetic expressions Aexpr,
− b ranges over Boolean expressions Bexpr,
− s ranges over statements (programs) Stm.

As an example consider an EL-program ES for calculating a function r = xn (n≥0) using Exponentiation by Squaring Al-

gorithm. In this program variables N, X, and R denote integer values n, x, and r respectively:

R:=1;

while N>0 do

if (N mod 2)=1

then begin R:=R*X; N:=N–1 end

else begin X:=X*X; N:=N div 2 end

Starting from this example we construct program algebras of three forms:

─ first, we define semantics of ES in the style of denotational semantics; as a result we obtain a program algebra with n-
ary mappings oriented on EL;

─ then we represent n-ary mappings by quasiary mappings obtaining a simpler program algebra;
─ at last, we define a general class of quasiary program algebras. This class of algebras is a semantic base for quasiary

program logics. It captures main program properties that are invariant of such programs’ specifics as variable typing, in-
terpreted predicates and functions, etc.

Analyzing the structure of the program we see that it is constructed from 1) symbols of n-ary operations (+, –, *, div,
mod, =, >), 2) Boolean (N>0, (N mod 2)=1) and arithmetic (1, 2, N–1, N div 2, N mod 2, R*X , X*X) expressions, and 3)
statements obtained with the help of structuring constructs such as assignment, sequence, selection, and loop. Note that div

is partial on Int. To emphasize mapping’s partiality/totality we write the sign →p for partial mappings and the sign

→t for total mappings.
We use denotational semantics (see, e.g. [4, 5]) to formalize the meaning of program components. Semantic mapping is

represented as 〚.〛. Three program components identified above determine three types of mappings called respectively n-

ary, quasiary, and bi-quasiary mappings.

2.1 Classes of n-ary mappings

Symbols of arithmetic operations, relations, and Boolean connectives represent n-ary mappings defined on Int or on the
set Bool={T, F} of Boolean values.

For our language EL we define the following types of n-ary mappings:

Fn n,Int=Int n →p Int, Pr n,Int=Int n →p Bool, Pr n,Bool = Bool n →p Bool, n≥0.

Using the same notation for language symbols of various types and mappings they represent, we can write that

+, –, * , div, mod: Fn
2,Int; =, >: Pr

2,Int; ∨: Pr
2,Bool, ¬ : Pr

1,Bool.

 3

2.2 Classes of quasiary mappings

Quasiary mappings are defined over classes of states considered as sets of named values. For example, the expression R*X
specifies a function which given a state d of the form [R a r, Xa x], where r and x are integers, evaluates a value r*x.
Examples of states are [Xa 8, N a 4], [Xa 8, N a 4, R a 8], [Xa 8]. In a state d a variable v can have a value (this is
denoted d(v)↓) or be undefined (denoted d(v)↑); thus, [X a 8, N a 4](X)↓ and [Xa 8, N a 4](R)↑. Formally, the set of

states State is defined as the set VA=V →p Int of all partial mappings from V to Int.
Having described states we are able to represent formal semantics of Boolean and arithmetic expressions. Boolean ex-

pressions denote predicates (called partial quasiary predicates) of the set PrV, Int=State →p Bool; thus for b∈Bexpr we

have 〚b〛∈ PrV, Int. Integer expressions denote functions (called partial quasiary functions) of the set

FnV, Int=State →p Int; thus, for e∈Aexpr we have〚e〛∈ FnV, Int. In the sequel we omit the term ‘partial’ for quasiary

mappings. Since states are constructed with the help of naming (nominative) relation, they are also called nominative sets.
Functions from FnV, Int are called ordinary functions since their ranges are sets of atomic (non-structured) values.

To represent semantics of variables in arithmetic expressions we will use a parametric denomination (denaming) func-
tions ′x: FnV, Int. For a given program state, the function ′x returns the value of the variable x in that state. For instance, de-
nomination function that yields the value of name N is denoted by ′N. Such values may or may not be defined, so denomi-
nation functions are partial.

Semantics of integer numbers is treated as quasiary constant functions. Such functions are represented by constants k

written in bold font; thus, 〚1〛= 1. It is clear that 1∈ FnV, Int.

For specifying semantics of complex expressions special compositions called superpositions are used. Superposition
n
FS :Fnn,Int ×(FnV,Int) n →t FnV,Int of functions g1,…, gn into an n-ary function f n is an operator such that nFS (f n, g1,…,

gn)(d) = f n (g1(d),…,gn(d)) where d is a state. The same formula can be used for defining superposition
n
PS : Prn,Int×(FnV,Int)n →t PrV,Int of functions g1,…, gn into n-ary predicate pn, and for superposition n

BS :

Prn,Bool×(PrV,Int) n →t PrV,Int of predicates p1,…, pn into an n-ary Boolean function n
Bf . Thus,〚N–1〛= 2

FS (–, ′N, 1),

〚N>0〛= 2
PS (>, ′N, 0), 〚(N mod 2)=1〛= 2

PS (=, 2
FS (mod, ′N, 2), 1).

2.3 Classes of bi-quasiary mappings

Programs (statements) from Stm denote bi-quasiary functions (program functions) of the class FPrgV,Int=State →p State

= VInt →p VInt. Such functions are also called bi-nominative.
Semantics of structured statements is defined by the following compositions with conventional meaning:

1. assignment composition AS x: FnV,Int →t FPrgV,Int (x is a parameter from V);

2. composition of sequential execution •: FPrgV,Int×FPrgV,Int →t FPrgV,Int;

3. conditional composition IF: PrV,Int×FPrgV,Int×FPrgV,Int →t FPrgV,Int;

4. loop composition WH: PrV,Int×FPrgV,Int →t FPrgV,Int.

For instance, 〚R:=R*X; N:=N-1〛= ASR (2
FS (*, ′R, ′X)) • AS N (2

FS (–, ′N, 1)).

Note, that we define • by commuting arguments of conventional functional composition: f•g=go f.

2.4 Program algebra with n-ary mappings

The definitions introduced permit to conclude that the following program algebra with n-ary mappings oriented on ET has
been constructed (we omit types of compositions):

APn(V, Int) = < Fn2,Int, Pr2,Bool, Pr1,Bool, Pr2,Int, PrV,Int, FnV,Int, FPrgV,Int;

+, –, * , div, mod, = , >, ∨, ¬ , k, 2
FS , 2

PS , 2
BS , 1

BS ,′x, AS x, •, IF, WH> .

 4

Note that notation for parametric compositions (like denominations, assignments etc.) represents here classes of composi-
tions. Thus, ′x represents the class of compositions for various x; k represents the class of integer constants treated as qua-
siary constant functions.

We would like to emphasize the fact that semantics of EL-programs (or EL-expressions) can be represented as terms of
this algebra. This simplifies investigations of EL-programs because the constructed algebra completely specifies their se-
mantics.

The term for EL-program ES is as follows:

ASR(1) • WH(2
PS (> ,′N,0), IF(2

PS (=, 2
FS (mod, ′N, 2), 1),

ASR(2
FS (*,′R,′X)) • ASN(2

FS (–,′N, 1)), ASX(2
FS (*,′X,′X)) • ASN(2

FS (div, ′N, 2)))).

Note that this term and its sub-terms can denote partial mappings, as the function div and denomination functions can be
undefined; also WH composition can be a source of undefinedness.

Having specified this algebra we can study properties of programs; this can be used in program reasoning. For example,
it is possible to prove commutativity of the assignment statements R:=R*X and N:=N–1 by proving in the algebra APn(V,
Int) the corresponding property of composition of sequential execution:

ASR(2
FS (*,′R,′X)) • ASN(2

FS (–,′N, 1)) = ASN(2
FS (–,′N, 1)) • ASR(2

FS (*,′R,′X))

We can also prove more general properties; say we can prove associativity of sequential execution of statements:

begin s1 ; s2 end; s3 = s1; begin s2 ; s3 end

by proving in the algebra APn(V, Int) the corresponding property of composition of sequential execution: f•(g•h)=(f•g)•h
(f, g, h ∈FnV,Int). Another example is the following distributivity property:

begin if b then s1 else s2 end; s3 = if b then begin s1; s3 end else begin s2; s3 end.

Its validity is based on the property of APn(V, Int) that IF(p,f,g)•h=IF(p, f•h, g•h). (Here f, g, h ∈FnV,Int, p∈PrV,Int.)
Still, the constructed program algebra with n-ary mappings looks overcomplicated; therefore we construct a simpler al-

gebra without n-ary mappings. It is possible because n-ary mappings can be mimicked by quasiary mappings. Still, we
should first split the set of operation symbols of this algebra into two parts: logical symbols, which have relatively type-
independent interpretations, and non-logical (or descriptive) symbols, which represent specifics of the carriers. Logical
symbols will be treated as compositions and descriptive symbols as quasiary mappings. Trivial inspection of definitions
shows that symbols +, –, *, div, mod, =, > are descriptive symbols in the signature of APn(V, Int). They are defined over
integer numbers, and may be considered constants in this algebra. Other symbols may be considered logical.

2.5 Program algebra without n-ary mappings

The considerations described above open the second phase of program algebra development. To make the algebra simpler
we can exclude from it the classes of n-ary functions and predicates, thus concentrating on logical symbols that are inter-
preted as compositions over nominative carriers PrV,Int, FnV,Int, and FPrgV,Int. Still, n-ary functions and predicates can be
represented in these classes of nominative mappings.

We explain the idea of representation of n-ary mappings on the example of binary multiplication function. First, we rep-
resent a pair (x1, x2) as a state [1a x1, 2 a x2], where 1 and 2 should be treated as standard variables that represent the
arguments of a binary function symbol. This permits to treat multiplication as a quasiary function. Then, in order to avoid
usage of standard names 1 and 2 and to obtain homogeneity of names we can introduce a parametric quasiary function x*y

(printed in bold font) such that x*y = 2
FS (*, ′x, ′y); here x and y are parameters from V.

Therefore instead of binary functions we introduce parametric quasiary functions x+y, x–y, x*y, x div y, and x mod y
over Int; also instead of relations we introduce new parametric quasiary predicates x=y and x>y (with x and y as parame-
ters).

This step permits to represent every n-ary function defined over Int as a parametric quasiary function. But now, to repre-

sent the semantics of complex expressions we should introduce special superpositions nvv
FS ,...,1 (or v

FS) and nvv
PS ,...,1 (or

v
PS), which are called superpositions into quasiary function and predicate respectively: nvv

FS ,...,1 (f q, g1,..., gn)(d) =

f q(d∇[v1ag1(d),...,vnagn(d)]) and nvv
PS ,...1 (pq, g1,..., gn)(d) = p q(d∇[v1ag1(d),...,vnagn(d)]), where f q∈FnV,Int, pq∈PrV,Int.

 5

Intuitive meaning of these formulas is that we change in d the values of names v1,…, vn to g1(d),...,gn(d) respectively

(partiality should be taken into account). Thus, semantics, say, of the expression R+(R*X), can be represented as Y
FS (R+Y ,

R*X).

Now let us consider logical symbols ∨: Bool2 →t Bool and ¬: Bool →t Bool. We cannot directly represent them
as quasiary predicates, therefore we advocate another approach. We will treat them as binary compositions over quasiary

predicates (denoted by the same signs) ∨: PrV,Int×PrV,Int →t PrV,Int and ¬: PrV,Int →t PrV,Int. Such representations also
provide better possibilities to work with partial predicates. For example, consider a Boolean expression (R*X)>R ∨ (R>X).

Its semantics in APn(V, Int) is represented by the term 2BS (∨, 2
PS (> , 2

FS (–, ′R, ′X), ′R), 2
PS (> , ′R, ′X))). But superposi-

tion into an n-ary mapping is strict: when one argument is not defined then the result is also undefined. This property re-
stricts possibilities of construction of new partial predicates. For example, for Kleene’s strong disjunction [6] it is allowed
that one argument may be undefined if the other one is evaluated to true. When we represent connectives as compositions,
we avoid the above considered difficulties.

Thus, we can now consider a simpler algebra – the program algebra of quasiary predicates with constants (without n-
ary mappings):

APQC(V, Int) = < PrV,Int, FnV,Int, FPrgV,Int;

x–y, x+y, x*y , n div m, n mod m, k; x=y, x>y ; ∨ , ¬ , v
FS , v

PS , ′x, AS x, •, IF, WH>.

In this algebra we have 8 parametric descriptive symbols considered as algebra’s constants, and 9 logical symbols. Note,
that all logical symbols are treated as compositions, possibly null-ary compositions (as in the case of denomination func-
tions).

Semantics of ES program is represented by the following term of this algebra:

ASR(1) • WH(N>0, IF((N mod 2)=1, ASR(R*X) • ASN(N–1), ASX(X*X) • ASN(N div 2))).

2.6 Program algebra without descriptive constants

The next step of constructing more “logical” algebras consists of eliminating from APQC(V, Int) descriptive symbols x+y,
x–y, x*y, x div y, x mod y, k, x=y, x>y with fixed interpretations. We obtain a program algebra of quasiary predicates
APQ(V, Int) without constants:

APQ(V, Int)= < PrV,Int, FnV,Int, FPrgV,Int; ∨ , ¬, v
FS , v

PS , ′x, AS x, •, IF, WH >.

As to eliminated descriptive symbols, we can instead consider sets Ps, Fs, and FPs of predicate, ordinary function, and
program function symbols that do not have predefined interpretations, and consequently, can denote any quasiary predicate
or function or bi-quasiary function.

The algebra APQ(V, Int) is based on integer numbers, though it is clear that we can consider other data types, say real,
nat, etc. Also, new operations over such data types can be considered. So, one can ask a question: what EL-program prop-
erties remain valid under type and operation variations?

2.7 General program algebras (with arbitrary classes of basic values)

Being interested in general laws of reasoning about programs we should make the next step and define compositions for
any set A of basic (atomic) values. In this case we obtain the following program algebra of quasiary mappings:

APQ(V, A)= < PrV,A, FnV,A, FPrgV,A; ∨ , ¬, v
FS , v

PS , ′x, AS x, •, IF, WH >.

Symbols from Ps, Fs, and FPs are used to construct terms of this algebra. Properties of such terms are general properties
because they should be valid under any interpretations of function and predicate symbols.

It means that we have constructed a class of quasiary program algebras (for various A), representing program semantics
for languages with different domains. Such algebras may be called general program models; they form the semantic base
for program logics.

For example, we can consider equational program logics by defining formulas of these logics as formal equalities of the
form t1=t2, where t1 and t2 are terms of the type FPrgV,A. Such logics define equivalent transformations of programs.

Another conventional program logic is Floyd–Hoare logic, which is based on assertions of the form {b1} s{ b2}. Seman-

tics of such assertions can be represented by Floyd–Hoare composition FH: PrV,A×FPrgV,A×PrV,A →t PrV,A. We define this
composition under assumption that predicates and functions can be partial [7]. Then

 6

FH(p, prg, q)(d)=








↓=↓=
↓=↓=

 cases.other in undefined

,))((and)(if,

,)(or))((if,

FdprgqTdpF

FdpTdprgqT

Extending the algebra APQ(V, A) with FH composition, unary parametric compositions of renomination Rv
x , existential

quantification ∃x (to be defined in the next sections), and a composition of equality = we obtain a three-sorted algebra

APQFH(V, A) = < PrV,A, FnV,A, FPrgV,A; ∨ , ¬, Rv
x , v

FS , v
PS , ′x, ∃x, =, AS x, •, IF, WH, FH >

presented in Fig. 1.

Figure 1. Three-sorted algebra of quasiary predicates, ordinary and program functions.

2.8 General program algebras as a semantic base of program logics

The class of algebras APQFH(V, A) forms the semantic base for quite powerful Floyd–Hoare-like logics of quasiary map-
pings. It is important to admit that by restricting this algebra on one and two carriers we obtain respectively the following
two algebras:
− propositional algebra AP(V, A) = <PrV,A; ∨ , ¬ >;
− first-order algebra of quasiary predicates and ordinary functions

AQFO(V, A) = <PrV,A, FnV,A; ∨,¬, Rv
x , v

FS , v
PS ,′x, ∃x, = >.

Based on classes of such algebras various propositional, first-order, and program CNL can be defined (see the next sec-
tions). We can go further and define modal and temporal CNL [8].

All logics are constructed in a semantic-syntactic style: first, semantic component of a logic is defined as a class of certain
algebras, then syntactic component (a logic language) is described, and, at last, interpretational component is specified.

2.9 Special features of quasiary predicates and functions

Before continuing with formal definitions it is desirable to give an intuitive understanding of logics of quasiary predicates
and to compare them with classical logic of n-ary predicates.

====

Ordinary
Function
Level

'x FnV, A= VA →→→→ A

…
FH

••••

WH IF ASx

¬¬¬¬, R v
x , ∃∃∃∃x

FPrgV, A= VA →→→→ VA

Predicate
Level

Program
Function
Level

∨∨∨∨

PrV, A= VA →→→→ Bool

v
PS

v
FS

 7

We identify the following properties of quasiary predicates:
– partiality of predicates;
– unrestricted (possibly infinite) arity of predicates;
– sensitivity of predicates to unassigned variables (sensitivity to partiality of data).
These features complicate investigation of logics of quasiary predicates comparing with classical logic and violate some

laws of classical logic.
In particular, partiality of predicates violates Modus Ponens [9]. Indeed, let und be interpreted as a nowhere defined predi-

cate and Φ be interpreted as a refutable predicate. We treat validity as irrefutability, therefore und and und→Φ are valid (ir-
refutable), but Φ is refutable.

Unrestricted arity of quasiary predicates violates the property that a sentence (a closed formula) has a constant value in a
fixed interpretation because a predicate, obtained by formula interpretation, can depend upon variables that do not occur in
that formula.

Sensitivity also affects the logic laws. Let us illustrate this with a simple example. Define a parametric predicate εz∈ PrV,A
(z∈V) by the following formulas: εz (d)↓=F if z is assigned in d and εz (d)↓=T if z is unassigned. This quasiary predicate is
called variable unassignment predicate. It has different values depending whether a value of z is assigned or unassigned;
thus, it is sensitive to unassigned variables. Consider the following phrase as one of intuitive interpretations of a predicate
εfood: ‘My cat is unhappy only in situations when he does not have any food’. Thus, this phrase evaluates to T in situations
(states) in which food is not assigned; when this variable is assigned then the phrase evaluates to F. The formula
(∀food(¬εfood))→ ¬εfood may fail in situations (states) when my cat does not have any food. In Tarski’s semantics of
classical logic we have double totality: predicates are total and variable assignments (data) are total. Therefore in classical
logic the formula (∀food(¬εfood))→ ¬εfood is always valid. Such sensitivity complicates logic calculus therefore more
powerful instruments should be introduced. As such instruments we will use an infinite set of unessential variables and vari-
able unassignment predicates (see the next sections).

Summing up, we would like to say that semantics of programs can be presented by terms of program algebras with com-
positions as operations in these algebras; program functions, ordinary functions, and predicates are quasiary mappings de-
fined on nominative sets (nominative data); we define program logics directly on program algebras by extending their signa-
tures with special “logical” compositions.

3 Hierarchy of Composition-Nominative Logics

Three kinds of logics can be constructed from program models over nominative sets (see Fig. 1):
1) pure quasiary predicate logics based on algebras with one sort: PrV,А;
2) quasiary predicate-function logics based on algebras with two sorts: Pr V,А and FnV,А;
3) quasiary program logics based on algebras with three sorts: PrV,А, FnV,А, and FPrgV,А.
For logics of pure quasiary predicates (pure CNL) we identify renominative, quantifier, and quantifier-equational levels.
Renominative logics [8] are the most abstract among above-mentioned logics. The main new compositions for these

logics are the compositions of renomination (renaming) of the form R 1

1

,...,
,...,

n

n

v v
x x : PrV,А →t

 PrV,А. Intuitively, given a quasiary

predicate p and a nominative set d the value of R 1

1

,...,
,...,

n

n

v v
x x (p)(d) is evaluated in the following way: first, a new nominative set

d ′ is constructed from d by changing the values of the names v1,...,vn in d to the values of the names x1,..., xn respectively;

then the predicate p is applied to d ′. The obtained value (if it was evaluated) will be the result of R 1

1

,...,
,...,

n

n

v v
x x (p)(d). For this

composition we will also use a simplified notation Rv
x . The basic compositions of renominative logics are ∨, ¬, and Rv

x .

Note, that renomination (primarily in syntactical aspects) is widely used in classical logic, lambda-calculus, and specification
languages like Z-notation [10], B [11], TLA [12], RAISE [13], ASM [14] etc.

At the quantifier level, all basic values can be used to construct different nominative sets to which quasiary predicates
can be applied. This allows one to introduce the compositions of quantification of the form ∃x in style of Kleene’s strong

quantifiers. The basic compositions of logics of the quantifier level are ∨, ¬, Rv
x , and ∃x.

At the quantifier-equational level, new possibilities arise for equating and differentiating values with special 0-ary com-
positions of the form =xy called equality predicates. Basic compositions of logics of the quantifier-equational level are ∨, ¬,

Rv
x , ∃x, and =ху .

All specified logics (renominative, quantifier, and quantifier-equational) are based on algebras that have only one sort: a
class of quasiary predicates.

 8

For quasiary predicate-function logics we identify the function level and the function-equational level.
At the function level, we have extended capabilities of formation of new arguments for functions and predicates. In this

case it is possible to introduce the superposition compositions v
FS and v

PS (see [8]), which formalize substitution of func-

tions into function and predicate respectively. Also special 0-ary denomination parametric compositions 'x are introduced.
Introduction of such functions allows one to model renomination compositions with the help of superpositions. The basic

compositions of logics of the function level are ∨, ¬, v
FS , v

PS , ∃x, and 'x.

At the function-equational level, a special equality composition = can be introduced additionally [8]. The basic composi-

tions of logics of the function-equational level are ∨, ¬, v
FS , v

PS , ∃x, 'x, and = . At this level different classes of first-order

logics can be presented.
This means that two-sorted algebras (with sets of predicates and functions as sorts and above-mentioned compositions as

operations) form a semantic base for first-order CNL.
To preserve properties of classical first-order logic in first-order CNL we should restrict the class VA →p Bool of qua-

siary predicates. Namely, we introduce a class of equitone predicates and its different variations such as maxitotal equitone
predicates, equicompatible predicates, etc. [8]. A predicate p: VA →p Bool is called equitone if for every d, d ′∈VA such
that d⊆d ′ from p(d)↓=b follows that p(d′)↓=b; if an equitone predicate p is defined on all elements of AV then p is said to
be maxitotal equitone; if a predicate p is a restriction of some equitone predicate then p is equicompatible predicate. Here
AV denotes all total mappings from V to A (total assignments). Logics based on maxitotal equitone, equitone, and equicom-
patible predicates are the “closest” generalizations of the classical first-order logic that preserve its main properties. These
logics are called neoclassical logics [8].

The level of program logics is quite rich. Investigation of such logics is a special challenge; here we only mention
Floyd-Hoare-type logic based on a monotone Floyd-Hoare composition [7].

In the rest of the paper we consider a first-order composition-nominative pure quasiary predicate logic denoted LQ. Such

logic plays a central role in logic hierarchy and is based on algebras AQ(V, A) = < PrV, A , ∨, ¬, Rv
x , ∃x> (for various A).

We will construct a sequent calculus for this logic and prove its soundness and completeness.

4 Formal Definitions of First-Order Composition-Nominative Pure Quasiary Predicate Logic

To define the logic LQ we have to specify its semantic, syntactic, and interpretational components [15, 16].

4.1 Semantic component

Let V be a set of names. According to tradition, names from V are also called variables. Let A be a set of basic values. Given

V and A, the class VA of nominative sets is defined as the class of all partial mappings from V to A, thus, VA=V →p A. In-
formally speaking, nominative sets represent states of variables.

Though nominative sets are defined as mappings, we follow mathematical traditions and also use set-like notation for
these objects. In particular, the notation d = [vi aai | i∈I] describes a nominative set d; the notation vi aai ∈n d means that
d(vi) is defined and its value is ai (d(vi)↓ =ai). The main operation for nominative sets is a total unary parametric renomina-

tion n
n

vv
xx

,...,
,...,

1
1

r : VA →t VA where nvv ...,,1 , Vxx n ∈...,,1 , nvv ...,,1 are distinct names, 0≥n , which is defined by the

following formula: r n
n

vv
xx

,...,
,...,

1
1

(d)= [vaa∈n d | v∉{ nvv ...,,1 }] ∪ }]),...,1{,)(|)([nixdxdv iii ∈↓a . Intuitively, given d this

operation yields a new nominative set changing the values of nvv ...,,1 on the values of nxx ...,,1 respectively. The set of

assigned names in d is defined by the formula asn(d) = {v∈V | vaa∈n d for some a∈A}.

Let },{ TFBool = be a set of Boolean values. Let PrV, A=VA →p Bool be a set of all partial predicates over VA. Such

predicates are called partial quasiary predicates. The term ‘partial’ is usually omitted.
For p∈ PrV, A, d∈VA , ,Vv∈ a∈A we write:

– ↓)(dp to denote that p is defined on a nominative set d;

– bdp ↓=)(to denote that p is defined on d with a Boolean value b;

– ↑)(dp to denote that p is undefined on d;

 9

– ↓)(vd to denote that a component with a name v is present in d;

– avd ↓=)(to denote that dav n∈a ;

– ↑)(vd to denote that the value of the name v is undefined in d.

The truth and falsity domains of p are respectively T(p) = {d∈VA | p(d)↓ = T} and F(p) = {d∈ VA | p(d)↓ = F} . A predi-
cate p is irrefutable, or partially valid, if F(p) = ∅.

types Operations over PrV, A are called compositions. For LQ the set C(V) of compositions is },,,{ xRv
x ∃¬∨ . Composi-

tions have the following: ∨: PrV, A × PrV, A →t PrV, A; ¬, n
n

vv
xxR ,...,

,...,
1
1

, ∃x: PrV, A →t PrV, A and are defined by the following

formulas (p, q∈PrV, A):

– T(p∨q) = T(p)∪T(q); F(p∨q) = F(p)∩F(q);
– T(¬p) = F(p); F(¬p) = T(p);

– T(Rv
x (p)) = rv

x (T(p)); F(Rv
x (p)) = rv

x (F(p));

– T(∃xp) = {d∈VA | p(d∇xaa) = T for some a∈A}; F(∃xp) = {d∈VA | p(d∇xaa) = F for every a∈A}.

Here axd a∇][]|[axxvdcv n aa ∪≠∈= .

Note that parametric compositions of existential quantification and renomination can also represent classes of composi-
tions. Thus, notation x∃ can represent one composition, when x is fixed, or a class {x∃ | Vx∈ } of such compositions for

various names. Also note that we treat a parameter n
n

vv
xx

,...,
,...,

1
1

of renomination composition as a total mapping from { nvv ...,,1 }

into { nxx ...,,1 } thus parameters obtained by pairs permutations are identical.

A pair AQ(V, A) = < PrV, A , C(V)> is called a first-order algebra of quasiary predicates. Such algebras form a semantic
base for the constructed first-order composition-nominative pure quasiary predicate logic LQ. Let us now proceed with syn-
tactic and interpretational components of this logic.

4.2 Syntactic component

A syntactic component specifies the language of LQ. Let Cs(V) be a set of composition symbols that represent compositions

in algebras defined above, Cs(V)= },,,{ xRv
x ∃¬∨ . For simplicity, we use the same notation for symbols of compositions and

compositions themselves.

Let Ps be a set of predicate symbols. A triple)),(,(PsVCsVQ =Σ is a signature of a language of LQ. Given a language

signature QΣ , we inductively define the language of LQ – the set of formulas)(QFr Σ :

1) if PsP∈ then)(QFrP Σ∈ ;

2) if Φ, Ψ)(QFr Σ∈ then)()(QFr Σ∈Ψ∨Φ ;

3) if Φ)(QFr Σ∈ then)(QFr Σ∈Φ¬ ;

4) if Φ)(QFr Σ∈ , nvv ...,,1 , Vxx n ∈...,,1 , nvv ...,,1 are distinct names, n≥0, then ∈Φn
n

vv
xxR ,...,

,...,
1
1

)(QFr Σ ;

5) if Φ)(QFr Σ∈ , Vx∈ then)(QFrx Σ∈Φ∃ .

4.3 Interpretational component

Given QΣ and a set A we can define an algebra of quasiary predicates AQ(V, A) = < PrV, A, C(V)>. Composition symbols

have fixed interpretation, but we additionally need interpretation →tPs PsI : PrV, A of predicate symbols to obtain a lan-

guage interpretation. A corresponding tuple),(PsQ IJ Σ= is called an LQ-interpretation.

Given a formula Φ and an LQ -interpretation J we can speak of an interpretation of Φ in J. It is denoted by JΦ .

For the logic LQ derived compositions (such as conjunction &, universal quantification ∀x, etc.) are defined in a traditional
way.

 10

Formulas and interpretations in LQ are called LQ -formulas and LQ -interpretations respectively. Usually the prefix LQ is
omitted. A formula Φ is called valid in interpretation J if there is no nominative set d∈VA such that ΦJ (d)↓= F. This is de-
noted J |= Φ, which means that Φ is not refutable in J. A formula Φ is called valid if J |= Φ for every interpretation J. We
shall denote this Φ= QL

| , or just Φ=| if the logic in hand is understood from the context.

4.4 Extensions of LQ

The logic LQ being a rather powerful logic still is not expressible enough to represent transformations required for proving

its completeness. Therefore we introduce its two extensions: LU – a logic with unessential variables, and ULε – a logic with

unessential variables and a parametric variable unassignment predicate εz which checks whether a variable z is unassigned
in a given nominative set.

To define LU we should specify its semantic, syntactic, and interpretational components.
Let U be an infinite set of variables such that ∅=∩UV . Variables from U are called unessential variables (analogs of

fresh variables in classical logic) that should not affect the formula meanings [15]. Algebras AQ(V∪U, A) = < PrV ∪U, A,

C(V)> (for different A) form a semantic base for LU. A syntactic component is specified by the set of formulas)(UFr Σ

where)),(,(PsUVCsUVU ∪∪=Σ is the signature of LU. An interpretational component of LU restricts the class of LU-

interpretations in such a way that interpretations of predicate symbols are neither sensitive to the values of the component
with an unessential variable u in nominative sets, nor to presence of such components. Formally, a variable Uu ∈ is unes-

sential in an interpretation PsI if))(())((audPIdPI PsPs
a∇= for all PsP∈ , d∈V ∪UA, a∈A .

The logic ULε is an extension of LU by a null-ary parametric composition (predicate) εz (UVz ∪∈) defined by the

formulas: T(εzA) = {d | d(z)↑} = { d∈VA | z∉asn(d)} and F(εzA) = {d | d(z)↓} = { d∈VA | z∈asn(d)}. Thus, for this logic the

set of compositions is equal to ,,,,{ xRv
x ∃¬∨ εz}. Algebras of the form AQE(V∪U, A) = < PrV ∪U, A, ,,,, xRv

x ∃¬∨ εz >

constitute a semantic base for ULε . A syntactic component is specified by the set of formulas)(UFr εΣ where

,(UVU ∪=Σε ,,,,{ xRv
x ∃¬∨ εz}, Ps) is the signature of LU. An interpretational component of ULε is defined in the same

way as for LU .
Predicates εz specify cases when z is assigned or unassigned. This property can be used for quantifier elimination that is

semantically supported for every algebra AQE(V∪U, A) by the following statement:

T ,
,(())u x

v yR P ∩ F(εy) ⊆ T(())u
vR xP∃ and F (())u

vR xP∃ ∩ F(εy) ⊆ F
,
,(())u x

v yR P .

Proof. Let d∈T ,
,(())u x

v yR P ∩ F(εy), then d(y)↓ and ,
, ()()u x

v yR P d = T, therefore d(y)↓a for some a∈A and

P (() ())d u d v x d y∇ ∇a a = T. Hence, P (())d u d v x a∇ ∇a a = T for some a∈A. Thus, (∃xP)(r ())u
v d = T, therefore

()()u
vR xP d∃ = T; this means that d∈T (())u

vR xP∃ . So, T ,
,(())u x

v yR P ∩ F(εy) ⊆ T(())u
vR xP∃ .

Let d∈F (())u
vR xP∃ ∩ F(εy), then d(y)↓ and ()()u

vR xP d∃ = F. From this (∃xР) (())d u d v∇ a = F, therefore

Р (())d u d v x b∇ ∇a a = F for all b∈A. Since d(y)↓ we have d(y)↓a for some a∈A, then P (() ())d u d v x d y∇ ∇a a = F .

From this ,
, ()()u x

v yR P d = F, which gives d∈F ,
,(())u x

v yR P . So, F (())u
vR xP∃ ∩ F(εy) ⊆ F

,
,(())u x

v yR P .

As a special case we get T (())x
yR P ∩ F(εy) ⊆ T(∃xР) та F(∃xР) ∩ F(εy) ⊆ F (())x

yR P .

5 Consequence Relation for Sets of Formulas

Consequence relation is defined in the same way for all logics under consideration. So, we present its definition only for a

logic ULε .

Let Γ ⊆)(UFr εΣ and ∆ ⊆)(UFr εΣ be sets of formulas. ∆ is a logical consequence of Γ in an interpretation J (denoted

by Γ J |= ∆), if ∅=ΨΦ
∆∈ΨΓ∈Φ

II I)()(JJ FT . ∆ is a logical consequence of Γ (denoted by Γ |= ∆), if Γ J |= ∆ in every inter-

 11

pretation J . The set of names (variables) that occur in Γ is denoted by nm(Γ), this notation is extended for a case of several

sets or formulas, say, nm(Γ, ∆, (Φ))u
vR x∃ .

General properties of the consequence relation are the following (Γ, ∆, Σ, Λ ⊆)(UFr εΣ):

C) Let Γ∩∆ ≠ ∅, then Γ |= ∆.
U) Let Γ ⊆ Λ and ∆ ⊆ Σ, then Γ |= ∆ ⇒ Λ |= Σ.

General properties with their duals (co-rules) are the following (Γ, ∆, Σ⊆)(UFr εΣ , Φ, Ψ ∈)(UFr εΣ):

∨|–) Φ∨Ψ, Γ |= ∆ ⇔ Φ, Γ |= ∆ та Ψ, Γ |= ∆; ∨–|) Γ |= ∆, Φ∨Ψ ⇔ Γ |= ∆, Φ, Ψ;

RT|–)
,
, (Φ),z v

z xR Γ |= ∆ ⇔ (Φ),v
xR Γ |= ∆; RT–|) Γ |= ∆, ,

, (Φ)z v
z xR ⇔ Γ |= ∆, (Φ);v

xR

ΦN|–)
,
, (Φ),y v

z xR Γ|= ∆⇔ (Φ),v
xR Γ|= ∆, if у∈U\nm(Φ); ΦN–|) Γ |= ∆, ,

, (Φ)y v
z xR ⇔ Γ |= ∆, (Φ),v

xR if у∈U\nm(Φ);

RR|–)
v
xR (w

yR (Φ)), Γ |= ∆ ⇔ v
xR w

yo (Φ), Γ |= ∆; RR–|) Γ |= ∆, v
xR (w

yR (Φ)) ⇔ Γ |= ∆, v
xR w

yo (Φ);

R¬|–) (Φ),v
xR ¬ Γ |= ∆ ⇔ (Φ),v

xR¬ Γ |= ∆; R¬–|) Γ |= ∆, (Φ)v
xR ¬ ⇔ Γ |= ∆, (Φ);v

xR¬

R∨|–) (Φ Ψ),v
xR ∨ Γ |= ∆ ⇔ (Φ) (Ψ),v v

x xR R∨ Γ |= ∆; R∨–|) Γ |= ∆, (Φ Ψ)v
xR ∨ ⇔ Γ |= ∆, (Φ) (Ψ);v v

x xR R∨

R∃R|–)
,
, (Φ),u x

v yR x∃ Γ |= ∆ ⇔ (Φ),u
vR x∃ Γ |= ∆; R∃R–|) Γ |= ∆, ,

, (Φ)u x
v yR x∃ ⇔ Γ |= ∆, (Φ)u

vR x∃ ;

R∃p|–) (Φ),x
yR x∃ Γ |= ∆ ⇔ ∃хΦ, |= ∆; R∃p–|) Γ |= ∆, (Φ)x

yR x∃ ⇔ |= ∆, ∃хΦ.

Properties related to elimination of quantifiers are the following:

∃R|–) (Φ),u
vR x∃ Γ |= ∆ ⇔ ,

, (Φ),u x
v zR Γ |= ∆, εz, if z∈U\ nm(Γ, ∆, (Φ))u

vR x∃ ;

∃|–) ∃хΦ, Γ |= ∆ ⇔ (Φ),x
zR Γ |= ∆, εz, if z∈U\ nm(Γ, ∆, ∃хΦ);

∃Rf–|) Γ |= ∆, (Φ)u
vR x∃ ⇔ Γ |= ∆, (Φ),u

vR x∃ ,
, (Φ),u x

v zR εz, if z∈U\ nm(Γ, ∆, (Φ))u
vR x∃ ;

∃f–|) Γ |= ∆, ∃хΦ ⇔ Γ |= ∆, ∃хΦ, (Φ),x
zR εz, if z∈U\ nm(Γ, ∆, ∃хΦ);

∃Rv–|) Γ |= ∆, (Φ),u
vR x∃ εy ⇔ Γ |= ∆, (Φ),u

vR x∃ ,
, (Φ),u x

v yR εy.

∃v–|) Γ |= ∆, ∃хΦ, εy ⇔ Γ |= ∆, ∃хΦ, (Φ),x
yR εy.

∃Rd–|) Γ |= ∆, (Φ)u
vR x∃ ⇔ εy, Γ |= ∆, (Φ)u

vR x∃ and Γ |= ∆, (Φ),u
vR x∃ ,

, (Φ),u x
v yR εy;

∃d–|) Γ |= ∆, ∃хΦ ⇔ εy, Γ |= ∆, ∃хΦ and Γ |= ∆, ∃хΦ, (Φ),x
yR εy.

Let us prove, for example, the property ∃R|– (∃|– is its special case) and the property ∃Rd–| (∃d–| is its special case) consider-
ing an arbitrary interpretation J.

Property ∃R|– .

⇒. If (Φ),u
vR x∃ Γ |= ∆ then T(ΓJ) ∩ T ((Φ))u

v JR x∃ ∩ F(∆J) = ∅. Since T ,
,((Φ))u x

v z JR ∩ F(εzJ) ⊆ T ((Φ))u
v JR x∃ , we have

T(ΓJ) ∩ F(∆J) ∩ T
,
,((Φ))u x

v z JR ∩ F(εzJ) = ∅. So, ,
, (Φ),u x

v zR Γ |= ∆, εz.

⇐. Let ,
, (Φ),u x

v zR Γ |= ∆, εz, then T(ΓA) ∩ T
,
,((Φ))u x

v z JR ∩ F(∆J) ∩ F(εzJ) = ∅. If we demonstrate that

T(ΓA) ∩ T ((Φ))u
v JR x∃ ∩ F(∆J) = ∅ then we obtain (Φ),u

vR x∃ Γ |= ∆.

Assume that T(ΓJ) ∩ T(,
, (Φ)u x

v z JR) ∩ F(∆J) ∩ F(εzJ) = ∅ and there exists d such that d∈T(ΓJ) ∩ T((Φ))u
v JR x∃ ∩ F(∆J). In

this case d∈T((Φ))u
v JR x∃), d∈T(ΓJ) and d∈F(∆J). By d∈T((Φ))u

v JR x∃ we have ()d u d v∇ a ∈T(∃хΦJ); this means that

()d u d v x a∇ ∇a a ∈T(ΦJ) for some a∈A. Since z∈U\nm(Γ, ∆, (Φ))u
vR x∃ we have ()d u d v x a z a∇ ∇ ∇a a a ∈T(ΦJ),

d∇zaa∈T(ΓJ), d∇zaa∈F(∆J). From this follows that d∇zaa∈T(,
, (Φ)u x

v z JR); by definition of εz we have d∇zaa∈F(εzJ),

therefore d∇zaa∈T(ΓJ) ∩ T(,
, (Φ)u x

v z JR) ∩ F(∆J) ∩ F(εzJ). This contradicts to the assumption that

T(ΓJ) ∩ T(,
, (Φ)u x

v z JR) ∩ F(∆J) ∩ F(εzJ) = ∅.

Property ∃Rd–|.

 12

⇒. If Γ |= ∆, (Φ)u
vR x∃ , then Γ |= ∆, ,

,(Φ), (Φ),εu u x
v v yR x R y∃ and εy, Γ |= ∆, (Φ)u

vR x∃ by the general property U).

⇐. Assume that εy, Γ |= ∆, (Φ)u
vR x∃ and Γ |= ∆, ,

,(Φ), (Φ),εu u x
v v yR x R y∃ , but Γ |≠ ∆, (Φ)u

vR x∃ . Then we have

T(ΓJ) ∩ F (∆J) ∩ F ((Φ))u
v JR x∃ ≠ ∅; this implies that there exists d such that d∈T(ΓJ) ∩ F(∆J) ∩ F ((Φ))u

v JR x∃ .

Two cases are possible: d(y)↑ and d(y)↓. If d(y)↑ then d∈T(εyJ); from this d∈T(εyJ) ∩ T(ΓJ) ∩ F(∆J) ∩ F ((Φ))u
v JR x∃ that

contradicts to εy, Γ |= ∆, (Φ)u
vR x∃ . If d(y)↓ then d∈F(εyJ). Let d(y) = a. By d∈F ((Φ))u

v JR x∃ we have

()d u d v∇ a ∈F(∃хΦJ). From this follows ()d u d v x b∇ ∇a a ∈F(ΦJ) for every b∈A, in particular,

()d u d v x a∇ ∇a a ∈F(ΦJ), therefore () ()d u d v x d y∇ ∇a a ∈F(ΦJ), thus, d∈F ,
,((Φ))u x

v y JR . So, d∈T(ΓJ) ∩ F(∆J) ∩

∩ F ((Φ))u
v JR x∃ ∩ F

,
,((Φ))u x

v y JR ∩ F(εyJ) that contradicts Γ |= ∆, ,
,(Φ), (Φ),εu u x

v v yR x R y∃ .

6 The sequent calculus for LQ

For the logic LQ we build a calculus of sequent type. Sequents are interpreted as sets of labeled (signed) formulas marked
by one of two symbols – |– or –|. Such sequents Σ are also denoted by |–Γ–|∆, where all formulas of Γ are labeled by the symbol
|– (such formulas are called T-formulas), of ∆ – by the symbol –| (F-formulas). This notation for sequents is similar to nota-
tions used in tableau calculi.

Semantic properties of relation |= have their syntactic analogues – sequent rules. These rules are the following.

Sequent rules for propositional compositions:

|–¬ |

|

Φ,Σ

Φ,Σ
−

− ¬
; –|¬ |

|

Φ,Σ

Φ,Σ
−

− ¬
.

|–∨ | |

|

Φ,Σ Ψ,Σ

Φ Ψ,Σ
− −

− ∨
; –|∨ | |

|

Φ, Ψ,Σ

Φ Ψ,Σ
− −

− ∨
.

Sequent rules for renomination compositions:

|–RT |
,

| ,

(Φ),Σ

(Φ),Σ

v
x

z v
z x

R

R

−

−
; –|RT |

,
| ,

(Φ),Σ

(Φ),Σ

v
x

z v
z x

R

R

−

−
.

|–ΦN |
,

| ,

(Φ),Σ

(Φ),Σ

v
u

y v
z u

R

R

−

−
, if у∈U\nm(Φ); –|ΦN |

,
| ,

(Φ),Σ

(Φ),Σ

v
u

y v
z u

R

R

−

−
, if у∈U\nm(Φ);

|–R∃R |
,

| ,

(Φ),Σ

(Φ),Σ

u
v

u x
v y

R x

R x

−

−

∃

∃
; –|R∃R |

,
| ,

(Φ),Σ

(Φ),Σ

u
v

u x
v y

R x

R x

−

−

∃

∃
.

|–R∃p |

|

Φ,Σ

(Φ),Σx
y

x

R x

−

−

∃

∃
; –|R∃p |

|

Φ,Σ

(Φ),Σx
y

x

R x

−

−

∃

∃
.

|–RR |

|

(Φ),Σ

((Φ)),Σ

v w
x y

v w
x y

R

R R

−

−

o
; –|RR |

|

(Φ),Σ

((Φ)),Σ

v w
x y

v w
x y

R

R R

−

−

o
.

|–R¬ |

|

(Φ),Σ

(Φ),Σ

v
x

v
x

R

R

−

−

¬

¬
; –|R¬ |

|

(Φ),Σ

(Φ),Σ

v
x

v
x

R

R

−

−

¬

¬
.

|–R∨ |

|

(Φ) (Ψ),Σ

(Φ Ψ),Σ

v v
x x

v
x

R R

R

−

−

∨

∨
; –|R∨ |

|

(Φ) (Ψ),Σ

(Φ Ψ),Σ

v v
x x

v
x

R R

R

−

−

∨

∨
.

Sequent rules for quantification compositions:

|–∃ | |

|

(Φ), ε ,Σ

Φ,Σ

x
zR z

x
− −

− ∃
, if z∈U\ nm(Σ, ∃xΦ). |–∃R

,
| , |

|

(Φ), ε ,Σ

(Φ),Σ

u x
v z

u
v

R z

R x

− −

− ∃
, if z∈U\ nm(Σ, (Φ))u

vR x∃ .

 13

–|∃f | | |

|

Φ, (Φ), ε ,Σ

Φ,Σ

x
zx R z

x
− − −

−

∃
∃

, if z∈U\ nm(Σ, ∃xΦ). –|∃Rf
,

| | , |

|

(Φ), (Φ), ε ,Σ

(Φ),Σ

u u x
v v z

u
v

R x R z

R x

− − −

−

∃

∃
, if z∈U\ nm(Σ, (Φ))u

vR x∃ .

–|∃v | | |

| |

Φ, (Φ), ε ,Σ

Φ, ε ,Σ

x
yx R y

x y
− − −

− −

∃
∃

. –|∃Rv
,

| | , |

| |

(Φ), (Φ), ε ,Σ

(Φ), ε ,Σ

u u x
v v y

u
v

R x R y

R x y

− − −

− −

∃

∃
.

–|∃d | | | | |

|

ε , Φ,Σ Φ, (Φ), ε ,Σ

Φ,Σ

x
yy x x R y

x
− − − − −

−

∃ ∃
∃

; –|∃Rd
,

| | | | , |

|

ε , (Φ),Σ (Φ), (Φ), ε ,Σ

(Φ),Σ

u u u x
v v v y

u
v

y R x R x R y

R x

− − − − −

−

∃ ∃

∃
.

Additional condition for –|∃f and –|∃Rf: predicate symbols εz do not belong Σ. Additional condition for –|∃d and –|∃Rd: εy,
εz do not belong to Σ but Σ has at least one symbol of the form εz.

Sequent calculus specified by the above written rules is denoted as Q-calculus.

To define derivability in Q-calculus we should first introduce the notion of closed sequent. Sequent Σ is closed, if there exists
Φ such that |–Φ∈Σ and –|Φ∈Σ. Consequently, if |–Γ–|∆ is closed then Γ |= ∆. Closed sequents are axioms of Q-calculus.

We also need an additional condition of closed sequents which is called unas-closeness. Given a sequent |–Γ–|∆ we de-
fine unas(|–Γ–|∆)= {u∈V | εu∈Γ}. It is assumed that for variables from unas(|–Γ–|∆) values are not assigned (for counter

models specified by a derivation tree [17]). Given |–Γ–|∆ and two formulas)(Φv
xR and)(Φs

yR we say that these formulas

are unas-equivalent if formal expressions obtained by deleting from v
x and sy variables from unas(|–Γ–|∆) coincide (exact

definition is given in [17]). A sequent |–Γ–|∆ is unas-closed if there exist two unas-equivalent formulas)(Φv
xR and)(Φs

yR

such that)(Φv
xR ∈Γ and)(Φs

yR ∈∆.

Derivation in the Q-calculus has the form of tree, the vertices of which are sequents. Such trees are called sequent trees.
A sequent tree is closed, if every its leaf is a closed sequent. A sequent Σ is derivable, if there is a closed sequent tree with
the root Σ. Sequent calculus is constructed in such a way that a sequent |–Γ–|∆ has a derivation if and only if Γ |= ∆. The deriva-

bility of a sequent for formulas of LQ is proved within ULε .

During construction of a sequent tree the following cases are possible:
1. All sequents on the leaves of the sequent tree are closed; we have a finite closed tree.
2. Procedure is not completed; we have a finite or infinite unclosed tree. Such tree has at least one path all vertices of

which are unclosed sequents. Such path is called unclosed.
Theorem (soundness). Let a sequent |–Γ–|∆ be derivable in Q-calculus. Then Γ |= ∆.
A proof is based on the semantic properties of the consequence relation presented in the previous section.
Theorem (completeness). Let Γ |= ∆. Then the sequent |–Γ–|∆ is derivable in Q-calculus.

A proof is based on the fact that a counter model for a sequent can be constructed if its derivation does not exist. A de-
tailed proof is lengthy one and is omitted here.

Q-calculus is a new simplified version of QG-calculus presented in [17]. QG-calculus was constructed for a special con-
sequence relation, but here we adopt a traditional definition of this relation.

Using the ideas presented in this paper we plan to construct in forthcoming papers calculi for composition-nominative
logics of quantifier-equational, function, and function-equational levels (see section 3) and give detailed proofs of their
soundness and completeness.

In our previous work we constructed calculi for different neoclassical logics and proved their soundness and complete-
ness [8]. Similar results were also proved for some classes of composition-nominative modal and temporal logics [8].

The obtained results can be used in logics for program reasoning.

7 Conclusions

In the paper we have advocated the idea that logics for program reasoning should be based directly on formal program
models. In this case program logics should reflect such program features as partiality, complex data structures, nondeter-
minism etc. Program-oriented logics developed in the paper are called composition-nominative program logics and are
algebra-based logics constructed in a semantic-syntactic style on the methodological basis that is common with program-

 14

ming; they can be considered as generalizations of traditional logics on classes of partial predicates that do not have fixed
arity. Such predicates, called quasiary predicates, are defined over partial variable assignments (partial data). We have
described the hierarchy of different logics of quasiary predicates. For the constructed logics some laws of classical logic
fail because of partiality of predicates and data. We have constructed a sequent calculus for a first-order composition-
nominative pure quasiary predicate logic which plays the central role in the logic hierarchy. We have proved soundness
and completeness of this calculus. The obtained results can be generalized for a number of more powerful logics. The pro-
posed methods can be useful for construction and investigation of logics for program reasoning.

Future work on the topic will include construction of sequent calculi for composition-nominative logics over hierarchic
nominative data. Hierarchic data permit to represent such complex structures as lists, stacks, arrays, etc.; thus, such logics
will be closer to program models with more rich data types. Also, prototypes of software systems for theorem proving in
composition-nominative logics should be developed.

References

1. Handbook of Logic in Computer Science, S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum (eds.), in 5 volumes, Oxford
Univ. Press, Oxford (1993–2001)

2. Handbook of Philosophical Logic, D.M. Gabbay, F. Guenthner (eds.), 2nd Edition, in 16 volumes, Springer (2001–2011)
3. Nikitchenko, N.(M.): A Composition Nominative Approach to Program Semantics. Technical Report IT−TR 1998-020, Tech-

nical University of Denmark, 103 p. (1998)
4. Nielson H.R., Nielson F.: Semantics with Applications: A Formal Introduction. John Wiley & Sons Inc (1992)
5. Winskel G.: The Formal Semantics of Programming Languages. MIT Press, Cambridge (1993)
6. Kleene, S. C.: Introduction to Metamathematics. Van Nostrand, New York (1952)
7. Nikitchenko M., Kryvolop A.: Semantic properties of monotone Floyd-Hoare logics. Bulletin of Taras Shevchenko National

University of Kyiv Series: Physics & Mathematics, 3, pp. 215– 222 (in Ukrainian) (2012)
8. Nikitchenko M., Shkilnyak S.: Mathematical logic and theory of algorithms. Publishing house of Taras Shevchenko National

University of Kyiv, Kyiv, 528 p. (In Ukrainian) (2008)
9. Blamey, S., Partial Logic, In: Gabbay D., Guenthner F. (Eds.), Handbook of Philosophical Logic, Volume III, D. Reidel Pub-

lishing Company, Dordrecht (1986)
10. Spivey M.: The Z Notation: A Reference Manual, 2nd edition. Prentice Hall International Series in Computer Science (1992)
11. Abrial J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press (1996)
12. Lamport L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley

(2002)
13. George C., Haxthausen A.E., Hughes S., et al.: The RAISE Development Method. Prentice Hall, London (1995)
14. Gurevich Y.: Evolving Algebras 1993: Lipari Guide, In: E. Börger (Ed.), Specification and Validation Methods. pp. 9-36, Ox-

ford University Press (1995)
15. Nikitchenko M., Tymofieiev V.: Satisfiability and Validity Problems in Many-sorted Composition-Nominative Pure Predicate

Logics. In: V. Ermolayev et al. (eds.): ICTERI 2012, CCIS 347, pp. 89–110. Springer, Heidelberg (2012).
16. Nikitchenko M.S., Tymofieiev V.G.: Satisfiability in Composition-Nominative Logics. Central European Journal of Computer

Science, vol. 2, issue 3, pp. 194-213 (2012)
17. Shkilniak S. S.: First-order logics of quasiary predicates. Kibernetika I Sistemnyi Analiz, 6, 32-50 (in Russian) (2010)

