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These notes form Lecture Notes of a short course which I will give
at 1st School on Universal Logic in Montreux.

They cannot be recommended for self studies because, although all
definitions and main ideas are included, there are no proofs and exam-
ples. I’m going to provide some of them during my lectures, leaving
easy ones as exercises.

In the first part we discuss some of the most important notions of
universal algebra. Then we concentrate on free algebras and varieties.
Our main goal is to prove Birkhoff’s Theorem, which says that a class
of similar algebras is a variety iff it is definable by a set of equations.
In the last part we say more about lattices and boolean algebras, as
these algebraic structures which are especially important for logic.

Universal algebra is sometimes seen as a special branch of model
theory, in which we are dealing with structures having operations only.
However, it is only one of aspects of universal algebra, which appears
to be a powerful tool in many areas. Universal algebra borrows tech-
niques and ideas from logic, lattice theory and category theory. The
connections between lattice theory and the general theory of algebras
are particularly strong.

We assume that the reader has the basic knowledge of mathematics.
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1 Algebras

We start with some very general ideas of universal algebra. Of course,
the fundamental notion is that of an algebra. In general, algebra can be
understood as a nonempty set together with some finitary operations
defined on it. Let us make it precise.

Let A be a set and n be a natural number. An operation of rank (or
arity) n on A is any total function from An into A. Thus, an operation
of rank n assigns an element of A to every n-tuple of elements of A.
Operations of rank 1 are called unary operations and those of rank 2
–binary operations. Operations of rank 0 on a nonempty set A have
only one value. We call them constants and identify them with their
values.

An algebra (or algebraic structure) is a pair A = 〈A,F 〉, where
A is a nonempty set, called the universe (or a carrier set) of A, and
F = {fA

t }t∈T is a sequence of operations on A. The operations from F
are called the basic (or fundamental) operations of the algebra A and T
is called the index set of A. The type of A is the function τ : T −→ N,
where τ(t) is equal to the rank of the operation fA

t . The type of A is
sometimes called the rank function of A. If T = {1, ..., k}, then the
type of A is usually written as the sequence 〈n1, ..., nk〉, where ni is the
arity of fA

i for i = 1, ..., k.
As a general convention we use calligraphic letters A, B,... to denote

algebras and the corresponding uppercase letters A, B,... to denote
their universes.

Algebras A and B are said to be similar iff they have the same rank
functions. Most of the time only algebras of the same similarity types
will be considered.

Algebras can be regarded as special instances of some more general
structures, so called relational structures, where instead of operations
we talk about relations but we skip this point.

Now, we introduce shortly some known algebras, which play an
especially important role in algebraic logic.
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1.1 Semigroups

A semigroup is a nonempty set endowed with an associative binary
operation, i.e. an algebra A = 〈A, ◦〉, where

(a ◦ b) ◦ c = a ◦ (b ◦ c)

for all a, b, c ∈ A.
Let us observe that a semigroup is an algebra of type 〈2〉.

1.2 Monoids

A monoid is an algebra A = 〈A, ◦, e〉, where 〈A, ◦〉 is a semigroup and
e is a constant such that

a ◦ e = a = e ◦ a

for every a ∈ A. Thus, a monoid is an algebra of type 〈2, 0〉.

1.3 Groups

A group is an algebra A = 〈A, ◦,−1 , e〉, where A = 〈A, ◦, e〉 is a monoid
and

a ◦ a−1 = e = a−1 ◦ a

for every a ∈ A.
A group is abelian if it additionally satisfies the commutativity law,

i.e. for all a, b ∈ A
a ◦ b = b ◦ a.

In this sense a group (and an abelian group, as well) is an algebra
of type 〈2, 1, 0〉.

1.4 Rings

A ring is an algebra A = 〈A, +, ·,−, 0〉 such that 〈A, +,−, 0〉 is an
abelian group, 〈A, ·〉 is a semigroup and for all a, b, c ∈ A:

a · (b + c) = (a · b) + (a · c);

(a + b) · c = (a · c) + (b · c).
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1.5 Lattices

Lattices are algebras of a bit different nature. They are essentially an
algebraic encoding of partially ordered sets which have the property
that any pair of elements of the ordered set has the least upper bound
and the greatest lower bound. We will discuss it more carefully in the
last part of the lecture. At the moment we define a lattice as an algebra
A = 〈A,∧,∨〉 of type 〈2, 2〉, where for all a, b ∈ A

a ∧ a = a; a ∨ a = a;

a ∧ b = b ∧ a; a ∨ b = b ∨ a;

a ∧ (b ∨ a) = a; a ∨ (b ∧ a) = a.

The operation ∧ is referred to as meet and the operation ∨ is called
join.

A lattice is distributive if it satisfies the distributivity laws:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

for all a, b, c ∈ A.

1.6 Boolean algebras

A boolean algebra is an algebra A = 〈A,∧,∨,−〉, where 〈A,∧,∨〉 is a
distributive lattice and − is a unary operation such that for all a, b ∈ A

−(a ∧ b) = (−a) ∨ (−b);

−(a ∨ b) = (−a) ∧ (−b);

−(−a) = a;

(−a ∧ a) ∨ b = b;

(−a ∨ a) ∧ b = b.

The unary operation ”−” is called a complementation. Let us no-
tice that, according to that definition, every boolean algebra is of type
〈2, 2, 1〉.
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2 Subalgebras, homomorphisms and di-

rect products

In this chapter we present main tools which are used to construct new
algebras from given ones.

2.1 Subalgebras

The simplest idea is just to take a ”part” of the given algebra, i.e. the
algebra which universe is a subset of the given one and which operations
are ”the same”. Let us formalize this intuitive notion.

Let f be an operation of rank n on a nonempty set A and let B ⊆
A. We say that B is closed with respect to f (or f preserves B) iff
f(a1, ..., an) ∈ B for all a1, ..., an ∈ B.

If f is a constant, this means that B is closed with respect to f iff
f ∈ B.

A subuniverse of an algebra A is a subset of A which is closed with
respect to every basic operation of A. B is a subalgebra of an algebra
A if B is an algebra similar to A, B is a nonempty subuniverse of A
and for every operation symbol ft of rank n in type τ of A

fB(a1, ..., an) = fA(a1, ..., an)

for all a1, ..., an ∈ B. Then fB is called the restriction of fA to B.
Let us denote by Sub(A) the set of all subuniverses of A. This set

is naturally ordered by inclusion. Moreover,

Theorem 1 Let A be an algebra and let S be a nonempty collection of
subuniverses of A. Then

⋂
S is a subuniverse of A.

If we consider an arbitrary subset X of the universe of an algebra
A then it is probably not a subuniverse of A. However, we can always
produce some subuniverses in which it is included. The subuniverse of
A generated by X ⊆ A is the set

⋂{B : X ⊆ B and B is a subuniverse of A}.
The subuniverse of A generated by X will be denoted by SgA(X).
When the context is obvious, the index A will be omitted. The existence
of SgA(X) for every X ⊆ A is ensured by Theorem 1.
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X is called the set of generators of the subalgebra SgA(X). Every
subalgebra has at least one set of generators. If there is a finite set of
generators of a subalgebra B, then B is said to be finitely generated.

SgA(X) can be regarded as a unary operation on the power set
P (A), which has the following properties:

Proposition 2 For every X, Y ∈ P (A):

1. X ⊆ SgA(X);

2. SgA(SgA(X)) = SgA(X);

3. If X ⊆ Y then SgA(X) ⊆ SgA(Y );

4. SgA(X) =
⋃{SgA(Z) : Z ⊆ X and Z is finite }.

Thus, the process of generating of subalgebras satisfies extensivity,
idempotency and monotonicity (properties 1.-3.) — all properties of a
closure operation. In other words, SgA can be regarded as a closure
operator on P (A).

Let us observe that the subuniverses of an algebra A are those
subsets of A that X = SgA(X).

Proposition 3 For every algebra A the algebraic structure Sub(A) =
〈Sub(A),∧,∨〉, where

B ∧ C = B ∩ C;

B ∨ C = SgA(B ∪ C)

for any subuniverses B and C of A, is a lattice, called the lattice of
subuniverses of A.

2.2 Homomorphisms

The notion of isomorphism is common not only in mathematics, but in
philosophy, as well. The idea is following: two objects are isomorphic
if they have the same structure. The notion of isomorphism is a special
case of a more general notion of homomorphism.

A homomorphism of two similar algebras can be understood as a
mapping which is compatible with all operations of the algebras.
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Let A and B be similar algebras of type τ : T −→ N. A mapping
h : A −→ B is a homomorphism from A to B iff for every t ∈ T , if
τ(t) = n, then for all a1, ...an ∈ A

h(fA
t (a1, ...an)) = fB

t (h(a1), ..., h(an)).

If h is a surjective homomorphism from A to B then B is called a
homomorphic image of A. An isomorphism is a homomorphism which
is both bijective and surjective. In that case the algebras A and B are
called isomorphic.

A homomorphism from A to A is called an endomorphism of A. An
endomorphism of A which is an isomorphism is called an automorphism
of A. Clearly, the identity mapping idA on the set A is always an
automorphism of the algebra A.

It is easy to see that the image B1 = h(A1) of a subuniverse A1

of the algebra A under the homomorphism h : A −→ B is a subuni-
verse of B and the preimage h−1(B2) = A2 of a subuniverse B2 of the
homomorphic image h(A) of the algebra A is a subuniverse of A.

2.3 Direct products

The constructions of subalgebras and homomorphic images do not lead
to more complicated algebras then we started with. The direct product
construction is different from this point of view.

Let us start, for simplicity, with the definition of the direct product
of only two algebras.

Let A and B be similar algebras of type τ : T −→ N. Their direct
productA×B is the algebra of the same similarity type with the universe
being A× B (the Cartesian product of the universes of A and B) and
operations defined as follows: if t ∈ T and τ(t) = n then

fA×B((a1, b1), ..., (an, bn)) = (fA(a1, ..., an), fB(b1, ..., bn))

for all pairs (ai, bi) ∈ A × B. In other words, we do the operations of
A× B coordinatewise.

To generalize this definition to any sequence of similar algebras we
need the notion of a choice function and of a direct product of sets.

Let 〈As〉s∈S be a system of sets. By a choice function we mean
a function α : S −→ ⋃

s∈S As such that α(s) ∈ As. The direct (or
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Cartesian) product Πs∈SAs of the system 〈As〉s∈S is the set of all choice
functions for the system. Every As is called a factor of this product,
the elements of Πs∈SAs are called S-tuples. If As = A for all s ∈ S we
write AS instead of Πs∈SAs.

For every s ∈ S we have s-th projection πs : Πs∈SAs −→ As such
that πs(α) = α(s) for each α ∈ Πs∈SAs.

Now, it is time to define the direct product of a system of similar
algebras.

Let 〈As〉s∈S be a system of algebras of the same type τ . The direct
product of the system is the algebra Πs∈SAs of type τ with universe
Πs∈SAs and such that, if f is an operation symbol of rank n in type τ ,
then

πs(f
Πs∈SAs(α1, ..., αn)) = fAs(α1(s), ..., αn(s))

for all α1, ..., αn ∈ Πs∈SAs.
If S = {1, ..., n} we will write A1 × ...×An instead of Πs∈SAs.

2.4 Varieties

Let K be a class of similar algebras. We shall denote:
H(K) — the class of all homomorphic images of algebras from K.
I(K) — the class of all isomorphic copies of algebras from K.
S(K) — the class of all isomorphic copies of subalgebras of algebras

from K.
P (K) — the class of all isomorphic copies of direct products of

systems of algebras from K.
It is said that K is closed under homomorphic images, taking sub-

algebras and constructing direct products if, respectively, H(K) ⊆ K;
S(K) ⊆ K and P (K) ⊆ K.

If a class K of similar algebras is closed under all these three oper-
ations then K is called a variety.

Let V (K) denotes the smallest variety containing a class K.

Theorem 4 V (K) = HSP (K).

Varieties are one of the central topics of universal algebra. As we are
going to show later, varieties are exactly the classes of similar algebras,
which can be defined by equations.
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3 Congruences and quotient algebras

Let us recall that an equivalence relation on a set A is any binary re-
lation which is reflexive, symmetric and transitive. Every equivalence
relation on a set A determines a partition of A into mutually exclu-
sive and jointly exhaustive subsets, called equivalence classes of the
equivalence relation.

A congruence relation θ on an algebra A of type τ is any equiv-
alence relation on the universe A which has the substitution property
for A, i.e. for every basic operation fA

t of the algebra A and for all
a1, ..., an, b1, ...bn ∈ A, if τ(t) = n and aiθbi for every i = 1, ..., n then

fA
t (a1, ..., an)θfA

t (b1, ..., bn).

If θ is a congruence on A, we shall denote
a|θ = {b ∈ A : aθb} — the congruence class of an element a ∈ A

modulo θ
A|θ = {a|θ : a ∈ A} — the set of all congruence classes of θ.
For every algebra A the trivial equivalence relations:

∆A = {(a, a) : a ∈ A} — the equality relation on A

and∇A = A×A — the total relation on A are congruence relations. An
algebra which has no congruence relations except trivial ones is called
simple.

As every congruence θ on A is an equivalence relation on A then
A|θ is a partition of A.

Let fA
t be a basic operation of rank n on an algebra A. Then we

can define on A|θ the corresponding operation f θ
t by

f θ
t (a1|θ, ..., an|θ) = fA

t (a1, ..., an)|θ,
since the substitution property provides that the operation f θ

t is well-
defined.

This means that for every congruence relation θ on an algebra A
of type τ , we can define the similar algebra A|θ, called the quotient
algebra, with the universe A|θ and basic operations f θ

t corresponding
to basic operations fA

t .
Let us observe that if h : A −→ B is a homomorphism of similar

algebras A and B then

ker h = {(a, b) : h(a) = h(b)}
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is a congruence relation on A. The congruence is called the kernel of
h. Thus, every homomorphism of A determines a congruence on A.

On the other hand, for every congruence θ on A there is a natural
homomorphism

h(a) = a|θ,
which maps A onto A|θ.

Both these observations lead to the homomorphism theorem:

Theorem 5 Let A and B be similar algebras, let h be a homomorphism
from A onto B, let θ be any congruence relation on A. Then

1. the mapping g : A −→ A|θ defined by g(a) = a|θ for every a ∈ A
is a surjective homomorphism from A onto A|θ whose kernel is
θ;

2. if θ = ker h, then there is a unique isomorphism f : A|θ −→ B
such that h = f ◦ g.

We shall denote by Con(A) the set of all congruences of an algebra
A. It is easy to notice that the intersection of any nonempty collection
of congruences on A is a congruence itself.

Let us define on Con(A) two binary operations ∧ and ∨ by

θ ∧ γ = θ ∩ γ;

θ ∨ γ =
⋂{φ ∈ Con(A) : θ, γ ⊆ φ}

for all θ, γ ∈ Con(A).

Theorem 6 1. Con(A) = 〈Con(A),∧,∨〉 is a lattice called the con-
gruence lattice of the algebra A.

2. Congruences of A are exactly these subuniverses of the algebra
A×A which are equivalence relations.
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3.1 Free algebras

Now, we are going to introduce notions of equations, algebras of terms
and free algebras, which are essential tools of universal algebra and its
applications.

Let K be a class of similar algebras and let A be an algebra of the
same type with the set of generators X. It is said that A is free for K
over X iff for every algebra B ∈ K any mapping g : X −→ B can be
extended to a homomorphism g∗ : A −→ B. If, in addition, A ∈ K then
we say that A is free in K over X. Then X is called a free generating
set of A and it is said that A is freely generated by X.

Lemma 7 1. If A is free for K over X then A is free over X for
the variety V (K) generated by K.

2. If A and B are free in K over X and Y , respectively, and |X| =
|Y | then A and B are isomorphic.

We are going to show that for every nontrivial variety V and every
nonempty set X there is an algebra free in V over X. We start with
constructing absolutely free algebras. An algebra is absolutely free if it
is free in a variety of all algebras of a given type.

We need an appropriate language to describe classes of algebras of
the same type by logical expressions. This formal language is built up
by variables which will be taken from some set called an alphabet. We
also need a set of operation symbols of type τ .

Let K be a class of all algebras of type τ : I −→ N, let X be a
nonempty set. The set of terms of type τ over X is the smallest set
T (X) of finite strings such that

1. X ⊆ T (X);

2. If i ∈ I and τ(i) = 0, then fi ∈ T (X);

3. If i ∈ I, τ(i) = n and t1, ..., tn ∈ T (X), then fi(t1, ..., tn) ∈ T (X).

In other words, T (X) is the set of words on the alphabet X∪{fi}i∈I∪
{(, )} fulfilling conditions 1.–3.. For convenience, we will assume that
X and {fi}i∈I are disjoint.
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The term algebra of type τ over a nonempty set X is the algebra
T (X) of type τ with universe T (X) and such that

fT (X)(t1, ..., tn) = f(t1, ..., tn)

for all t1, ..., tn ∈ T (X) and every operation symbol f of rank n in type
τ .

Theorem 8 For every τ : I −→ N and every nonempty set X the
term algebra T (X) is absolutely free algebra of type τ over X.

Thus, if A is an algebra of type τ , then A is a homomorphic image
of the term algebra T (A).

Theorem 9 Let K be a class of algebras of type τ , let X be a nonempty
set. Let us define

θ =
⋂{α ∈ Con(T (X)) : T (X)|α ∈ S(K)}.

Then T (X)|θ is free for V (K) over the set

X|θ = {x|θ : x ∈ X}.

We can notice that if all algebras in K are trivial (i.e. one-element
algebras) then T (X)|θ is also trivial. On the other hand, if K contains
at least one non-trivial algebra then we can find in V (K) an algebra
which is isomorphic to T (X)|θ and which is free for V (K) over X.

4 Birkhoff’s Theorem

We often assume that terms of type τ are the elements of one fixed
absolutely free algebra T (ω) with an infinite, countable free generating
set. Elements of this set are called variables and denoted x1, x2, ....

We can observe that, for every term t ∈ T (ω), there is the unique
smallest set of variables {x1, ..., xn} such that t ∈ T ({x1, ..., xn}). We
say then that variables x1, ...xn occur in the term t and we write t ∈ Tn.

Every term of type τ can be regarded as a name for one or more term
operations in every algebra of type τ . Strictly speaking, to every term
t ∈ Tn of type τ corresponds in an algebra A of type τ an operation tA

of rank n, which can be defined as follows:
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• if t = xi, then tA(a1, ..., an) = ai;

• if t = fi, where τ(fi) = 0 then tA(a1, ..., an) = fA
i ;

• if t = fi(t1, ..., tm), then

tA(a1, ..., an) = fA
i (tA1 (a1, ...an), ..., tAm(a1, ..., an)).

Now, we are ready to deal with the notion of equation.
An equation of type τ is a string of the form t ≈ s, where s and

t are terms of type τ . In other words, just as terms are taken to be
certain words over an alphabet, then we can regard equations as words
over the alphabet expanded by an additional letter ≈.

It is said that the n-tuple (a1, ..., an) ∈ An satisfies the equation
t ≈ s iff

tA(a1, ..., an) = sA(a1, ..., an).

We say that the equation t ≈ s is true in an algebra A iff all n-tuples
from An satisfy the equation (in other words, tA = sA). We denote this
by

A |= t ≈ s.

Sometimes, we say that t ≈ s is an identity in A or is valid in A.
If K is a class of algebras of type τ , then the equation t ≈ s of type

τ is true in the class K iff it is true in every algebra from K.
Let Σ be a set of equations of type τ . The class of all algebras

of type τ which satisfy all the equations in Σ is denoted by Mod(Σ).
Such a class of algebras is called an equational class and it is said that
Σ axiomatizes the class.

On the other hand, for any class K of similar algebras, we can define
Θ(K) — the set of all equations which are true in every algebra of K.
A set of equations Σ is called an equational theory iff Σ = Θ(K) for
some class K.

It can be observed that ModΘ and ΘMod are closure operators
on the class of algebras and on the set of equations of the same type,
respectively.

There is a one-to-one correspondence between varieties and equa-
tional theories of the same type. Now, we are ready to formulate the
very important Birkhoff’s Theorem, proved in 1935:
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Theorem 10 Let K be a class of similar algebras. Then

HSP (K) = Mod(Θ(K)).

In other words, K is a variety iff K is an equational class.

We can notice that all algebraic structures introduced in Chapter 1
were defined (axiomatized) by some sets of equations. It means that,
for example, all lattices form a variety of lattices and hence every sub-
algebra of a lattice is a lattice, every homomorphic image of a lattice
is a lattice and every direct product of a collection of lattices is a lat-
tice. The same concerns the variety of distributive lattices and the
variety of boolean algebras. Of course, the same occurs for varieties of
semigroups, monoids, groups, abelian groups and rings.

5 Some remarks on lattices

As we saw in previous Chapters, lattices often appear in algebraic in-
vestigations. In particular, Sub(A) and Con(A) are lattices for every
algebra A. It can be proved that the collection of all varieties of a
given type forms a lattice. Furthermore, it turns out that lattices play
an important role in the algebraic description of logic.

Up to now we have looked at lattices as algebras with two binary
operations: meet and join, axiomatized by some set of equations. How-
ever, lattices can also be viewed as a kind of posets.

Let us recall that a binary relation ≤ is a partial order on a non-
empty set A iff ≤ is reflexive, anti-symmetric and transitive, i.e.

1. x ≤ x;

2. x ≤ y and y ≤ x imply x = y;

3. x ≤ y and y ≤ z imply x ≤ z

for all x, y, z ∈ A.
Two elements of A which are in the relation ≤ are called comparable.
If ≤ is a partial order on A then 〈A,≤〉 is called a partially ordered

set or, simply, a poset.
Let 〈A,≤〉 be a poset and let X ⊆ A. An element a ∈ A is called an

upper (lower) bound of X iff x ≤ a (a ≤ x) for all x ∈ X. If a ∈ X and
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a is an upper (lower) bound of X then a is called the greatest (least)
element of X. There exists at most one greatest (least) element of a
given subset of a poset.

The least element (if there exists) in the set of upper bounds of
X ⊆ A is called the supremum of X and denoted sup X. Dually, the
greatest element of the set of all lower bounds of X is called the infimum
of X and denoted inf X.

If A = 〈A,∧,∨〉 is a lattice, then we can define a partial order on
A by

x ≤ y ⇐⇒ x ∧ y = x.

It can be proved that 〈A,≤〉 is a poset and for every x, y ∈ A, x ∧ y
and x ∨ y are, respectively, the infimum and the supremum of the set
{x, y}.

On the other hand, if 〈A,≤〉 is a poset in which every two-element
subset has the infimum and the supremum, then A = 〈A,∧,∨〉, where

x ∧ y = inf{x, y};
x ∨ y = sup{x, y}

is a lattice.
Thus, lattices can be viewed as a poset in which every finite subset

has the infimum and the supremum.
A lattice A is said to be complete iff for every subset X of A there

exist in A the infimum and the supremum of X. Obviously, any finite
lattice is complete. What is more, many lattices mentioned before, like
Sub(A) and Con(A), for any algebra A, or a lattice of all varieties of a
given type are complete lattices.

A poset 〈A,≤〉 is called a chain if for every x, y ∈ A either x ≤ y
or y ≤ x (i.e. every two elements of A are comparable). It is obvious
that every chain is a lattice and, what is more, a distributive lattice.

The earliest lattices to be investigated were distributive lattices.
Not only chains but lattices of all subsets of any given set, as well,
are distributive lattices. Moreover, it was shown by Funayama and
Nakayama that the congruence lattice of any lattice is distributive.

A lattice A is bounded if it has both the greatest and least elements.
They are usually denoted 1 and 0, respectively.

Let A be a bounded lattice with the greatest element 1 and the
least element 0. The element b ∈ A is called a complement of a ∈ A iff
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a ∧ b = 0 and a ∨ b = 1. The lattice A is said to be complemented iff
every element of A has a complement.

A complemented distributive lattice is called a boolean lattice.
Let us observe that in the definition of a boolean algebra we have

a basic unary operation of complementation which is defined by some
equations. Thus, although boolean algebras form a variety, boolean
lattices do not since a sublattice of a boolean lattice need not be a
boolean lattice.

One of the most important results concerning boolean algebras is
the following Representation Theorem, proved by Stone:

Theorem 11 Every boolean algebra is isomorphic to a field of sets.

There are many applications of lattices and boolean algebras to
logic. In particular, the Lindenbaum algebra of classical propositional
calculus can be shown (using some modifications) to be a boolean al-
gebra.
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