
Abstract logical constants

Tin Perkov∗

June 3, 2018

Abstract

A possibility of defining logical constants within abstract logical frame-
works is discussed, in relation to abstract definition of logical consequence.
We propose using duals as a general method of applying the idea of in-
variance under replacement as a criterion for logicality.

1 Introduction

Which symbols (or expressions) of a (formal) language are logical? Fundamental
questions like this one are rarely answered with consensus and often lead to
controversies, but trying to answer such questions turns out to be very fruitful
for developing useful theories, with sometimes unintended applications.

Without ambition to give a comprehensive overview on the topic, let us point
out some approaches to answer the question of logicality:

• grammatical (atomic sentences are non–logical, while complex sentences
are built using logical connectives)

• proof–theoretical (logical is what is applied in the same way to any rea-
soning, regardless of its subject, i.e. definable by inferential rules)

• semantical (logical is what has fixed meaning, not depending on properties
of individuals, i.e. invariant under permutations, isomorphisms and so on).

We focus on a recent development [2] in the semantical approach, which
explores a close relation between logical constants and logical consequence. We
can have in mind the following goals:

• ambitious: find the proper notion of logical constants – probably no answer

• less ambitious: understand how a choice of constants generates a conse-
quence relation, and vice versa.

∗This work has been supported by Croatian Science Foundation (HRZZ) under the project
UIP-05-2017-9219.

1

For the latter converse goal, we use the idea of consequence extraction as pre-
sented by Bonnay and Westerst̊ahl in [2]. Given a language and a consequence
relation, they consider a symbol to be a constant if replacing it with another
symbol of the same category (categories being e.g. binary Boolean connectives,
unary modal operators, quantifiers and so on) makes at least one valid inference
of that consequence relation to fail.

Unfortunately, it is often the case that there is only one symbol of a given
category in a language, so we have nothing to replace it with in order to test
whether it is a constant. This can be solved by introducing a new symbol which
does not essentially change the language. This is not very unnatural, in fact it
is often done in usual expositions of logical theories: for the sake of simplicity
we have a minimal number of primitives, while other symbols are defined as
abbreviations. Introducing new symbols depends, however, on the nature of a
particular language. This is probably easy to do from case to case, but it is
attempted here to give a general method that would work in a broad family of
languages in a uniform way.

The idea is very simple, but fairly general: we assume that any symbol
s such as connective, quantifier, modal operator and so on, has the dual s′,
either already present in the language, or we introduce it in it. Given a con-
sequence relation ⇒, duality means that we have valid inferences of the form
s′(ϕ1, ϕ2, . . .) ⇔ ¬s(¬ϕ1,¬ϕ2, . . .) and s(ϕ1, ϕ2, . . .) ⇔ ¬s′(¬ϕ1,¬ϕ2, . . .). If
s is not self–dual, then at least one of these inferences fails if we replace s with
s′. Therefore, s is a constant. As for self–duals, we use the following trick:
replace with some other symbol of the same category which is not self–dual,
thus making at least one of the inferences which express self–duality to fail.

It is rather obvious that any missing dual can always be included in a lan-
guage by defining it as an abbreviation and then adding it to the list of symbols,
and that this way the language remains essentially the same. So, for any symbol
that is used inductively in building formulas in a way that the truth of these
formulas depends on the truth of one or more (depending on arity) formulas in
the scope of that symbol, we have the dual symbol. By the reasoning presented
above, it is immediately verified that any such symbol is a constant for a given
language and a consequence relation. Whether one considers this desirable or
not, this turns out to coincide with the grammatical approach, as summarized
above.

Another goal of the paper is to outline possible generalizations of techniques
from [2], in particular to the framework of abstract logic (cf. e.g. [3]). For this
purpose, in Section 2 three abstract logical frameworks are compared, to show
that the abstract logic setting is the most general. In Section 3 we compare two
abstract definitions of consequence relation and show that they are equivalent,
and furthermore we review basic ideas from [2]. Section 4 contains details on the
idea of using duals as candidates for replacement. We conclude with Section 5,
which contains remarks on refining the definition of abstract logic to encompass
the previously presented ideas.

2

2 Comparison of some abstract logical frame-
works

There are various abstract frameworks for general reasoning about logic, de-
pending on authors’ focus or intends. Let us compare three such approaches,
as presented in [2], [3] and [4].

Having the usual way of presenting logical systems in mind (the syntax of a
language, then a class of structures on which the language is interpreted, and
finally the semantics – a way in which syntax relates to structures), abstract
model theory provides the following definition (cf. [3]).

Definition 1. An abstract logic is a triple L = (S, F, |=), where S is a class
of structures or models, F is a set of sentences or formulas and |= is a binary
relation between elements of S and elements of F . We call |= the satisfaction
relation.

Let M be a structure and Γ a set of sentences. We write M |= Γ if M |= ϕ
for all ϕ ∈ Γ.

In full generality this definition has no further conditions on S, F and |=, i.e.
structures and sentences are just names for elements of S and F , respectively.
A particular example in which S is the class of all first–order structures and F
is closed under conjunction and negation (this closure is defined in a natural
way, see below) provides the framework for famous Lindström theorems. These
theorems themselves have some further assumptions on F and |=.

But even in full generality we can already define usual logical notions like
model of a given formula, theory of a given structure, logical equivalence of
formulas or elementary equivalence of structures, compactness of an abstract
logic etc. In particular, since the other two frameworks we consider focus on
logical consequence, let us emphasize that we can define the notion of logical
consequence in an abstract logic in the following natural way.

Definition 2. Let L = (S, F, |=) be an abstract logic. Let Γ be a set of sentences
and ϕ a sentence. We say that ϕ is a logical consequence of Γ and we write Γ |= ϕ
if for each M ∈ S the following holds: if M |= Γ, then M |= ϕ.

Instead of {ϕ} |= ψ we write ϕ |= ψ (similarly also for other notions of
consequence considered below).

Another way to define the notion of logical consequence is the following
(cf. [4] or [5]).

Definition 3. Let L = (F,M), where F is a set and M is a set of partitions
(T,U), T,U ⊆ F , T ∪U = F , T ∩U = ∅. Elements of F are called sentences or
formulas and elements of M are called possible states of affairs.

Let Γ ⊆ F and ϕ ∈ F . We say that ϕ is a consequence of Γ w.r.t. M and
we write Γ M ϕ if for all (T,U) ∈M we have: if Γ ⊆ T , then ϕ ∈ T .

3

Let be a binary relation between subsets of F and elements of F . We say
that is a consequence relation if there is M such that = M.1

Clearly, each, (T,U) ∈ M is fully determined by T , so we can simplify the
definition and consider M to be simply a family of subsets of F . Intended
interpretation is that T ∈ M is the set of all true sentences in a possible state
of affairs.

The following proposition shows that there is a natural connection between
these two frameworks. The proof is trivial, so we omit it.

Proposition 1. Let L = (S, F, |=) be an abstract logic. Let M ∈ S. Let TM
be the theory of M, i.e. TM = {ϕ ∈ F : M |= ϕ}. Put M = {TM : M ∈ S}.
Then the logical consequence of L equals M.

Conversely, let L = (F,M). Let (T, F \ T) ∈ M. Put T |= ϕ if and only if
ϕ ∈ T . Then (M, F, |=) is an abstract logic.

The notion of abstract logic is more general, since in the other framework
structures are identified with true sentences, i.e. elementarily equivalent struc-
tures are identified, while abstract logic allows reasoning about distinct struc-
tures with equal theories.

At the first glance, the third setting (cf. [2]) just seems to fix a state of affairs
from the previous framework, at the same time giving some more structure to
the syntax, i.e. F is no longer just a set, it is actually a language over an
alphabet.

Definition 4. An interpreted language is a triple L = (A,F, T), where A is a
set which we call an alphabet, while its elements are called symbols, F is a set of
words, i.e. finite sequences of symbols (some of which are2) from A, and T ⊆ F .
We call elements of F sentences or formulas, and elements of T true sentences.

But then the definition of consequence corresponding to an interpreted lan-
guage is somewhat different. It is given with respect to a choice of an interpreted
language L and a subset X ⊆ A, intended to be a choice of constants. Sym-
bols of all interpreted languages are supposed to be partitioned in classes called
categories (e.g. binary Boolean connectives, propositional variables, ternary re-
lational symbols and so on). Although the interpretation is fixed, in this setting
replacement of symbols is used instead, with purpose to simulate reinterpreta-
tion.

Definition 5. A replacement is a function ρ : A→ A which respects categories,
i.e. ρ(u) is in the same category as u for all u ∈ A.

Denote by ϕ[ρ] the result of replacing each occurrence of any u ∈ A in ϕ ∈ F
by ρ(u). Analogously, we use notation Γ[ρ] for Γ ⊆ F .

1This is the notion of single–conclusion consequence relation in the sense of [4]. In this
paper we do not consider multiple–conclusion consequence relations.

2In [2] symbols not from A are allowed in sentences, having in mind auxiliary symbols like
parentheses.

4

Fix X ⊆ A. Put Γ ⇒X ϕ if and only if for each replacement ρ such that
ρ|X = idX we have: if Γ[ρ] ⊆ T , then ϕ[ρ] ∈ T .

Clearly, quantifying over replacements amounts to quantifying over states of
affairs, making this framework embeddable in the previous one, as the following
proposition states. Again, the proof is very easy and therefore omitted.

Proposition 2. Let L = (A,F, T) be an interpreted language, let X ⊆ A
and let ⇒X be defined as above. For each replacement ρ : A → A such that
ρ|X = idX , define T [ρ] = {ϕ : ϕ[ρ] ∈ T}.

Furthermore, let M = {T [ρ] : ρ is a replacement such that ρ|X = idX} and
let L = (F,M). Then M equals ⇒X .

Remark 1. Clearly, distinct sets of true sentences T1 and T2 may generate the
same M, but this is a desirable identification between interpreted languages.
Choice of T which serves as a starting point of quantifying over any replacement,
and consequently over possible states of affairs other then T , is arbitrary. If we
are interested in general considerations about consequence or other notions, and
not in a particular possible state of affairs, we can still say that the previous
approach is more general then this one. On the other hand, all the presented
frameworks allow reasoning about particular possible states of affairs, if needed.

We leave for a future consideration the following converse question: given
L = (F,M), can we (or under which conditions we can) find A, T and X ⊆ A
such that ⇒X equals M.

3 Logical constants and logical consequence

To reason about fundamental question of logical constants, we need an abstract
definition of logical consequence.

The following characterization of consequence relation (in the sense of Defi-
nition 3) is given in [4].

Theorem 1. Given F , a relation ⊆ P(F) × F is a consequence relation if
and only if all of the following always hold:

1. if ϕ ∈ Γ, then Γ ϕ

2. if Γ′ ϕ and Γ′ ⊆ Γ, then Γ ϕ

3. if Γ ∪∆ ϕ and Γ ψ for all ψ ∈ ∆, then Γ ϕ.

We can consider conditions of the theorem to be an abstract definition of
consequence relation. Another abstract definition of this notion is given in the
setting of interpreted languages (cf. [2]).

Definition 6. Given F , a consequence relation is ⇒ ⊆ P(F)×F such that the
following always hold:

1. if ϕ ∈ Γ, then Γ⇒ ϕ

5

2. if ∆⇒ ϕ and Γ⇒ ψ for all ψ ∈ ∆, then Γ⇒ ϕ.

If ϕ⇒ ψ and ψ ⇒ ϕ, we write ϕ⇔ ψ.

Let us point out that these definitions are in fact equivalent.

Proposition 3. Given F , let ⊆ P(F)×F . Then satisfies the conditions of
Theorem 1 if and only if is a consequence relation in the sense of Definition 6.

Proof. Let satisfy the conditions of Theorem 1 and let ∆ ϕ and Γ ψ for
all ψ ∈ ∆. Now, the second condition of Theorem 1 implies Γ∪∆ ϕ and thus
the third condition implies Γ ϕ, as desired.

Conversely, let be a consequence relation in the sense of Definition 6. Let
us prove the second condition of Theorem 1. Let Γ′ ϕ and Γ′ ⊆ Γ. The
first condition implies in particular that Γ ψ for all ψ ∈ Γ′. Hence, the
second condition of Definition 6 implies the claim. It remains to prove the third
condition of Theorem 1. Let Γ ∪∆ ϕ and Γ ψ for all ψ ∈ ∆. But from the
first condition we also have Γ ψ for all ψ ∈ Γ. So, we actually have Γ ψ for
all ψ ∈ Γ ∪∆. Now, we apply the second condition of Definition 6 to conclude
Γ ϕ, as desired.

Due to Proposition 1, we immediately obtain the following corollary.

Corollary 1. Given F , let ⊆ P(F)×F . Then is a consequence relation in
the sense of Definition 6 if and only if there is an abstract logic L = (S, F, |=)
such that is the relation of logical consequence of L in the sense of Definition 2.

Keeping in mind these possibilities of generalization, let us go back to Bonnay
and Westerst̊ahl [2], who define constants with respect to a given consequence
relation as follows.

Definition 7. Let L = (A,F, T) be an interpreted language and let ⇒ be a
consequence relation which is truth preserving, i.e. for all Γ ⊆ T we have: if
Γ⇒ ϕ, then ϕ ∈ T .

We define the set of logical constants C⇒ ⊆ A by putting u ∈ C⇒ if and
only if there are Γ ⊆ F , ϕ ∈ F and a replacement ρ which is identity on A \ {u}
such that Γ⇒ ϕ and Γ[ρ] 6⇒ ϕ[ρ].

In other words, given a language and a consequence relation, a symbol is a
constant if replacing it with another symbol of the same category makes at least
one valid inference of that consequence relation to fail.

Remark 2. Let L be an interpreted language. It is easy to see (cf. [2]) that
the smallest and the largest truth preserving consequence relation with respect
to L are defined as follows:

• Γ⇒min ϕ if and only if ϕ ∈ Γ

• Γ⇒max ϕ if and only if it is not the case Γ ⊆ T and ϕ /∈ T .

6

Note that we can generalize the definition by omitting the requirement that
⇒ is truth preserving and that thus generalized definition does not depend on T .

In [2] the definition is tested on familiar examples like propositional and first–
order logic, providing the results one should expect: constants extracted from
their logical consequence relations are their standard sets of logical symbols.

We will not go further in reviewing results of [2], since basic definitions suffice
for out purposes. Instead, let us focus on a way in which a single given symbol
is proved to be a constant. Consider some examples.

Example 1. Let |=PL be the standard logical consequence relation of classical
propositional logic. To see that ∨ is in C|=PL

, note that p |=PL p ∨ q, but
p 6|=PL p ∧ q.

Example 2. Let |=FO be the standard logical consequence relation of first–
order logic. Then ∀ is in C|=FO

, since ∀xA |=FO ¬∃x¬A, but ∃xA 6|=FO ¬∃x¬A.

One technical problem with this approach is that there is often only one
symbol of a given category in A, so we have nothing to replace it with in order
to test whether it is a constant. In fact, it is usually convenient not to have
too many primitive symbols. Notably, regarding our examples, we often have
only one binary Boolean connective and one quantifier in the alphabet, while
the others are defined as abbreviations.

In [2] a simple solution of this difficulty is proposed: introduce a new symbol
which does not essentially change the language. In this case it is more convenient
to have more symbols (at least two of each category), so we let them be in A.
This provides what we need to prove that a symbol is a constant. Another
solution is to assign categories to some expressions, not only symbols, thus
allowing expressions to be considered as possible constants. Both approaches
imply that a language may have many hidden logical constants, i.e. constants
definable by primitive symbols of a language. It may be debatable whether this
is desirable.

4 Dual symbols

Recall that we proved that ∨ is a constant by replacing it with ∧, which is its
dual, i.e. ϕ∧ψ is equivalent to ¬(¬ϕ∨¬ψ). Also, we proved that ∀ is a constant
by replacing it with its dual ∃. Consider a similar example from modal logic.

Example 3. Consider the basic modal logic with the standard (local) conse-
quence relation ML, as defined, e.g., in [1]. To show that � ∈ CML

, include
its dual ♦ in the language. From duality itself we have �p ML ¬♦¬p, but
♦p 6ML ¬♦¬p.

Let us pursue the following idea: if a symbol is unique of its category, in-
troduce its dual to the language and use it to show it is a constant. Or more
generally, why not always use duals, whether a symbol is unique of its category
or not?

7

To apply this, we need more structure in the abstract definition of language.
We try to give minimal requirements, which are trivially fulfilled in usual recur-
sively defined formal languages.

Definition 8. Let L = (A,F, T) be an interpreted language and let u ∈ A. For
any ϕ ∈ F in which u occurs, and for any occurrence of u in ϕ, let ψ be the
subsentence which contains this occurrence of u, but no proper subsentence of
ψ contains this occurrence of u.

Arity of u ∈ A is k ∈ N such that each such ψ has exactly k maximal proper
subsentences ψ1, . . . , ψk. We denote ψ by u(ψ1, . . . , ψk).

Example 4. In the sense of the above definition:

• ¬, ♦, �, ∀, ∃ are unary

• ∨, ∧, → are binary.

Definition 9. We say that an interpreted language L = (A,F, T) is closed
under (classical) negation if for all ϕ ∈ F there is ψ ∈ F such that ψ ∈ T if and
only if ϕ /∈ T . We denote ψ by ¬ϕ.

Let L = (A,F, T) be closed under negation and let ⇒ be a consequence
relation. We say that L is closed under duals (with respect to⇒) if for all k > 0
and for each k–ary u ∈ A, there is a k–ary u′ ∈ A of the same category such that
u′(ψ1, . . . , ψk)⇔ ¬u(¬ψ1, . . . ,¬ψk) and u(ψ1, . . . , ψk)⇔ ¬u′(¬ψ1, . . . ,¬ψk).

Example 5. Our previous examples of duals comply with this definition: ∨
and ∧, ∀ and ∃, � and ♦. As we have already noted, usually only one symbol
from each of these pairs is considered primitive, while the other is defined as an
abbreviation. In some cases dual is not often used even as an abbreviation, e.g.
there is no standard notation for dual of→. We can denote it 6← (where A 6← B
is an abbreviation for ¬(B → A)). But for our current purposes, we suppose all
duals are present in the language.

Proposition 4. Let L be an interpreted language and ⇒ a consequence rela-
tion. Let L be closed under duals with respect to ⇒, let k > 0, and let u ∈ A
be any k–ary symbol. If u is not self–dual, then it is a constant.

Proof. Since L is closed under duals, there is a k–ary symbol u′ ∈ A such that
u′(ψ1, . . . , ψk) ⇔ ¬u(¬ψ1, . . . ,¬ψk) and u(ψ1, . . . , ψk) ⇔ ¬u′(¬ψ1, . . . ,¬ψk).
Consider the replacement ρ which is identity on A \ {u} and ρ(u) = u′. Since
u is not self–dual, at least one of the inferences which express duality does not
hold under the replacement ρ.

This result is rather trivial, but includes seemingly vast majority of symbols
we have in mind when trying to generalize the notion of logical constants, like
logical connectives ∨, ∧, →, ↔ etc., quantifiers ∀, ∃ (also as second–order
quantifiers, even polyadic) and many more, modal operators ♦, � and so on.

As for the self–dual symbols, some such symbols are also considered to be
logical constants, notably the negation itself (¬p ⇔ ¬¬¬p). In such cases we

8

need to use some other symbol of the same category to prove the constancy.
An example of a self–dual generalized quantifier is “more then a half of”, if
interpreted on a finite set of odd cardinality. As a general method, in such case
we can use any symbol of the same category that is not self–dual, thus making
at least one of the inferences which express self–duality to fail. So for example,
replacing a self–dual quantifier with ∃ proves that it is a constant.

Proposition 5. Let L be closed under negation and⇒ a consequence relation.
Let k > 0, and let u ∈ A be a self–dual k–ary symbol. If there exists a non–
self–dual u′ ∈ A of the same category as u, then u is a constant.

Proof. Since u is self–dual, we have u(ψ1, . . . , ψk) ⇔ ¬u(¬ψ1, . . . ,¬ψk). Let ρ
be the replacement which is identity on A \ {u} and ρ(u) = u′. Since u′ is not
self–dual, at least one of the inferences which express self–duality does not hold
under the replacement ρ.

In case a self–dual symbol is unique of its category, we can think of intro-
ducing as an abbreviation some other symbol of the same category which is not
self–dual, and this is exactly what is done in [2] in the case of ¬ (which is, as
a rule, the only unary Boolean connective in formal languages), by introducing
a non–standard unary connective defined as “equal to false”. For the choice of
this introduced symbol we cannot have a general recipe, but solve it from case
to case.

Finally, consider 0–ary symbols. For example, predicates or relational sym-
bols in first–order logic, propositional variables in propositional logic or modal
logic and so on, are not generally considered to be logical constants.3 Indeed,
replacing e.g. a propositional variable with another propositional variable pre-
serves valid inferences. But truth values like > and ⊥, if included in a language,
are considered logical constants. And rightly so, because we have > ⇒ ¬⊥, but
> 6⇒ ¬>. We can consider > and ⊥ dual to each other if we allow k = 0 (there
just isn’t anything in their scope to negate, so dual is simply the negation).

5 A unified framework

The above ideas are easily generalized to the level of abstract logic, with an
assumption – which is not too restrictive – that a set of sentences is indeed
a language over an alphabet. In fact, for any abstract logic, we can make
F trivially a language over an alphabet, namely by declaring that F is the
alphabet, and thus all sentences are one–letter words. This is not at all useful if
we want to apply ideas from previous sections, but it does show that we do not
lose any generality by the following variant of the definition of abstract logic, in
an attempt to unify frameworks discussed above.

Definition 10. An abstract logic is L = (S, F, |=), where S is a class of struc-
tures or models, F is a language over some alphabet, elements of which are

3However, some of them, like equality, may be considered constants if we fix a (normal)
interpretation of the symbol.

9

called sentences or formulas and |= is a binary relation between elements of S
and elements of F . We call |= the satisfaction relation.

Again we assume symbols of abstract logics to be partitioned in what we can
simply call classes of symbols. As noted, all notions regarding abstract logics
apply in this slightly modified setting. But now, we can also use some notions
regarding interpreted languages, which require some structure on F which the
previous notion of abstract logic lacked, including notions of replacement and
constants generated by a given consequence relation, due to [2], and also notions
of arity and duals, as defined in the previous section. Propositions from the
previous section are proved for this setting virtually without any changes.

References

[1] P. Blackburn, M. de Rijke, Y. Venema: Modal Logic, Cambridge University
Press (2001)

[2] D. Bonnay, D. Westerst̊ahl: Consequence mining, Journal of Philosophical
Logic 41 (2012) 671–709.

[3] M. Garćıa Matos, J. Väänänen: Abstract model theory as a framework
for universal logic, in: J.-Y. Beziau (ed.) Logica Universalis: Towards a
General Theory of Logic, 2nd edition, Birkhäuser (2007) 19–33.

[4] D.J. Shoesmith, T.J. Smiley: Multiple–conclusion Logic, Cambridge Uni-
versity Press, 1978.

[5] Z. Šikić: Singular consequence relations and order relations, Grazer Math-
ematische Berichte 304 (1989) 118–127.

10

