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Abstract

We investigate some well-known (and a few not-so-well-known) many-valued logics that have
a small number (3 or 4) of truth values. For some of them we complain that they do not
have any logical use (despite their perhaps having some intuitive semantic interest) and we
look at ways to add features so as to make them useful, while retaining their intuitive appeal.
At the end, we show some surprising results in the system FDE, and its relationships with
features of other logics. We close with some new examples of “synonymous logics.” An
Appendix contains a Fitch-style natural deduction system for our augmented FDE, and proofs
of soundness and completeness.

1 Introduction

This article is about some many-valued logics that have a relatively small number of truth values
– either three or four. This topic has its modern (and Western) start with the work of (Post, 1921;
Łukasiewicz, 1920; Łukasiewicz and Tarski, 1930), which slowly gained interest of other logicians
and saw an increase in writings during the 1930s (Wajsberg, 1931; Bochvar, 1939, 1943; Słupecki,
1936, 1939a,b; Kleene, 1938). But it remained somewhat of a niche enterprise until the early 1950s,
when two works brought the topic somewhat more into the “mainstream” of formal logic (Rosser
and Turquette, 1952; Kleene, 1952). The general survey book, Rescher (1969), brought the topic
of many-valued logics to the attention of a wider group within philosophy. Also in the 1960s there
was an interest in free logics, where singular terms were not presumed to designate existing entities
(Lambert, 1967; van Fraassen, 1966, 1969). The works of van Fraassen in particular promoted the
notion of “supervaluations”, which were seen (by some) as a way to retain two-valued logic while
allowing for a third value of a “gap” – no truth value at all. More recently there was a spate of
work . . . still continuing . . . that seems to have begun in the 1980s (da Costa, 1982; Urquhart, 1986;
Rozoner, 1989; Avron, 1986, 1991; Arieli and Avron, 1998; Bolc and Borowick, 1992).

Our purpose is not to recount the development of this type of many-valued logic in its general-
ity, but instead to focus on one specific group of these logics and show some surprising connections
amongst them. Of course, in the totality of the writings on the various logics, many – perhaps even
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most (although we think not all) – of these connections have been noted. We will remark on some of
these notices as we go. But we think these connections have not been put together in the same way
as we do. Most of the work on these logics with small numbers of truth values have focused on the
three-valued case, adding or comparing different connectives that different authors have proposed.
In contrast, we will start with a four-valued logic and add one connective to it. And using that
we will show how it might be applied to various three-valued logics. A further difference between
our approach and many of the others in the area is that we mostly concentrate on the truth-valued
semantic descriptions of the logics. Other approaches tend to emphasize boolean or de Morgan
lattice-theoretic approaches for their semantics. Related to this last, these other approaches tend
to develop a syntactic theory that supports their lattice-theoretic semantics by favouring sequent
calculus formulations or sometimes (especially in older works) a Hilbert-style axiomatic syntax.
Even ones that mention natural deduction are pretty much uniformly working within a Gentzen-
style formulation, whereas we provide pedagogically more attractive Fitch-style natural deduction
systems for all the logics under consideration (in an Appendix).

In particular, we try to show how one interesting four-valued logic can absorb one new con-
nective and that this can lead us to see many of the previously-noted connections in a new light,
namely, as the natural application of this connective to differing background logics. In this way
we think of our development as “bottom up”, starting with a particular logic and adding a spe-
cific connective. And that this can be extended in various ways to other specific logics. This is
in contrast to works that proceed in a “top down” manner by considering whole classes of logics
and considering all the possible connectives that might have some properties in common, and then
remarking that some of these combinations have been employed by previous authors. It may well
be that the conclusions reached by the two ways are identical, but we think ours might be found to
be more intuitive and memorable, and easier for students (and non-logicians) to grasp, even if not
so wide-reaching as what the top-down method might provide.

2 Truth-Values: Many, versus Gaps and Gluts

Everyone knows and loves the two “classical” truth-values, True and False. In “classical” logic1,
every sentence is either T or F but not both. Before getting to the detailed issues of this paper,
we pause to make four comments of a “philosophical nature” with the intent of setting the issues
aside. First, there is the long-standing issue of whether a logic contains sentences, statements, or
propositions. We take no position on this issue: what we think of as the logical point is neutral on
this issue. Related to this, perhaps, is the issue of whether a logic should be considered a set of its
theorems or defined instead by the valid inferences it accepts. This topic does mark a distinction
in the three-valued cases we consider, and we will remark on this as the occasion arises. Second,

1There are those (e.g., Priest, 2006) who claim that this common terminology of ‘classical’ betrays a bias and is in
fact incorrect as an account of the history of thought about logic. We won’t attempt to deal with this, and will just use
the common terminology. For a more comprehensive review of topics and issues relevant to truth values see Shramko
and Wansing (2017)
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there are logics – perhaps not “classical” ones – that would prefer to claim the objects of interest
are (e.g.) obligations, or commands, or questions, or ethical/epistemic items, rather than T and
F. (E.g., Rescher, 1966; Adler, 1980; Searle and Vanderveken, 1985; Vanderveken, 1990; Hale,
1993; Wiśniewski, 1995; Vranas, 2008. See Schroeder (2008) for a discussion of the logical issues
concerning non-truth-valued arguments.) Perhaps the items that have such values are not to be
considered ‘sentences’ but rather exhortations or promises or. . . ? If so, then we say that we are
restricting our attention to (declarative) sentences. Third, while ‘sentence’ seems appropriate for
propositional logic, some further accommodation is required for formulas of predicate logic. The
present paper is mostly concerned with propositional logic, and so we will simply use ‘sentence’.
And finally, there is the philosophical issue of whether T and F (and any other truth-values) should
be considered to be objects– perhaps existing in a “third realm” – or as properties of sentences.
Our view is that this distinction – which is maybe of considerable philosophical interest – does not
affect any of the claims we will be making, and so we just will pass over it in silence.

So, given that T and F are so revered, where does this leave many-valued logic? One intuition
that has been held by very many theorists is that, despite the fact that T and F are clearly excellent
truth-values, there simply are more than just the T and F truth values. Some of these theorists hold
that various phenomena show that there is another category beyond T and F: perhaps we should call
it I for Indefinite. Presupposition failures in a formula might determine that it is I; vagueness might
determine that a formula is I; the unactualized (as yet) future might determine that some formulas
are I; fictional discourse seems neither straightforwardly true or false, so perhaps sentences about
fictional objects also should designate a third truth-value, I. And there no doubt are other types of
formulas that could intuitively be thought to be “indeterminate”.

(1) a. The present Queen of Germany is happy.
b. That 45-year-old man is old.
c. There will be a Presidential impeachment in the next 30 years.
d. James Tiberius Kirk is captain of the starship Enterprise.

Some theorists, agreeing with the just-expressed intuition that the sentences in (1) are neither T nor
F, nonetheless wish to deny that they designate a third value. Rather, they say, such sentences lack
a truth-value (i.e., are neither T nor F; nor are they I, since they deny such a value). Such sentences
have no truth-value: they express a truth-value gap. And logics that have this understanding are
usually called “gap logics.”

Formally speaking, there is little difference between the two attitudes of expressing I or being a
gap (in a simple three-valued logic where there is just one non-classical truth value). In both cases
one wishes to know how to evaluate complex sentences that contain one of these types of sentences
as a part. That is, we need a way to express the truth-table-like properties of this third option. In
the remainder of this paper we will use N for this attitude, whether it is viewed as expressing I or
as being a gap. (The N can be viewed as expressing the notion “neither T nor F”, which is neutral
between expressing I or expressing a gap.) And we will call the logics generated with either one
of these understandings of N, “gap logics.”
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Gap logics – whether taken to allow for truth values other than T and F, or instead to allow for
some sentences not to have a truth value – are only one way to look at some recalcitrant natural
language cases. Other theorists point to some different phenomena in their justification of a third
truth value. The semantic paradoxes, such as the Liar Paradox (where the sentence “This sentence
is false” is false if it is true, and is true if it is false) suggest that some statements should be treated
as both true and false. It is difficult to deal with this paradox in a gap logic, because saying that
“This sentence is false” is neither true nor false leads immediately to the strengthened Liar Paradox:
“Either this sentence is false or else it is neither true nor false”. Here it seems that claiming that the
sentence expresses a gap leads to truth, while saying that it is true leads to falsity and saying that
it is false leads to truth. In contrast, to say that the sentence “This sentence is false” is both true
and false does not lead to this regress: The sentence “This sentence is either false or else is both
true and false” leads only to the conclusion that it is both true and false. This dialetheic theory –
that some sentences are both true and false – is called a “glut theory” because of the presence of
both truth values characterizing some sentences. The intermediate value, on this conception, can
be called B (for “both”), and we will use this. Again, there is perhaps a distinction between some
sentence’s having a third value B, or of partaking of both truth and falsity. Again we remain neutral
and employ B for this intermediate possibility.

There are also examples from naı̈ve set theory such as the Paradox of Well-Founded sets, the
Paradox of a Universal Set, Russell’s Paradox, and Richard’s Paradox (see Cantini (2014) for a
historical overview of these and others). A desire on the part of some theorists in the philosophy of
mathematics is to reinstate naı̈ve set theory and use it in the development of mathematics, instead
of (for example) Zermelo-Frankel set theory. Such theorists perhaps will feel encouraged in their
belief that the glut-style of resolution of the Liar Paradox might be usable in the case of these other
set theoretic paradoxes, and that naı̈ve set theory can once again be used.

Various theorists have pointed out that even vagueness needn’t be viewed as missing a truth-
value; it is equally plausible to think of vagueness as manifesting both the positive character and its
absence. A middle-height person can be seen as both short and tall, equally as plausibly as being
neither short nor tall. (See Hyde (1997); Beall and Colyvan (2001); Hyde and Colyvan (2008).) As
well, certain psychological studies seem to indicate that the “dialetheic answer” is more common
in general conversation than the “gap” answer, at least in a wide variety of cases (see Alxatib and
Pelletier (2011); Ripley (2011) for studies that examine people’s answers to such cases).

There are also other categories of examples that have been discussed in philosophy over the
ages: Can God make a stone so heavy that He can’t lift it? Perhaps the answer is, “Well, yes and
no.” There are cases of vague predicates such as green and religion, e.g., an object can be both
green and not green, and a belief system such as Theravada Buddhism or Marxism can be both
a religion and not a religion. There are legal systems that are inconsistent, in which an action is
both legal and illegal. In the physical world, there is a point when a person is walking through a
doorway at which the person is both in and not in the room. And so on. As a result, the glut theory
has its share of advocates.

A way to bring the gap and glut views of the truth values under the same conceptual roof is to
think of the method that assigns a truth value to formulas as a relation rather than a function. A
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function, by definition, assigns exactly one value to a formula – either T or F or, in the context of
our 3-valued logics, it may also assign B or N. A relation, however, can assign more than one value:
we may now think that there are exactly two truth values, T and F, but the assignment relation can
assign subsets of {T,F}. A gap logic allows assignment of {T}, {F}, and ∅. A glut logic allows {T},
{F}, and {T,F}.

But both the gap and the glut logics seem to have difficulties of a logical nature that we will
examine in §5.

3 K3 and LP: The Basic 3-Valued Logics

In all of the 3-valued logics we consider, the 3-valued matrices for ∧,∨,¬ are the same, except for
what the “third value” is called: in K3 (Kleene, 1938; Kleene, 1952, §64) we call it N but in LP
(Asenjo, 1966; Asenjo and Tamburino, 1975; Priest, 1979) we call it B.

One way to understand why the K3 truth values for these connectives are correctly given in the
following tables is to think of N as meaning “has one of the values T or F, but I don’t know which
one”. In this understanding, a negation of N would also have to have the value N; a disjunction
with one disjunct valued N and the other T would as a whole be T. . . but if one were valued N and
the other F, then as a whole it would have to be N. Similar considerations will show that the ∧
truth table is also in accord with this understanding of the N value. (This interpretation of the truth
values presumes that one pays no attention to the interaction of the connectives: (p ∧ ¬p) might
seem to be false and (p ∨ ¬p) seem true, but that’s because of the interaction of two connectives
and their arguments.)

On the other hand, if the middle value is understood as being both true and false as in LP, we
will still get those same truth tables, with only a change of letter from N to B: negating something
that is both true and false will yield something that is both false and true. If a disjunction had
one disjunct valued B and the other T, then the entire disjunction would be valued T. But if that
second disjunct were valued F instead, then the entire disjunction would be valued B. Similar
considerations will show that the ∧ truth table is also in accord with this understanding of the B
value.

∧ T N/B F
T T N/B F

N/B N/B N/B F
F F F F

∨ T N/B F
T T T T

N/B T N/B N/B
F T N/B F

¬

T F
N/B N/B

F T

Despite the apparent identity of K3 and LP (other than the mere change of names of N and B),
the two logics are in fact different by virtue of their differing accounts of what semantic values are
to be considered as privileged. That is, which values are to be the designated values for the logic
– those values that are semantically said to be the ones that the logic is concerned to manifest in a
positive light. In both logics this positivity results from the value(s) that exhibit truth, or at least
some degree of it: but in K3 only T has that property whereas in LP both T and B manifest some
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degree of truth. And therefore LP treats the semantically privileged values – the designated values
– to be both T and B, while in K3 the only designated value is T.

Although both K3 and LP have no formula whose value is always T, LP (unlike K3) does have
formulas whose semantic value is always designated. In fact, the class of propositional LP formulas
that are designated is identical to that of propositional classical 2-valued logic, a fact to which we
return in §5.

Note that these truth tables give the classical values for compound formulas with only classically-
valued components, and give the intermediate value for formulas all of whose components have that
value. Thus neither logic is functionally complete, that is, neither logic can describe all the pos-
sible relations that their semantics allows to hold among their truth-values. For, no truth function
giving a non-classical (classical) value for uniformly classical (non-classical) arguments can be
represented by them.

4 FDE: A Four-Valued Logic

The logic FDE was described in (Belnap, 1992) and (Dunn, 1976). It is a four-valued system: the
values are T, F, B, and N. . . the four values we have already encountered (although the intuitive
semantics behind these values, as given by Belnap, are perhaps somewhat different than we en-
countered above). K3 and LP agree with each other (and with classical logic) as regards the values
T and F, so in combining them as a way to form FDE, it is natural to identify FDE’s T and F with
those of K3 and LP. FDE then agrees with K3 about N: agrees that it is not a designated value, and
agrees on the values of combinations of N with T and F. FDE also agrees with LP about B: agrees
that it is a designated value, and agrees on the values of combinations of B with T and F. Neither
of the three-valued logics allow combinations of B with N, of course, so these combinations need
a bit more thought. The choice made is perhaps most easily described by using the “relational”
account of truth assignment, where the four values are sets of the two classical values: T={T},
B={T,F}, N={ }, F={F} (where of course the bold-face values stand for FDE values and the normal
text values stand for classical ones!). A given classical value then goes into the set of values of
a compound formula just in case the component formulas have values containing classical values
which, by the classical rules, would yield the given value for the compound. (This way of thinking
also makes the designation status of B and N seem natural: an FDE value is designated just in case
it, thought of as a set, contains the classical value T.)

This treatment of the four values and their ordering is perhaps best visualized by the diagram:
T

B N

F
The four values form a lattice, with the value of a conjunction (disjunction) being the meet (join) of
the values of its conjuncts (disjuncts), and with negation interpreted as inverting the lattice order.
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Pictorially, a join operation of two elements finds the least upper bound of the ordering that contains
both values while a meet operation finds their greatest lower bound. In the diagram, the only novel
features of these operations occurs when the values B and N are joined or meeted. Their join is T
while their meet is F.

More formally, we take the basic truth-tables for ∧,∨ and ¬ to be straightforwardly taken from
K3 and LP, for the values that do not involve only B and N together. For those values we interpolate,
using meet and join, as given in the truth tables in Table 1 for the FDE connectives.

ϕ ψ ¬ϕ (ϕ ∧ ψ) (ϕ ∨ ψ)
T T F T T
T B B T
T N N T
T F F T
B T B B T
B B B B
B N F T
B F F B
N T N N T
N B F T
N N N N
N F F N
F T T F T
F B F B
F N F N
F F F F

Table 1: Four-valued truth-tables for the basic connectives of FDE

Most, if not all, of the concerns mentioned in §3 as motivating interest in LP or K3 can be
elaborated in ways to motivate the use of FDE. A number of authors have argued specifically for
the appropriateness of FDE for some applications: for example, Belnap 1992, which first appeared
as two articles in 1977, has argued that FDE is appropriately used in connection with some kinds
of data base (or better: knowledge base) systems, where different sources of data entry might
contain contradictory information, and where some information is missing but the knowledge base
is required nevertheless to be able to reason about such cases; and Camp (2002) has argued that it
might be useful in argumentation where the references of our interlocutors’ (or our own!) terms are
indeterminate, and for that reason can generate statements that are N and others that are B. Arieli
and Avron (2017) refer to a number of other areas, such as knowledge-base integration, fuzzy logic,
relevance logics, self-reference, and preferential modelling.
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5 What’s Wrong with K3, LP, and FDE

We start with K3 and LP. Note that the ∧,∨,¬ truth-functions always yield a N (or a B) whenever
all the input values are N (or B, respectively). This means that there are no formulas that always
take the value T. In these logics, those three truth functions are all of the primitive functions, and
so that same fact also implies that not every truth function is definable in K3 (or LP). And if ϕ’s
being semantically valid means that ϕ always takes the value T for all input values, as it does in
K3, then there are no semantically valid formulas in K3.

And given that these are all the primitive truth functions, then the only plausible candidate for
being a conditional in these logics comes by way of the classical definition, (ϕ ⊃ ψ) =d f (¬ϕ ∨ ψ),
whose truth tables in K3 and LP are given in Table 2:

ϕ ψ (ϕ ⊃K3 ψ) (ϕ ⊃LP ψ)
T T T T
T N/B N B
T F F F

N/B T T T
N/B N/B N B
N/B F N B

F T T T
F N/B T T
F F T T

Table 2: Conditionals available in K3 and LP, using the classical definition

The only difference between ⊃K3 and ⊃LP is that in K3 the “third value” is understood as
indicating a truth-value gap, i.e., as neither T nor F, whereas whereas in LP it is understood as
indicating a truth-value glut, i.e., as both T and F.

One notes that the rule of inference, Modus Ponens (MP), (ϕ ⊃K3 ψ), ϕ � ψ, is a valid rule in
K3: if both premises are T, then the conclusion will also be, as can be seen from the truth table
for ⊃K3 in Table 2. Despite this, the statement of MP, ((ϕ ⊃K3 ψ) ∧ ϕ) ⊃K3 ψ, does not always
exhibit the value T (since no formula of K3 always takes the value T). Thus the deduction theorem
[if Γ, ϕ � ψ then Γ � (ϕ ⊃K3 ψ)] does not hold for K3. Matters are different for the logic LP: the
rule of MP is invalid, as can be seen by making ϕ be B and ψ be F. In that case both (ϕ ⊃LP ψ)
and ϕ have designated values (both are B), but yet the conclusion, ψ, is F. On the other hand, the
statement of MP, ((ϕ ⊃LP ψ) ∧ ϕ) ⊃LP ψ, is always designated (either T or B). (One can see that
the counterexample to the rule MP makes both conjuncts of the antecedent be B and hence that
antecedent is B. But a B antecedent with a F consequent is evaluated B. Hence the statement is
designated.)

Not having a conditional that enforces MP (not having what is often called “a detachable condi-
tional”) is a serious drawback. It means that the language cannot state what inferences it takes to be
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designated, or at least, if it does claim some conditional to be designated then it cannot apply MP to
that conditional, even when the antecedent is designated. This has the consequence that one cannot
state what inferences can be chained together, that is, the formula (((ϕ ⊃ ψ) ∧ (ψ ⊃ θ)) ⊃ (ϕ ⊃ θ))
is not designated in K3 (suppose all its parts are N); and the argument ((ϕ ⊃ ψ)∧ (ψ ⊃ θ)) � (ϕ ⊃ θ)
is invalid in LP (let JϕK = T, JψK = B, JθK = F). In essence, these sorts of shortcomings mean that
no reasoning can be carried out within such logics – although perhaps some reasoning about the
logics can be carried out.2

As we remarked above, the theorems of LP are identical to those of classical logic – LP does
nothing more than divide up the classical notion of truth into two parts: the “true-only” and the
“true-and-also-false”. As both types of truth are designated values in the logic, the theorems of
the two are the same, and hence LP is not different from classical logic so far as logical truth
goes. Where it does differ is in the class of valid rules of inference, as we have noted. A different
description applies to K3: whereas the deduction theorem holds and modus ponens fails for LP, in
K3 the deduction theorem fails but modus ponens holds.

So, it seems that both K3 and LP are not very useful as guides to reasoning, despite their
apparent (to some) virtues in accounting for intuitive semantic values of sentences that exhibit
some troublesome features (such as vagueness or semantic paradox). After discussing the logical
state of K3 and LP, and the disappointing properties of the conditional operators available in them,
Soloman Feferman put it:

Multiplying such examples, I conclude that nothing like sustained ordinary reasoning
can be carried on in either logic. (Feferman, 1984, p. 264, italics in original.)

On the topic of non-classical logics more generally, van Fraassen (1969) expresses the worry in
more picturesque terminology. New logics, he worries, along with “the appearance of wonderful
new ‘logical’ connectives, and of rules of ‘deduction’ resembling the prescriptions to be read in
The Key of Solomon” will make “standard logic texts read like witches’ grimoires”.

Turning now to FDE, it is clearly a merger of K3 and LP, so shares all their shortcomings.
Since FDE includes the feature of K3 that there are no truth functions from all-atomics-having-the-
value-N to any other truth value, it follows that there are no formulas that always take one or the
other of the designated values T or B. And similarly, FDE is functionally incomplete since there
is no formula that will yield one of T, B, or F if all its atomic letters are assigned N. (A similar
situation holds holds for LP and FDE: Although LP does have formulas that always take designated
values, there is no truth function in FDE that can generate T, N, or F, when all the atomic letters are
assigned B.) Since these logics fail to be functionally complete, there are features of the semantic
model that cannot be expressed in the language – such as that there are possible functions that
take sets of N-valued (or B-valued) atomics to classically-valued formulas. Surely a logic has a
weakness if it can’t express what its semantic metatheory says is a feature of its domain. And so
far, all the logics we have discussed contain this weakness. Like K3 and LP, FDE does not have

2For example, perhaps the pair of inferences in one or another of these logics is that ϕ � ψ is semantically valid, and
so is ψ � θ. And therefore the inference ϕ � θ must also be valid. But note that this would be a judgement made about
the logic and not within the logic. The logic itself can’t be used in this or any equivalent way.
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a usable conditional and hence there is no sense in which it is a logic that one can reason with.
Although Feferman (1984) didn’t include FDE in his disparaging remarks we just quoted, since
FDE is simply a “gluing together ” of K3 and LP – the two logics Feferman did complain about –
it is clear that he would have held the same opinion about FDE.

We wish to show that matters are not so dire as Feferman seems to think for the FDE-related
logics we are investigating. And so we now turn to possible ways to fix these shortcomings. We
start with the topic of adding an appropriate conditional; later we consider the issue of functional
completeness.

6 An FDE Fix?

Various researchers have added conditionals to K3 and LP, with the thought of being able to do
“sustained reasoning” in these logics. We might mention here Łukaseiewicz’s conditional added
to K33, with the intent of accommodating “future contingents.” This yields a logic that is usually
called Ł3. And conditionals can be added to LP with the intent of allowing reasoning to take place
in the context of dialetheism. For this we will look here at the more closely at the logics RM3 and
a logic we will call LP→ that are generated by adding different conditionals to LP.4

But rather than starting with these 3-valued logics and try to extend one or another of the condi-
tionals to the 4-valued FDE, our strategy here will be to start with the general case of FDE, propose
our conditional → for it, which generates the logic FDE→, and to look at how that conditional
behaves when applied to the K3 and LP subparts of FDE. We find many interesting and unexpected
connections with previous work.5

Here is the conditional we propose: we call it the “classical material implication” and we
symbolize it→.6

This conditional has been suggested before – indeed, (Omori and Wansing, 2017, p. 1036) say it
is “the most well-known, as well as well-studied, implication”. Be that as it may, we propose to
further investigate the resulting FDE→ logic, as well as some further possible additions to it. But
prior to that we will look at extending this logic by restricting the possible truth-values to three.

In §4 we remarked that the natural understanding of FDE’s semantic values is that the des-
ignated ones are T and B, while the undesignated ones are N and F. As can be seen in Table 3,
any conditional statement that takes a designated value has the feature that if its antecedent is also
designated, then its consequent will be. It can also be seen that if the values are restricted to the

3Although of course this is not the historical reason he came up with his conditional, since he didn’t have K3 before
him at the time.

4Tedder (2015) uses the name A3, in honour of Avron (1991), for what we call LP→. Since we are comparing a
number of logics, we prefer our more systematic nomenclature of adding the relevant conditional as a superscript.

5For a survey of work done on describing and enhancing FDE, including various possibilities of adding conditionals,
see (Omori and Wansing, 2017). This is also an overview of the work on FDE that is reported in this special issue of
Studia Logica, titled “40 Years of FDE”.

6(Omori and Wansing, 2017, p. 10) call it an extensional operator, saying it can be “seen as a material implication
defined in terms of exclusion negation and disjunction”.
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→ T B N F
T T B N F
B T B N F
N T T T T
F T T T T

Jϕ→ ψK = JψK, if JϕK is designated
= T, otherwise

Table 3: Truth matrix for our conditional,→.

classical T and F, then the conditional mirrors the classical ⊃. We also obtain the truth table for the
classical ⊃ if we look at this with blurred vision, so that the two designated values blur into one and
the two undesignated values similarly coalesce, showing that the valid formulas (i.e., those taking
a designated value on every assignment of truth values to their atoms) and inferences (i.e., those
preserving designation on every assignment) are precisely those of the pure ⊃ fragment of classical
logic. Combined with a similarly blurred view of the truth tables for ∧ and ∨ we can extend this
observation to formulas having these connectives as well as →, and we can extend it further to
quantifiers if we think of them as generalized conjunctions and disjunctions. Thus:

Proposition 1. For positive formulas (i.e., those not containing ¬), the valid formulas and infer-
ences of FDE→ are exactly those of classical logic.

The 4-valued logic FDE→ has two obvious 3-valued extensions, defined semantically by re-
stricting the set of truth values allowed: K3→ defined by reference to {T,N,F} and LP→ defined by
reference to {T,B,F}. These logics result from the addition of a conditional connective,→, defined
by the relevant rows/columns of Table 3, to the conditional-free logics K3 and LP.

6.1 FDE→

The classical nature of the conditional in FDE→ makes it a much more pleasant item to work
with than most previously proposed conditionals in many-valued logics: something like sustained
ordinary reasoning can be carried out in FDE→and in its 3-valued extensions.7 However, although
the positive logic is completely classical, there are some surprises in the interaction of → with
negation. One unpleasant one is that the principle of Contraposition fails:

2 (ϕ→ ψ)→ (¬ψ→ ¬ϕ)

if JϕK = T and JψK = B, then Jϕ → ψK takes the designated value B, but J¬ψ → ¬ϕK is F. And
also, if JϕK = N and JψK = F, then Jϕ → ψK=T, but J¬ψ → ¬ϕK= F. Since a counterexample can

7(Omori and Wansing, 2017, p.1036) mention three other conditionals that each have their own interesting prop-
erties, although these properties detract from the classical nature of these conditionals. Sutcliffe et al. (2018) give a
different four-valued conditional using some “intuitive” considerations of “meaning”, and employ an automated theo-
rem proving system to contrast the different conclusions that can be drawn from each.
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be obtained using either of the nonclassical values, Contraposition is invalid not only in FDE→ but
also in both of its 3-valued extensions K3→ and LP→.

We can, of course, define a new conditional connective for which Contraposition holds:

(ϕ⇒ ψ) =d f ((ϕ→ ψ) ∧ (¬ψ→ ¬ϕ))

This is a useful connective!8 We will make use of the corresponding biconditional below, in §7.

(ϕ⇔ ψ) =d f ((ϕ⇒ ψ) ∧ (ψ⇒ ϕ))

takes a designated value if and only if JϕK = JψK. (Note that J(ϕ ⇔ ψ)K=B if JϕK = JψK = B, and
=T if JϕK and JψK have the same one of the other three values.) As a result, it supports a principle
of Substitution: formulas of the form

(ϕ⇔ ψ)→ ((· · ·ϕ · · · )⇔ (· · ·ψ · · · ))

are valid. In contrast, the biconditional similarly defined in terms of our basic conditional yields
a designated value just in case either both of its terms have designated values or both have undes-
ignated values. As a result, it does not license substitution: If ϕ and ψ have different designated
values, and also if they have different undesignated values, (ϕ ↔ ψ) will have a designated value,
but (¬ϕ ↔ ¬ψ) will not. However,↔ can be added to the list of “positive” connectives, ∧,∨,→,
whose logic is exactly classical. We will return to the usefulness of⇒ for FDE in §7.

On the other hand, the⇒ connective has certain undesirable features which militate against its
adoption as the basic conditional operator of a logic designed for use. Principles analogous to some
of the structural rules of (Gentzen, 1934), easily derivable by the conventional natural deduction
rules for the conditional, fail for it. Some fail for⇒ in K3→, and others fail for⇒ in LP→, as we
shall see.

6.2 On the K3→ Side

The truth tables for→ and⇒ differ on only one of the nine lines for K3→, as indicated in Table 4:
if JϕK=N and JψK=F, then Jϕ→ ψK=T but Jϕ⇒ ψK=N.

This is enough, however, to invalidate the principle of Contraction for⇒:

2 (ϕ⇒ (ϕ⇒ ψ))⇒ (ϕ⇒ ψ)

This should be old news! The derived truth table for the⇒ of K3→ in Table 4 is exactly that of the
conditional of Łukasiewicz’s 3-valued logic, for which Contraction failure is familiar. Since the
interpretations of the other connectives are the same for K3→and Ł3, we have

8(Omori and Wansing, 2017, p.1036) cite this conditional as one of their four “interesting” conditionals that could
be added to FDE.
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ϕ ψ (ϕ→ ψ) (ϕ⇒ ψ)
T T T T
T N N N
T F F F
N T T T
N N T T
N F T N ⇐

F T T T
F N T T
F F T T

Table 4: Comparison of two conditionals in K3→

Proposition 2. Łukasiewicz’s 3-valued logic Ł3 is faithfully interpretable in K3→.

In fact, we have the converse as well9: our→ can be defined in Ł3 by

(ϕ→ ψ) =d f (ϕ⇒ (ϕ⇒ ψ)),

and hence

Proposition 3. K3→ is faithfully interpretable in Ł3.

K3→ and Ł3 can thus be seen as, in effect, alternative formulations of a single logic (see further
discussion in Section 8).10 We think the classical nature of → (other than some of its interaction
with ¬, such as the failure of contraposition) makes it easier to use than⇒. It also has a straight-
forward natural deduction formulation (see Appendix I), and we recommend translation into K3→

to anyone interested in actually proving theorems in Ł3.

6.3 On the LP→ Side

Now looking at the logic with truth values {T,B,F}, we see in Table 5 that⇒ again differs from→
on only one of the nine lines: but this time it is the line where JϕK=T and JψK=B. Here Jϕ→ ψK=B
but Jϕ⇒ ψK=F.
This difference in truth table is enough to invalidate the principle of Thinning:

9(Nelson, 1959) should be credited with the observations of the failure of contraposition, its brute force restoration,
and contraction failure in his system of constructible falsity. . . which is essentially the addition of intuitionistic impli-
cation to K3. What our observation adds to this is that these phenomena do not depend on the intuitionistic nature of
Nelson’s implication, but arise already in the 3-valued and 4-valued logics. It might also be noted, as pointed out in
Kamide 2017, p. 1168 fn1, that viewing Nelson’s work as a three- four-valued logic, or as a paraconsistent logic, is
rather a later imposition on his actual axiomatic system. It was not introduced with a many-valued semantics at all.

10Mutual faithful interpretability is not in general sufficient to establish identity of logics, but the particulars of our
cases will add on what further is required, as we discuss in §8.
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ϕ ψ (ϕ→ ψ) (ϕ⇒ ψ)
T T T T
T B B F ⇐

T F F F
B T T T
B B B B
B F F F
F T T T
F B T T
F F T T

Table 5: Comparison of two conditionals in LP

2 ϕ⇒ (ψ⇒ ϕ)
For, if JϕK = B and JψK = T, then Jψ⇒ ϕK and hence Jϕ⇒ (ψ⇒ ϕ)K will be F. As Tedder (2015)
notes11,⇒ in LP→ has exactly the truth table of the logic RM3 (and, since RM3 is a cousin of the
relevance family of logics, failure of Thinning in it is just what one would expect). RM3 and LP
agree on {∧,∨,¬}, and so – as in the analogous case on the K3 side – we have

Proposition 4. RM3 can be faithfully interpreted in LP→.

Again, the converse is also true: → can be defined in terms of⇒ in RM3 by

(ϕ→ ψ) =d f ((ϕ⇒ ψ) ∨ ψ)

Hence

Proposition 5. LP→ can be faithfully interpreted in RM3.

So in the same sense as with Ł3 and K3→, RM3 and LP→ can be thought of as alternative formu-
lations of a single logic (again, see discussion in Section 8), and again, we think adoption of →
as primitive is likely to be more convenient. For, although the metamathematical study of RM3
has been fruitful in the study of relevance logics, it seems to us that LP→ is likely to be a more
convenient to use in the task of actually trying to prove theorems of RM3 – particularly in light of
Tedder’s 2015 employment of it in formulating mathematically interesting axiomatic theories.

6.4 Putting the Two Sides Together

6.4.1 About M→

Given that K3 and LP are obtained semantically from FDE by adding different conditions on valu-
ations, and syntactically by adding different rules, one might incautiously conjecture that the FDE

11Citing Avron (1991).
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consequence relation is simply the intersection of the K3 and LP relations. Not so: (ϕ∧¬ϕ) implies
(ψ∨¬ψ) in both 3-valued logics, but not in FDE.12 There is thus a fifth logic in the neighbourhood,
which is sometimes13 called Mingle and which we will unimaginatively call M.

CL

LP K3

M

FDE
It is characterized semantically as the set of inferences preserving designation on every FDE

valuation which does not assign B to one formula and N to another, and syntactically by adding
the above-mentioned inference as a general rule to a formulation of FDE. Since M→ contains→,
it of course has a deduction theorem: if Γ, ϕ ` ψ then Γ ` (ϕ→ ψ). The structural rules of thinning
and contraction fail for ⇒ : counterexamples to thinning need only gluts (it fails in RM3), and
counterexamples to contraction require only gaps (it fails in Ł3). So both fail in M→ – but not in
the same model! We note in passing that this means that the following formula is a theorem:

(C ⇒ (D⇒ C)) ∨ ((A⇒ (A⇒ B))⇒ (A⇒ B))

Note that this is a provable disjunction with no variable in common between the two disjuncts,
yet neither disjunct by itself is provable!14 Some might think this shows that M→ is silly and
unreasonable.

We too think M seems like a rather silly logic (why should the presence of a single truth-value
glut rule out the existence of any truth-value gaps, or vice versa?15), but record here that M→ can
be formulated in the obvious way, and that our completeness proof in Appendix II for FDE→, using
the natural deduction system of Appendix I, extends without difficulty to cover it.

Proposition 6. M→ and M⇒ are mutually faithfully interpretable in each other
12In K3, (ϕ ∧ ¬ϕ) is never designated, so (ϕ ∧ ¬ϕ) � (ψ ∨ ¬ψ) will (vacuously) hold; in LP, (ψ ∨ ¬ψ) is always

designated, so (ϕ ∧ ¬ϕ) � (ψ ∨ ¬ψ) always holds. However, in FDE, if JϕK = B then (ϕ ∧ ¬ϕ) = B and hence is
designated; but if JψK = N, then J(ψ ∨ ¬ψ)K = N and is undesignated. So (ϕ ∧ ¬ϕ) 2 (ψ ∨ ¬ψ).

13See (Humberstone, 2011, p. 334) for a discussion of Mingle in the context of relevant logic and why the present
logic might also be named Mingle.

14The (very lengthy) proof in our Fitch-system of the Appendix, uses our “classicalizing” principle (in Appendix 1)
that a conclusion follows tout court if it follows from φ and also from φ → ψ, for any instances of φ and ψ. The actual
proof requires two further embeddings of different instances of the classicalizing rule. It is quite a tedious proof!

15Well, perhaps there is someone who is convinced that a three-valued logic is the right response to the paradoxes,
but is not sure whether it should go the glut route or the gap route. But this person is sure that only one of these ways
will be correct and that having both would be philosophically distasteful.
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6.4.2 About FDE→

We have not explored the behaviour of ⇒ in FDE→, and, in contrast to the situation with the 3-
valued logics, do not know of a historically proposed equivalent for it.16 Contraction and Thinning
will, of course, both fail for⇒ in the 4-valued logic. With no relevant insight, we have resorted to
construction of truth tables to verify that→ can be recovered from⇒ in the 4-valued environment
by the double-barrelled definition.

(ϕ→ ψ) =d f ((ϕ⇒ (ϕ⇒ ψ)) ∨ ψ)

Proposition 7. FDE→ and FDE⇒ are mutually faithfully interpretable in each other

Thus showing, as in the 3-valued extensions of FDE, that adding either of the 4-valued conditionals
→ or⇒ to basic FDE generates the identical logic as adding the other.

7 More and Less Drastic Expansions

7.1 Functional Completeness by Adding Constants and Parametric Operators

In classical two-valued logic, a standard way to prove functional completeness (i.e., that every two-
valued truth function can be described by a given set of connectives. . . we will restrict our attention
to the functions ∧,∨,¬) is to show that any arbitrary truth table can be described by a formula
using those connectives. Using these connectives, we can generate a formula in disjunctive normal
form. In textbooks this is normally “proved” by providing an example that seems clearly to be
generalizable, rather like this: Our example will have three atomic letters, p, q, r. There are two
cases. Either the resulting truth table has at least one T value or it doesn’t. In the latter case the
formula is a contradiction and that truth table can be described by the formula (p ∧ ¬p ∧ q ∧ r).
Otherwise the example truth table will look something like Table 6. From this table we construct
a formula as follows. For each row where the value is T – as for example in the first row – write
a formula that “describes” the values of the three atomic arguments. If an atomic argument is T
in that row, simply use the letter itself; if it is F in that row, use its negation; and conjoin the
results. So, the formula for the first row would be (p ∧ q ∧ r). The formula for the fifth row would
be (¬p ∧ q ∧ r), etc. After constructing these “descriptive” conjunctions, the final formula is the
disjunction of them all. In this example case, it is

(p ∧ q ∧ r) ∨ (¬p ∧ q ∧ r) ∨ (¬p ∧ q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ ¬r)
This formula clearly has the same truth table as that of Table 6. And the student is now expected to
generalize this example.

A generalization of this method can be employed for many-valued logics, as described in
Rosser and Turquette (1952). We might extend the language of FDE→ by adding constants (0-
ary operators that always take a fixed value) for each of the four truth values. We use the names t,

16(Omori and Wansing, 2017, p. 1036) list it as one of four possible conditionals to add to FDE, alongside →, but
our result shows that this does not yield a different logic.
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p q r
T T T T (p ∧ q ∧ r)
T T F F
T F T F
T F F F
F T T T (¬p ∧ q ∧ r)
F T F T (¬p ∧ q ∧ ¬r)
F F T F
F F F T (¬p ∧ ¬q ∧ ¬r)

Table 6: Example of 2-valued Functional Completeness

b, n, and f for these four operators whose fixed values are T, B, N, and F respectively. We can also
add four unary operators, Jt(φ), Jb(φ), Jn(φ), Jf(φ), whose values are T just in case the argument φ
takes the value t, b, n, f, respectively, and otherwise takes the value F. In two-valued logic, ¬ takes
the place of Jf, while an unadorned formula takes the place of Jt. But now that we have further
values, we need a more generalized set of parametric operators. In a somewhat similar fashion, the
“descriptive formula” indicates that it is T in that row, in the two-valued case, and not having a
descriptive formula for a row means that it is F in that row. Now that we have further truth values
we require the four constants t, b, n, f.

Even a simple example in FDE will be difficult to display: with three atomic letters we have 43

= 64 rows of a truth table. And each row needs to be “described”, not just the T rows. As in the
two-valued case, each row is a conjunction, and if we have just three atomic letters, there are just
three conjuncts. Each row of the truth table in the FDE case will have the form

va vb vc | vk

where the va, vb, vc are the values of the atomics p, q, r respectively and the vk is the value assigned
to the to-be-described formula in that row. The “descriptive formula” for that row is

(Jva(p) ∧ Jvb(q) ∧ Jvc(r) ∧ k)
where k is the constant that names the value vk. The resultant formula that has the identical truth
table as the arbitrary example given, is the disjunction of all the descriptive formulas for every row
(not just the t rows, as in the two-valued case). Again, the example is supposed to be generalized
and cover any possible FDE truth table. Since the method uses only the ∧,∨,¬ of basic FDE
plus the four constants and four parametric operators, this shows that such a logic is functionally
complete for the given four-valued semantics.

Note that this method works for any of the logics under discussion, assuming that the appropri-
ate J-operators and constants for the relevant truth values are present. (And also note that ¬ is not
required in any of them.)

We turn our attention now to other ways to generate functional completeness in our logics of
interest. That was a topic of interest in the 1930s, especially for the 3-valued logics, and especially
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for the particular case of Łukasiewicz Ł3. (See in particular Wajsberg (1931), who added to Ł3 a
one-place operator that yielded the value N no matter what the truth value of the formula that was
its argument.) However we will follow a different path, and show how to alter the Rosser-Turquette
method just employed, by using features of our four-valued FDE→; we do this by showing how to
define or otherwise simplify the J-operators and truth-value constants in some different ways.

7.2 Some Definitional Possibilities

As we remarked above, adding→ to FDE, yielding FDE→, does not yield a functionally complete
logic. But we can use this modified FDE that contains our→ to lessen the requirement of needing
all eight of the new primitives we added to basic FDE in the previous subsection.

We start by retaining the four truth-constants, t,b,n, f as a primitive. Now consider the formula
(ϕ→ f)

If JϕK is designated, i.e., is either T or B, then this formula is will be F. And if JϕK is undesignated,
i.e., is either N or F, then this formula is will be T, as can be checked by truth tables.

Recall from §6.1 that we used → and ¬ to define ⇒, and then used ⇒ and ∧ to define ⇔.
Finally, recall also that J(ϕ ⇔ ψ)K is designated if and only if JϕK = JψK. Putting this together, the
biconditional (ϕ⇔ t) defines Jt(ϕ): it takes the value T if JϕK = T, and takes the value F otherwise.
Similarly, (ϕ⇔ b), (ϕ⇔ n) and (ϕ⇔ f) define Jb(ϕ), Jn(ϕ), Jf(ϕ) respectively.

So, by adding the→ conditional to FDE, we have thus eliminated four of the eight primitives
we added to FDE in the previous subsection by using the Rosser-Turquette method. We could also
eliminate one or the other of t and f, since JtK = J¬fK and JfK = J¬tK. (However, this would make
¬ be a required primitive, whereas the Rosser-Turquette method did not employ ¬.)

7.3 Employing Second-Order Logic

In Hazen and Pelletier (2018) it is shown that a Second Order logic based on LP was surprisingly
weak. This was due to the limited expressive power of the language with no conditional operator.
In contrast, FDE→, with its classical conditional, is expressively strong enough to provide a full
base for classical Second Order Logic. Using propositional quantification, we can define a falsum
propositional constant:

f = ∀p(p)

(Obviously set/property quantification would do as well: f = ∀X∀x(X(x)).) This constant and the
conditional give us in effect an ersatz “classical” negation: the conditional (ϕ → f) takes the value
F when JϕK is designated and the value T when JϕK is undesignated, as we remarked in the previous
subsection. Call a predicate (monadic or relational) classical just in case no atomic formula in it,
on any assignment to the individual variables, takes either of the intermediate truth values N or B.
N can be ruled out by the First Order formula ∀x(ψ(x) ∨ ¬ψ(x)), which will not take a designated
value if the predicate yields the value N for any individual in the domain. The possibility that ψ
somewhere yields the value B, however, cannot be excluded by a purely First Order formula: if
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ψ yields B for every individual, then every First Order formula in which ψ is the only bit of non-
logical vocabulary occurring will have the designated value B. Using our ersatz classical negation,
however, we can say ((∃x(ψ(x) ∧ ¬ψ(x)) → f). Finally, then, the classicality of a predicate, can
by expressed by the conjunction of these two formulas. And so we may then interpret classical
Second Order Logic in Second Order FDE→ by simply restricting all Second Order quantifiers to
classical predicates.

Coming back down to the fragment of Second Order FDE→ with only propositional quantifi-
cation, we can define the other three propositional constants. Verum is easy:

t = ∃p(p)

Defining a constant for B is perhaps less obvious. ∃p(p ∧ ¬p) would work in the 3-valued logics
LP and LP→, but when N is also available it fails: JpK = B gives Jp ∧ ¬pK = B, JpK = N gives
Jp∧¬pK = N, and the existential quantification will have as value the join of these in the truth-value
lattice: T!17 However, Jp→ pK=B when JpK=B, and is T otherwise, so we may define

b = ∀p(p→ p)

Defining a constant for N in FDE→is altogether harder (though ∃p(p ∧ ¬p) would work in the
3-valued logic K3→). Indeed, it can be shown that

Theorem 1. No definiens with, in prenex form, a single block of propositional quantifiers (all
universal or all existential) is able to define a constant for N.

Proof. Consider a purely propositional formula of FDE→. An assignment giving the value B to
all of its atomic variables will give the formula the value B. Thus the set of values assumed by
the formula on different assignments to its propositional variables will include B. The value of the
sentence formed by binding its variables by existential quantifiers will be the lattice join of the
values in this set, and so must be either B or T. The value of the sentence formed by binding its
variables by universal quantifiers will be the lattice meet of the values in this set, and so must be
either B or F. In neither case will the quantified formula serve as a definiens for the constant n. �

The propositional constant n can, however, be defined by a sentence of more complicated
quantificational structure. Recall that J(ϕ⇔ ψ)K is designated if and only if JϕK = JψK. It can thus
be thought of as expressing identity of truth value. The conditional ((ϕ ⇔ t) → f), then, says that
the value of ϕ is not T, and similarly for ((ϕ⇔ b)→ f) and ((ϕ⇔ f)→ f). So we may define n by

n =d f ∃q(((q⇔ t)→ f) ∧ ((q⇔ b)→ f) ∧ ((q⇔ f)→ f) ∧ q)

For, if q in the matrix is assigned one of the values T, B, or F, one of the first three conjuncts, and so
the whole, will have the value F. If JqK=N, however, the first three conjuncts will all have the value

17The existentially quantified formula takes the join of the values N, B, and F. . . which, perhaps surprisingly, is T.
One doesn’t expect a disjunction to take a higher value than any of its disjuncts, but in this case, because the four values
are not linearly ordered, it does.
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T, but the fourth, q, and so the whole conjunction, will have the value N. Since the join of F and N
is N, the value of the full, quantified, sentence is N. By extracting the quantifiers concealed in the
propositional constants in the contained biconditionals in the right order, we can put the definiens
into prenex form with only one alternation of quantifiers (so, it will be Σ2).

8 Synonymous Logics

In Pelletier (1984); Pelletier and Urquhart (2003), the notion of “translational equivalence” was
introduced and defined, and used to describe a concept of synonymous logics. This concept was
intended to describe cases where two logic systems were “really the same system” despite having
different formulations, different vocabulary, and possibly having such different formulation that it
would not be at all obvious that the logics were “really the same.” This notion was shown to be
different from various other conceptions in the literature, such as mutual interpretability and having
exact translations between logics, which were shown to be weaker; other notions, such as having
identical definitional extensions, were shown to be sufficient conditions for synonymy.18 Two log-
ics are mutually interpretable iff valid formulas and valid arguments get mapped to valid formulas
and arguments in each other. They are faithfully interpretable if in addition invalid formulas and
arguments get mapped to invalid formulas and arguments. Note that the definitions of mutual in-
terpretability and even mutual faithful interpretability do not in any obvious way imply synonymy
of the logics, although the counterexamples generally seem very complex and “artificial”. (See
French 2010, Chapter 3, for a categorization of the different types of interpretability.)

Two logics,L1 andL2, are translationally equivalent if and only if there are translation schemes
t1 from L1 into L2 and t2 from L2 into L1 such that

1. if `L1 ϕ then `L2 ϕ
t1

2. if `L2 ϕ then `L1 ϕ
t2

3. for any formula ϕ in L1, (ϕt1 )t2 is equivalent to ϕ (in L1)

4. for any formula ϕ in L2, (ϕt2 )t1 is equivalent to ϕ (in L2)19

18Further aspects of the notion, as well as formal details, are in Pelletier and Urquhart (2003).
19In Pelletier and Urquhart (2003) it was assumed that the logics in question had a “biconditional equivalence connec-

tive” and the third and fourth conditions were expressed in terms of the biconditional being a theorem in the appropriate
logics. In the context of that paper, the logics were classical except for modal operators, and so there were always such
equivalence operators in each logic. In the present context, we cannot assume that the biconditionals of the various
logics will operate in the same way, and so we envisage checking the “equivalent to” conditions semantically, by simply
looking at the relevant truth tables. Although defining translational equivalence in full generality for non-truth-functional
logics is quite difficult (as Nelson 1959, p.216, remarks), since the only logics we are discussing have a finite number
of truth values, the relevant kind of equivalence of formulas is that of having (on each assignment) the same truth value.
And in fact, our logics allow us to define a connective, ⇔, which can reasonably be taken to express the relation of
having the same truth value.
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We are in a position to show some new results of synonymity of logics. Since the languages
of our different logics are identical except for their conditionals (and biconditionals), we will
employ the following translations for all the portions of the logics involved except the differing
(bi)conditionals in the logics:

• For ϕ an atomic sentence, (ϕ)t is ϕ

• For negated formulas, (¬ϕ)t is ¬(ϕ)t

• If ◦ is any binary operator other than a (bi)conditional, (ϕ ◦ ψ)t is ((ϕ)t ◦ (ψ)t)

In §6.2 we showed that systems K3→ and Ł3 could be faithfully interpreted in each other by
means of the following “translations”. It should be understood that these translation functions apply
recursively, to any embedded formulas that also have the relevant conditionals.20 (As for example
in Case 2 of the proof of Theorem 2.)

• t1 : (ϕ→ ψ)t1 =d f ((ϕ)t1 ⇒ ((ϕ)t1 ⇒ (ψ)t1 ))

• t2 : (ϕ⇒ ψ)t2 =d f (((ϕ)t2 → (ψ)t2 ) ∧ ((¬ψ)t2 → (¬ϕ)t2 ))

We can now prove a stronger result. The earlier proof of mutual interpretability showed that each of
K3→ (whose conditional is→) and Ł3 (whose conditional is⇒) could define a formula that had the
same truth table as the conditional of the other (and since all other connectives were identical, that
is all that is required to establish mutual interpretability). What is further needed to show synonymy
is that applying the definition in one logic to generate the conditional of the other logic yields a
result such that we can apply the other logic’s definition to it and generate a formula semantically
equivalent to the conditional in the first logic. (And vice versa, of course). That is to say: where t1

and t2 are the translations we used in §6.2, we need to be able to prove

• ((ϕ⇒ ψ)t2 )t1 is semantically equivalent to (ϕ⇒ ψ) in Ł3

• ((ϕ→ ψ)t1 )t2 is semantically equivalent to (ϕ→ ψ) in K3→

Theorem 2. K3→ and Ł3 are synonymous logics

Proof
Case 1:

((ϕ⇒ ψ)t2 )t1 = [(ϕ→ ψ) ∧ (¬ψ→ ¬ϕ)]t1 (1)

= ((ϕ⇒ (ϕ⇒ ψ)) ∧ (¬ψ⇒ (¬ψ⇒ ¬ϕ)) (2)

= (ϕ⇒ ψ) (3)

20This follows from what (Kuhn and Weatherson, 2018) call the “compositionality” requirement of (Pelletier and
Urquhart, 2003)’s definition of translational equivalence.
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Case 2:

((ϕ→ ψ)t1 )t2 = (ϕ⇒ (ϕ⇒ ψ))t2 (4)

= (ϕ→ (ϕ⇒ ψ)t2 ) ∧ (¬(ϕ⇒ ψ)t2 → ¬ϕ) (5)

= [[ϕ→ (((ϕ→ ψ) ∧ (¬ψ→ ϕ))] ∧ [¬((ϕ→ ψ) ∧ (¬ψ→ ¬ϕ))→ ¬ϕ]] (6)

= (ϕ→ ψ) (7)

It can be seen from the truth table in Table 7 that formulas (2) and (3) are semantically the same,
and from the truth table in Table 8 that formulas (6) and (7) are semantically the same.

ϕ ψ ϕ⇒ ψ ¬ψ⇒ ¬ϕ [(ϕ⇒ (ϕ⇒ ψ))) ∧ (¬ψ⇒ (¬ψ⇒ ¬ϕ))]

T T T T T T T
T N N T N N T
T F F T F F T
N T T F T T T
N N T T T T T
N F N N T N N
F T T T T T T
F N T T T T T
F F T T T T T

Table 7: ϕ⇒ ψ of Ł3 (left column) is equivalent to its “double translation” (the ∧ column)

ϕ ψ ϕ→ ψ ¬ψ→ ¬ϕ [[ϕ→ (((ϕ→ ψ) ∧ (¬ψ→ ϕ))] ∧ [¬((ϕ→ ψ) ∧ (¬ψ→ ¬ϕ))→ ¬ϕ]]

T T T T T T T
T N N N N N T
T F F F F F F
N T T T T T T
N N T T T T T
N F T N T T T
F T T T T T T
F N T T T T T
F F T T T T T

Table 8: ϕ→ ψ of K3→ (left column) is equivalent to its “double translation” (the ∧ column)
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In §6.3 we showed that systems LP→ and RM3 could be faithfully interpreted in each other by
means of the following “translations”.

• t1 : (ϕ→ ψ)t1 =d f (((ϕ)t1 ⇒ (ψ)t1 ) ∨ (ψ)t1 )

• t2 : (ϕ⇒ ψ)t2 =d f (((ϕ)t2 → (ψ)t2 ) ∧ ((¬ψ)t2 → (¬ϕ)t2 ))

Again we can now prove a stronger result. The earlier proof of mutual interpretability showed that
each of LP→ (whose conditional is→) and RM3 (whose conditional is⇒) could define a formula
that had the same truth table as the conditional of the other (and since all other connectives were
identical, that is all that is required to establish mutual interpretability). What is further needed to
show synonymy is that applying the definition in one logic to generate the conditional of the other
logic yields a result such that we can apply the other logic’s definition to it and generate a formula
semantically equivalent to the conditional in the first logic. (And vice versa, of course). That is to
say: where t1 and t2 are the translations we used in §6.3, we need to be able to prove

• ((ϕ⇒ ψ)t2 )t1 is semantically equivalent to (ϕ⇒ ψ) in RM3

• ((ϕ→ ψ)t1 )t2 is semantically equivalent to (ϕ→ ψ) in LP→

Theorem 3. LP→ and RM3 are synonymous logics

Proof
Case 1:

((ϕ⇒ ψ)t2 )t1 = [(ϕ→ ψ) ∧ (¬ψ→ ¬ϕ)]t1 (8)

= (((ϕ⇒ ψ) ∨ ψ) ∧ ((¬ψ⇒ ¬ϕ) ∨ ¬ϕ)) (9)

= (ϕ⇒ ψ) (10)

Case 2:

((ϕ→ ψ)t1 )t2 = ((ϕ⇒ ψ) ∨ ψ)t2 (11)

= (((ϕ→ ψ) ∧ (¬ψ→ ¬ϕ)) ∨ ψ) (12)

= (ϕ→ ψ) (13)

It can be seen from the truth table in Table 9 that formulas (9) and (10) are semantically the same,
and from the truth table in Table 10 that formulas (12) and (13) are semantically the same.

These instances of synonymous logics strike us as both somewhat unexpected and also as
“cleaner” versions of synonymy of logics than the one(s) displayed in (Pelletier and Urquhart,
2003), which employed a propositional constant in one of the logics. As remarked in that article
(following De Bouvère, 1965), two logics are translationally equivalent in this way if they have
a common definitional extension. Note then that for each of our pairs of synonymous logics, the
appropriate 3-valued logic with two conditional operators,→ and⇒, is a definitional extension of
both members of the pair. And thus the two logics are translationally equivalent to each other.

Lastly, and as mentioned in §6.4.2, we can state a final theorem concerning the addition of→
or⇒ to FDE itself:
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ϕ ψ ϕ→ ψ ¬ψ→ ¬ϕ ϕ⇒ ψ [(ϕ→ ψ) ∧ (¬ψ→ ¬ϕ)] [((ϕ⇒ ψ) ∨ ψ) ∧ ((¬ψ⇒ ¬ϕ) ∨ ¬ϕ)]

T T T T T T T T T
T B B F F F B F F
T F F F F F F F F
B T T T T T T T T
B B B B B B B B B
B F F B F F F F B
F T T T T T T T T
F B T T T T T T T
F F T T T T T T T

Table 9: ϕ⇒ ψ of RM3 (third column) is equivalent to its “double translation” (the ∧ column)

ϕ ψ ϕ→ ψ ¬ψ→ ¬ϕ ϕ⇒ ψ [(ϕ→ ψ) ∧ (¬ψ→ ¬ϕ)] [((ϕ→ ψ) ∧ (¬ψ→ ¬ϕ)) ∨ ψ]

T T T T T T T
T B B F F F B
T F F F F F F
B T T T T T T
B B B B B B B
B F F B F F F
F T T T T T T
F B T T T T T
F F T T T T T

Table 10: ϕ→ ψ of LP→ (left column) is equivalent to its “double translation” (the rightmost column)

Theorem 4. FDE→and FDE⇒ are synonymous logics.

9 Concluding Remarks

We have discussed a family of logics that are related to FDE, showing how they are related to each
other and also to some other logics that have populated the literature (such as Ł3 and RM3). We
also identified a 4-valued logic M→ that is stronger than FDE→ but weaker than each of the two
3-valued extensions of FDE→. (That is, weaker than both K3→ and LP→.) Surprisingly, perhaps,
we are also able to show some new and “cleaner” examples of synonymous logics (in the sense of
Pelletier and Urquhart, 2003). Deductive systems for the various logics, as well as soundness and
completeness proofs are in the Appendices.
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Competes rendus des séances de la Société et des Lettres de Varsovie, Classe III 32, 102–110.
English translation in Studia Logica, v. 30, pp. 153–157, 1972.

Słupecki, J. (1939b). Proof of the axiomatizability of full many-valued systems of propositional
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Appendix I: Deductive Systems

One direction that has been taken in the literature is the development of “super-Belnap” logics, that
is, extensions of FDE. See Rivieccio (2012); Přenosil (2017) for examples and elaboration. One
development in this tradition is the generation of proof systems for such logics, which have pretty
much been in the tradition of Gentzen-style sequent calculi, usually with multiple conclusion se-
quents although some single conclusion systems have also been given. Sometimes this is paired
with a comparison of a Hilbert-style axiomatic development of the same logics, and sometimes a
natural deduction system of the Gentzen type is presented. We think that various natural deduction
systems of the Jaśkowski style are preferable for a number of “philosophical” reasons (many re-
counted in Hazen and Pelletier, 2014) as well as for pedagogical clarity, and in particular we will
present a Fitch-style version (Fitch, 1952) of the Jaśkowski method.

Tedder (2014) contains a Hilbert-style axiomatic system, and (more interestingly) a (multiple
succedent) sequent calculus for LP→. (Tedder, 2015, presents only the Hilbert system.) The se-
quent calculus closely follows (Gentzen, 1934)’s system LP for classical logic, with the following
changes:

(i) Gentzen’s rules for negation (“change the side and change the sign”) are dropped,

(ii) double negation rules are added, allowing a sequent to be followed by one like it except that
one of its formulas–on either side–is doubly negated,

(iii) negative rules for conjunction and disjunction (and, analogously, for quantifiers) are added,
allowing the insertion of a negated conjunction or disjunction under the same conditions as
allow the insertion of its De Morgan equivalent disjunction or conjunction,

(iv) negative conditional rules are added, allowing ¬(ϕ → ψ) to be inserted under the same con-
ditions as (ϕ ∧ ¬ψ), and

(v) Gentzen’s identity axioms, ϕ ` ϕ, are supplemented with “Gap excluding” axioms of the form
` ϕ,¬ϕ.

Cut elimination is proven by a straightforward adaptation of Gentzen’s method.
Dropping the Gap exclusion axioms from this system yields a sequent calculus for FDE→.

Replacing them with “Glut excluding axioms” of the form ϕ,¬ϕ ` gives one for K3→, and replacing
them instead with Mingle axioms of the form ϕ,¬ϕ ` ψ,¬ψ gives one for M→.

A natural deduction system, either in the style of Gentzen’s NK or in the Fitch-style presenta-
tion of many American textbooks, for any of these logics will include

(i) the standard Introduction and Elimination rules for ∧,∨,→ (and for the quantifiers in a First
Order system),

(ii) Double Negation Introduction and Elimination rues, by which a formula and its double nega-
tion may each be inferred from the other,
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(iii) Negative Introduction and Elimination rules for ∧ and ∨ (and, analogously for the quanti-
fiers), as in (Fitch, 1952) enforcing the interdeducibility of negated conjunctions and disjunc-
tions with their De Morgan equivalent disjunctions and conjunctions,

(iv) Negative Introduction and Elimination rules for→, enforcing the interdeducibility of ¬(ϕ→
ψ) with (ϕ ∧ ¬ψ).

As is well-known, the standard Introduction and Elimination rules for→ give only the Intuitionistic
logic of the conditional, so these have to be supplemented with some classicizing postulate to give
the full classical logic of the positive connectives. Addition of Peirce’s Law, (((ϕ → ψ) → ϕ) →
ϕ) as an axiom scheme is one conventional way of doing this, but an alternative axiom scheme,
(ϕ ∨ (ϕ → ψ)) seems a good deal easier to work with, and can be converted into a moderately
elegant natural deduction rule:

(v) A formula, χ, may be asserted if it is derivable both from the hypothesis ϕ and from the
hypothesis (ϕ→ ψ).

These rules suffice for the propositional logic FDE→. A First Order system would have to
supplement the standard and negative Introduction and Elimination Rules for the quantifiers with
something to guarantee the “constant domain” inference

∀x(ϕ ∨ Ψ(x)) ` (ϕ ∨ ∀x(Ψ(x))

(see Fitch 1952, §21.31.) Systems for the other logics are obtained by adding rules to this basic
system:

1) Ex falso quodlibet (“explosion”), for K3→;

2) Excluded middle: χ may be asserted if it is derivable both from the hypothesis ϕ and from the
hypothesis ¬ϕ, for LP→;

3) Mingle: (ψ ∨ ¬ψ) may be inferred from (ϕ ∧ ¬ϕ), for M→.

More visually: Natural deduction rules for FDE→will be double negation and both the positive
and negative IntElim rules for ∧ and ∨. Additionally, there is a series of rules for our→ operator.

Double Negation:

1 A

2 ¬¬A ¬¬ Int

1 ¬¬A

2 A ¬¬ Elim

Standard rules for lattice connectives:

1 A ∧ B

2 A ∧ Elim

1 A ∧ B

2 B ∧ Elim

1 A

2 B

3 A ∧ B ∧ Int
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1 A ∨ B

2 A

3 . . .

4 C

5 B

6 . . .

7 C

8 C ∨ Elim

1 A

2 A ∨ B ∨ Int

1 B

2 A ∨ B ∨ Int

Negative rules for the lattice connectives21:

1 ¬(A ∨ B)

2 ¬A ¬∨ Elim

1 ¬(A ∨ B)

2 ¬B ¬∨ Elim

1 ¬A

2 ¬B

3 ¬(A ∨ B) ¬∨ Int

1 ¬A

2 ¬(A ∧ B) ¬∧ Int

1 ¬B

2 ¬(A ∧ B) ¬∧ Int

1 ¬(A ∧ B)

2 ¬A

3 . . .

4 C

5 ¬B

6 . . .

7 C

8 C ¬∧ Elim

21In the context of the positive rules, these negative rules are equivalent to Fitch’s (1952) original negation IntElim
rules.
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Rules for Conditional22

1 (A→ B)

2 A

3 B → Elim

1 A

2 . . .

3 B

4 A→ B → Int

1 ¬(A→ B)

2 A ¬ → Elim

1 ¬(A→ B)

2 ¬B ¬ → Elim

1 A

2 . . .

3 B

4 A→ C

5 . . .

6 B

7 B Dilemma

1 A

2 ¬B

3 ¬(A→ B) ¬ → Int

22The Dilemma rule, if added to, say, Intuitionistic Logic, would yield a formulation of full classical logic. It does
not collapse FDE→into classical logic because the usual ¬-Introduction rule (reductio) of Intuitionistic Logic is absent.
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Appendix II: Soundness and Completeness

The natural deduction system is provably sound and complete, where soundness is taken to mean
that if all the premisses of a derivation have designated values on an assignment, the conclusion
will as well.

Soundness can be verified in the usual way, arguing by induction on the size of the derivation
after establishing that each rule is sound. For rules in which a conclusion is inferred directly from
one or two premisses, this is immediate, by inspection of the truth tables. A rule in which a hy-
pothesis is discharged (that is, in the terminology of Fitch-style natural deduction, a rule involving
one or two subordinate proofs) is considered sound just in case, if all the undischarged hypotheses
above the conclusion of the rule (in Fitch-style: the formulas reiterated into subordinate proofs)
have designated values, the conclusion also has a designated value. It is easy to see that the sub-
proof rules of the system will be sound provided that the reasoning within the subordinate proofs
is sound. The full soundness proof, then, will take the form of a double induction, on the length,
and on the depth of nesting of subordinate proofs within, a proof. The overall strategy is perfectly
standard for soundness proofs of natural deduction systems.

Completeness can be proven by a variant of Henkin’s method, similar to that used in Priest
(2018). We desire to show that, if a formula A is not derivable from a set of premisses Γ, then there
is an assignment on which A takes an undesignated value but every member of Γ is designated.
In a Henkin-style proof this is done in two stages. In the first, it is shown that Γ can be extended
to an eligible set Γ∗ which still does not (syntactically) imply A, where a set of formulas is said
to be eligible if it has some of the formal characteristics of the set of formulas taking designated
values on some assignment. In the second it is shown that the eligible set is actually elected: an
assignment is defined on which all and only the members of the set take designated values.

In applying Henkin’s method to a classical system, eligible sets are simply complete theories,
a.k.a. maximal consistent sets of formulas. In logics tolerating contradictions, consistency is ob-
viously not a requirement, and in logics tolerating truth value “gaps” maximality is also not to be
hoped for! An appropriate notion of eligibility for our purposes counts a set of formulas as eligible
if and only if (i) it is deductively closed (and so, in particular, contains a conjunction if and only if
it contains both conjuncts, and contains a disjunction if it contains either disjunct), and (ii) contains
at least one of the disjuncts of each disjunction it contains. Given A not derivable from Γ, it is read-
ily seen that a set maximal with respect to the property of containing Γ but not implying A will be
eligible in this sense, and the existence of such a maximal set follows from standard set-theoretic
considerations (Teichmüller-Tukey lemma). (In general these maximal sets will not be the only
eligible supersets of Γ not implying A, and an alternative proof adding formulas to Γ only if they
are required by clause (ii) may yield a smaller eligible set.)

Given an eligible set Γ∗, we define an assignment to propositional variables by setting

• v(p) = T iff p is a member but ¬p is not a member of Γ∗,

• v(p) = B iff p and ¬p both belong to Γ∗,
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• v(p) = N iff neither p nor ¬p belongs to Γ∗, and

• v(p) = F iff ¬p but not p is a member of Γ∗.

(Note that a variable takes a designated value if and only if it belongs to Γ∗.) It remains to verify
(by induction on formula complexity) that arbitrary formulas take values on this assignment under
the same conditions of their, and their negations’, membership in Γ∗. None of the cases are hard;
those not immediately obvious usually become obvious when one remembers that formulas of the
form A ∨ (A→ B) are provable in the system.

In a bit more detail:
Soundness:

The notion of validity we want is:

Definition 1. Validity: A system of rules is sound for one of our logics if and only if: If all the
assumptions23 of a (possibly subordinate) proof have designated values, then every formula occur-
ring diretly as an item of that derivation (as opposed to occurring in a subordinated derivation
subordinate to it) will also have a designated value.

One could easily check that all the rules are classically valid, and conclude that of course the
FDE→system is sound. But perhaps some of the negative rules are worth checking.

∧ T B N F
T T B N F
B B B F F
N N F N F
F F F F F

Table 11: ∧ truth-table

A quick check of the ¬∧-Int rules against this truth table makes it clear that these rules are sound.
The presence of B means that ¬∧-Elim takes a bit longer, but is clearly correct also.

In full formal detail, the soundness proof (as is usual for a soundness proof of Fitch-style natural
deduction systems) is a double induction on

1. Length: the number of non-assumption formula items in the derivation.

2. Depth: the depth of nesting of subproofs.

The induction step of the Depth induction goes:

23Where formulas reiterated into a subproof are counted among that subproof’s assumptions.
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Suppose A comes by a subproof-using rule. (Now, a number of cases.) By hypothesis
of induction on Length, anything reiterated into the subproof is ok (since it would
occur in a main subproof above this step). By hypothesis of induction on Depth [we
call this the “key step”], the subproof is sound. So, if the hypothesis of the subproof is
ok, so is its “active” last item. So – now verifying each case – A is ok.

This gives us the cases for subproof-involving rules in the inductive step of the Length
induction for derivations of depth ≤ n. So derivations at this depth are sound. In a
derivation of depth n + 1, every subproof is of depth ≤ n, so the “key step” is guaran-
teed.

Completeness Construction:
Define a set of formulas to be saturated if and only if

1. It is consistent in the sense of not being the set of all formulas, and

2. It is deductively closed, and so automatically contains

(a) A conjunction if and only if it contains both conjuncts, and

(b) A disjunction if it contains at least one disjunct

3. It contains at least one disjunct of each of its disjunctions

Note that for classical logic, in which by deductive closure (A ∨ ¬A) belongs to every sat-
urated set, saturation amounts to maximal consistency: saturated sets are the generalization for
non-classical logics of the “maximal consistent sets” familiar from Henkin proofs for classic(-ally
based) logic(s).

What we have to prove is:

Lemma 1. For any set of formulas, Γ, and for any formula, A, not derivable from Γ, there is a
saturated superset of Γ, Γ∗, not containing A. (Since this specification includes the requirement
that A < Γ∗, the requirement of consistency, (1), doesn’t have to be made part of the definition of
saturated set.

Proof. (By a version of the standard Lindenbaum construction.)
For classical logic, where we want maximal consistent sets anyway, it is normal to consider all

the formulas of the language (in some order), tossing each one in if its addition doesn’t permit the
derivation of the bad thing. But this can tend to undesirably stuffed sets of formulas! For example,
the maximal consistent sets of intuitionistic propositional logic are classically maximal! So we
prefer a more cautious addition of formulas.

Definition 2. An ordinally indexed series of sets of formulas:
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Let Γ0 = Γ

Assume some fixed well-ordering of the formulas of the language:

For odd successors, α,

• If Γα is saturated, stop

• if not, pick the first (in the assumed ordering) disjunction in Γα for which neither
disjunct is in Γα. By the ∨-Elim rule, if Γα does not imply A, at least one of these
disjuncts can be added to Γα without permitting the derivation of A. Let Γα+1 be
the result of adding the first such disjunct (or the only one, if only one can be
added) to Γα.

For even successors (and for 0), let Γα+1 be the deductive closure of Γα.

For limit ordinals λ, let Γλ =
⋃
α<λ

(Γα).

By cardinality considerations (there are more ordinals than formulas, so eventually we will run
out of formulas to add), this sequence must reach a fixed point, ΓΩ. By the usual Henkin arguments,
ΓΩ is saturated and does not imply A.

Now, for atomic p, define

• p has the value T iff p does and ¬p does not belong to ΓΩ

• p has the value B iff both p and ¬p belong to ΓΩ

• p has the value N iff neither p nor ¬p belong to ΓΩ

• p has value F iff ¬p but not p belongs to ΓΩ

We now in a position to verify that for arbitrary formulas A, the same correlation holds between
value and status with respect to membership in ΓΩ

�

Completeness Verification:

Theorem 5. Given a saturated set S, if we define, for atomic p:
p T iff p ∈ S and ¬p < S
p B iff p ∈ S and ¬p ∈ S
p N iff p < S and ¬p < S
p F iff p < S and ¬p ∈ S

we will have the same coincidence of values and S-status for all formulas

Proof. By induction on formula structures. We omit proofs for the ¬,∨,∧ connectives, which are
obvious. So we consider→:
The way up Suppose equivalence holds for A and B, we show it holds for A→ B.
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There are 16 combinations of truth-like values for A, B. For each, by hypothesis of induction,
assume the right S-membership status.

• Cases: Left column. B is T, so is in S. So, A → B is in S. ¬B is not in S, so by simple
¬ →-Elim, ¬(A→ B) can’t be either.

• Cases: Bottom two rows. A is either F or N, so by hypothesis of induction, A is not in S. By
Dilemma, A ∨ (A→ B) is in S, so by saturation (A→ B) ∈ S . In the other direction, simple
¬ →-Elim rule would get from ¬(A→ B) to A, so ¬(A→ B) can’t be in S.

• Cases: Top row: A has value T, so A ∈ S ,¬A < S

– subcase: B has value B, so both B ∈ S and ¬B ∈ S . Since B ∈ S , →-Int gives
(A→ B) ∈ S . Since A ∈ S and ¬B ∈ S , the simple ¬ →-Int rule gives ¬(A→ B) ∈ S .

– subcase: B has value N, so neither B ∈ S nor ¬B ∈ S . If (A → B) were in S,→-Elim
would put B in, so (A→ B) < S . If ¬(A→ B) were in S, simple ¬ →-Elim rule would
put ¬B in S, so ¬(A→ B) < S .

– subcase: B has value F, so ¬B ∈ S and B < S . If (A → B) were in S,→-Elim would
put B in, so (A→ B) < S . On the other hand, since A and ¬B are both available, simple
¬ →-Int gives ¬(A→ B) ∈ S .

• Cases: Second row: A has value B, so both A ∈ S and ¬A ∈ S

– subcase: B has value B, so by hypothesis of induction, B and ¬B are both in S. Since
B is available, →-Int gets (A → B) ∈ S . Since A and ¬B are both available, simple
¬ →-Int puts ¬(A→ B) ∈ S .

– subcase: B has value N, so neither B nor ¬B is in S. Since A is available, if (A → B)
were in S,→-Elim would put B in S. If ¬(A → B) were in S, simple ¬ →-Elim would
put ¬B in S. So neither (A→ B) nor ¬(A→ B is in S.

– subcase: B has value F, so ¬B ∈ S and B < S . Since A and ¬B are available, ¬ →-Int
puts ¬(A→ B) ∈ S . Since A is available, if A→ B were in S, B would be also.

�

Normally, in a Henkin-style completeness proof, one defines truth for atoms as membership
in the saturated set, and the verification stage checks that complex formulas are true if and only if
they are members. This requires two arguments: one that if a formula is true it is a member, and
one that if a formula belongs to the set, then it is true.

Because the semantic clauses for T, B, N, F are more complex, these two parts are now inter-
mingled. If a formula has a certain value, then both the membership and non-membership of the
formula and its negation (one for each) in the set have to be checked. Thus the way up (verifying
that formulas with certain values have the right membership statuses) already in effect includes the
way back down (verifying that formulas with certain membership statuses have the right values).
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