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Abstract

In this work, we propose a meaningful extension of description logics for non-
monotonic reasoning. We introduce ALCH•, a logic allowing for the representation of
and reasoning about both typical class-membership and typical instances of a relation.
We propose a preferential semantics for ALCH• in terms of partially-ordered DL
interpretations which intuitively captures the notions of typicality we are interested in.
We define a tableau-based algorithm for checking ALCH• knowledge-base consistency
and show that it is sound and complete w.r.t. our preferential semantics. The general
framework we here propose can serve as the foundation for further exploration of
non-monotonic reasoning in description logics and similarly structured logics.
Keywords: Description logic; defeasible reasoning; typicality; tableaux

1 Introduction
Description Logics (DLs) [1] are a family of logic-based knowledge representation for-
malisms with useful computational properties and a variety of applications in artificial
intelligence and in databases. In particular, DLs are well-suited for representing and rea-
soning about terminological knowledge and constitute the formal foundations of semantic-
web ontologies. Technically, DLs correspond to decidable fragments of first-order logic and
are closely related to modal logics [43].

Notwithstanding their good trade-off between expressive power and computational
complexity, DLs remain fundamentally classical formalisms and therefore are not suit-
able for modelling and reasoning about aspects that are ubiquitous in human quotid-
ian reasoning. Examples of these are exceptions to general rules, incomplete knowledge,
and many others, characterising the type of reasoning usually known under the broad
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term defeasible reasoning. In this regard, endowing DLs and their associated reasoning
services with the ability to cope with defeasibility is a natural step in their develop-
ment. Indeed, the past 25 years have witnessed many attempts to introduce defeasible-
reasoning capabilities in a DL setting, usually drawing on a well-established body of re-
search on non-monotonic reasoning (NMR). These comprise the so-called preferential ap-
proaches [15, 16, 17, 22, 23, 25, 26, 29, 30, 41, 42], circumscription-based ones [7, 8, 44],
amongst others [2, 3, 6, 24, 31, 32, 33, 39, 40, 46].

Of particular interest in a non-monotonic context is the ability to express and reason
about a notion of typicality (or normality, or expectations). And, as already argued in
the propositional case [12], being able to do so explicitly in the language brings in many
advantages from the standpoint of knowledge representation. In a DL setting, this need
is mainly felt when checking whether a given individual is a typical instance of a class
or whether a pair of individuals is a typical instance of a given relationship, or some
combination involving both. As an example, consider the following scenario, adapted from
Giordano et al.’s [25]: Typical students do not pay taxes; employed students typically do;
to work for a company typically implies being employed by the company, and John and
IBM are in a typical work contract.

It turns out that this issue has only partially been addressed in the literature in that
explicit notions of typicality for concepts have been introduced [6, 25], but of which the
use in logical statements has to adhere to certain syntactic constraints. To the best of
our knowledge, a unifying framework for full-fledged typicality in concepts and, important,
also in roles has not been developed before. This is precisely the problem that the present
paper aims at solving.

The remainder of the paper is organised as follows: In Section 2 we provide the required
background on the underlying classical DL we consider in this work and we fix the notation
and terminology we shall follow. In Section 3 we introduce ALCH•, a defeasible DL for
reasoning about typicality in class- and relation-membership, and we show some of its
properties. Section 4 is devoted to the definition of a tableau-based proof procedure for
checking satisfiability of ALCH• knowledge bases. In particular, we show correctness of
our tableau algorithm w.r.t. a notion of preferential satisfiability. Finally, after a discussion
of, and comparison with, related work (Section 5), we conclude with a summary of our
contributions and some directions for further investigation.

2 Logical preliminaries
In this work, we take as point of departure the underlying language of the description
logic ALCH, which is the DL ALC extended with atomic-role hierarchies.1

1For the reader conversant with modal logics, roughly, ALCH corresponds to multi-modal logic K
allowing for modalities to be dependently axiomatised.
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The (concept) language of ALCH is built upon a finite set of atomic concept names C,
a finite set of role names R (a.k.a. attributes) and a finite set of individual names I such
that C, R and I are pairwise disjoint. In our scenario example, we can have for instance C =
{Employee,Company, Student,EmpStudent,Parent,Tax}, R = {pays, employedBy,worksFor},
and I = {john, ibm}, with the respective obvious intuitions. With A,B, . . . we denote
atomic concepts, with r, s, . . . role names, and with a, b, . . . individual names. Complex
concepts are denoted with C,D, . . . and are built using the constructors ¬ (complement),
u (concept conjunction), t (concept disjunction), ∀ (value restriction) and ∃ (existential
restriction) according to the following grammar rules:

C ::= > | ⊥ | C | (¬C) | (C u C) | (C t C) | ∀r.C | ∃r.C

With L we denote the language of all ALCH concepts, which is understood as the
smallest set of symbol sequences generated according to the rules above. When writing
down concepts of L, we shall follow the usual convention and omit parentheses whenever
they are not essential for disambiguation. Examples of ALCH concepts are Student u
Employee and ¬∃pays.Tax.

The semantics of ALCH is the standard set-theoretic Tarskian semantics. An interpre-
tation is a structure I := 〈∆I , ·I〉, where ∆I is a non-empty set called the domain, and ·I
is an interpretation function mapping concept names A to subsets AI of ∆I , role names r
to binary relations rI over ∆I , and individual names a to elements of the domain ∆I , i.e.,
AI ⊆ ∆I , rI ⊆ ∆I ×∆I , aI ∈ ∆I .

Let I = 〈∆I , ·I〉 be an interpretation and define rI(x) := {y | (x, y) ∈ rI}, for r ∈ R.
We extend the interpretation function ·I to interpret complex concepts of L as follows:

>I := ∆I , ⊥I := ∅, (¬C)I := ∆I \ CI

(C uD)I := CI ∩DI , (C tD)I := CI ∪DI

(∀r.C)I := {x ∈ ∆I | rI(x) ⊆ CI}, (∃r.C)I := {x ∈ ∆I | rI(x) ∩ CI 6= ∅}

Given C,D ∈ L, C v D is called a subsumption statement, or general concept inclusion
(GCI), read “C is subsumed by D”. A concrete example of GCI is EmpStudent v Studentu
Employee. C ≡ D is an abbreviation for both C v D and D v C. An ALCH TBox T
is a finite set of subsumption statements and formalises the intensional knowledge about
a given domain of application. Given r, s ∈ R, a statement of the form r v s is a role
inclusion axiom (RIA). An example of RIA is worksFor v employedBy. An ALCH RBox R
is a finite set of RIAs. Given C ∈ L, r ∈ R and a, b ∈ I, an assertional statement
(assertion, for short) is an expression of the form a : C or (a, b) : r. Examples of assertions
are john : EmpStudent and (john, ibm) : worksFor. An ALCH ABox A is a finite set of
assertional statements formalising the extensional knowledge of the domain. We shall
denote statements with α, β, . . .. Given T , R and A, with KB := T ∪ R ∪ A we denote
an ALCH knowledge base, a.k.a. an ontology.
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An interpretation I satisfies a GCI C v D (denoted I  C v D) if CI ⊆ DI . (And
then I  C ≡ D if CI = DI .) I satisfies a RIA r v s (denoted I  r v s) if rI ⊆ sI .
An interpretation I satisfies an assertion a : C (respectively, (a, b) : r), denoted I  a : C
(respectively, I  (a, b) : r), if aI ∈ CI (respectively, (aI , bI) ∈ rI).

We say that an interpretation I is a model of a TBox T (respectively, of an RBox R
and of an ABox A), denoted I  T (respectively, I  R and I  A) if I  α for
every α in T (respectively, in R and in A). We say that I is a model of a knowledge
base KB = T ∪R∪A if I  T , I  R and I  A. A statement α is (classically) entailed
by a knowledge base KB, denoted KB |= α, if every model of KB satisfies α.2 If KB = ∅,
then we have that I  α for all interpretations I, in which case we say α is a validity and
denote with |= α.

For more details on Description Logics, the reader is invited to consult the Description
Logic handbook [1].

3 The defeasible description logic ALCH•

We now enrich the description logic ALCH with a typicality operator •, applicable to both
concepts and roles, and of which the intuition is to capture the most typical instances of a
class or a relation.

Let C, R and I, as well as the way we denote their respective elements, be as before.
The complex roles of ALCH• are denoted with R, S, . . . and are defined by the rule:

R ::= R | •R

Complex ALCH• concepts are denoted with C,D, . . . and are built according to the rule:

C ::= > | ⊥ | C | (¬C) | (•C) | (C u C) | (C t C) | (∀R.C) | (∃R.C)

With L• we denote the language of all ALCH• concepts (including the •-less ALCH con-
cepts from Section 2), which is understood as the smallest set of symbol sequences generated
according to the rules above. When writing down elements of L•, we shall omit parenthe-
ses whenever they are not essential for disambiguation. Examples of ALCH• concepts are
•Student u ¬∃pays.Tax and ∃•worksFor.Company.

The semantics of ALCH• is in terms of DL interpretations enriched with two partial
orders, one on objects and one on pairs of objects:

Definition 1 (Bi-Ordered Interpretation) An ALCH• bi-ordered interpretation is a
tuple B := 〈∆B, ·B, <B,�B〉 such that:

2Hence, DL entailment corresponds to global consequence in modal logics [5].
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- 〈∆B, ·B〉 is an ALCH interpretation, with AB ⊆ ∆B, for each A ∈ C, rB ⊆ ∆B ×∆B,
for each r ∈ R, and aB ∈ ∆B, for each a ∈ I;

- <B ⊆ ∆B ×∆B;

- �B ⊆ (∆B ×∆B)× (∆B ×∆B), and

- Both <B and �B are well-founded strict partial orders.

Given B = 〈∆B, ·B, <B,�B〉, the intuition of ∆B and ·B is the same as in a standard DL
interpretation. The intuition underlying the orderings <B and�B is that they play the role
of preference relations (or normality orderings), in a sense similar to that introduced by
Shoham [45] with a preference on worlds in a propositional setting and as investigated by
Kraus et al. [34, 35] and others [13, 15, 25]: the objects (respectively, pairs) x (respectively,
(x, y)) that are lower down in the ordering <B (respectively, �B) are deemed as the most
normal (or typical, or expected, or conventional, depending on the application one is
modeling) in the context of a concept (respectively, role) interpretation.

Definition 2 (Semantics of L•) A bi-ordered interpretation B = 〈∆B, ·B, <B,�B〉 in-
terprets the classical constructors in the usual way, i.e., >B := ∆B, ⊥B := ∅, (¬C)B :=
∆B \CB, (C uD)B := CB ∩DB, (C tD)B := CB ∪DB, (∀R.C)B := {x | RB(x) ⊆ CB} and
(∃R.C)B := {x | RB(x) ∩ CB 6= ∅}. Typicality-based concepts and roles are interpreted as
follows:

- (•C)B := min<B CB

- (•r)B := min�B rB

Hence, under our semantics, to be a typical representative of a class (respectively, relation-
ship) amounts to being amongst the most preferred elements in that class (respectively,
relation).

The definitions of GCIs, RIAs, TBox, RBox, ABox and knowledge bases are extended
to ALCH• in the expected way: Given C,D ∈ L•, C v D is a GCI; an ALCH• TBox T is
a finite set of GCIs; given (possibly complex) roles R and S, R v S is a RIA; an ALCH•
RBox R is a finite set of RIAs; given C ∈ L•, R a role and a, b ∈ I, a : C and (a, b) : R are
assertions; moreover, from now on we shall also allow for assertions of the form (a, b) : ¬R.
An ALCH• ABox A is a finite set of assertions. Again, statements are denoted by α, β, . . ..
With KB = T ∪R∪A we denote an ALCH• knowledge base, of which the following is an
example:

T =



EmpStudent v Student u Employee,

•Student v ¬∃pays.Tax,
•EmpStudent v ∃pays.Tax u ¬•Employee,

EmpStudent u Parent v •¬∃pays.Tax,
•Employee v ∃•worksFor.Company
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R = {•worksFor v employedBy}

A = {john : EmpStudent, john : Parent, (john, ibm) : •worksFor}

Definition 3 (Satisfaction) Let B = 〈∆B, ·B, <B,�B〉, R a role, C,D ∈ L•, and a, b ∈ I.
The satisfaction relation  is defined as follows:

- B  C v D if CB ⊆ DB;

- B  R v S if RB ⊆ SB;

- B  a : C if aB ∈ CB;

- B  (a, b) : R if (aB, bB) ∈ RB;

- B  (a, b) : ¬R if (aB, bB) /∈ RB.

If B  α, then we say B satisfies α. B satisfies an ALCH• knowledge base KB, written
B  KB, if B  α for every α ∈ KB, in which case we say B is a model of KB. We say
C ∈ L• is satisfiable w.r.t. KB if there is a model B of KB s.t. CB 6= ∅.

Given a bi-ordered interpretation B, it is worth observing that (cf. Definition 2):

B  a : •C iff B  b : ¬C for every b s.t. bB <B aB (1)

B  (a, b) : •R iff B  (c, d) : ¬R for every (c, d) s.t. (cB, dB)�B (aB, bB) (2)

It is easy to see that the addition of the orderings preserves the truth of all classical
(i.e., •-less) statements holding in the remaining structure:

Lemma 1 Let B = 〈∆B, ·B, <B,�B〉, and define IB := 〈∆B, ·B〉. For every C,D ∈ L,
every r, s ∈ R and every a, b ∈ I:

- B  C v D iff IB  C v D;

- B  r v s iff IB  r v s;

- B  a : C iff IB  a : C;

- B  (a, b) : r iff IB  (a, b) : r.

Furthermore, it is not hard to check that our typicality operators are idempotent :

Lemma 2 Let B = 〈∆B, ·B, <B,�B〉. For every C ∈ L• and every role R:

- B  ••C ≡ •C;

- B  ••R ≡ •R.
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One of the consequences of Lemma 2 is that we can assume w.l.o.g. that typicality for
roles does not occur nested in the knowledge base, a hypothesis that will turn out useful
in Section 4. (In principle, we can make the same assumption about concepts, but, besides
being unnecessary here, its argument is more intricate [12] and requires the addition of
new concept names to the signature.)

Proposition 1 Let B be a bi-ordered interpretation and let C,D ∈ L•. Then

1. B  •(•C u •D) ≡ •C u •D;

2. B  •C u •D v •(C uD);

3. If B 6 •C u •D v ⊥, then B  •(C uD) v •C u •D.

Proof:
(1) The left-to-right inclusion follows from RefT below (cf. Proposition 3). For the right-
to-left one, let x ∈ (•C u •D)B. Then x ∈ (•C)B and x ∈ (•D)B, i.e., x ∈ min<B CB and
x ∈ min<B DB. Assume x /∈ (•(•C u •D))B. In this case, there is y ∈ (•C u •D)B s.t.
y <B x. Then we have y ∈ CB and y ∈ DB, and since y <B x, we get a contradiction.
(2) Let x ∈ (•C u •D)B. Then x ∈ (•C)B and x ∈ (•D)B, i.e., x ∈ min<B CB and
x ∈ min<B DB. Assume x /∈ (•(C uD))B. Therefore there is y ∈ (C uD)B s.t. y <B x, and
this leads to a contradiction.
(3) Let x ∈ (•(C u D))B, i.e., x ∈ min<B(C u D)B, and assume either x /∈ (•C)B or
x /∈ (•D)B. If x /∈ (•C)B, then, since <B is well-founded, we know there is y ∈ min<B CB

s.t. y <B x. We claim y /∈ (•D)B; for if it were the case, then we would get y ∈ (C uD)B

and y <B x, leading us to a contradiction. Hence (•C)B ∩ (•D)B = ∅, and therefore
B  •C u •D v ⊥. If x /∈ (•D)B, we reach the same conclusion through an analogous
argument.

Obviously, the concepts ¬•C and •¬C do not mean the same, at least not in general.
As a result, in the concept ¬•A, negation cannot be pushed further inwards. This has as
consequence that there can be no negated normal form (NNF) in the usual sense for L•.

As expected, typicality operators are non-monotonic:

Proposition 2 Let C,D ∈ L• and R, S be roles. It is not the case that, for every bi-
ordered interpretation B:

- If B  C v D, then B  •C v •D, and

- If B  R v S, then B  •R v •S.

Proof:
Let C = {A1, A2} and R = {r1, r2}, and let B = 〈∆B, ·B, <B,�B〉, with ∆B = {x1, x2, x3},
AB1 = {x1}, AB2 = ∆B, rB1 = {(x1, x2)}, rB2 = {(x2, x3)}, <B= {(x3, x1)} and �B=
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{((x2, x3), (x1, x2))}. Then B  A1 v A2 and B  r1 v r2, but B 6 •A1 v •A2 and
B 6 •r1 v •r2

Another consequence of our preferential semantics, but also of the fact we assume a
semantic framework as general as possible, is the fact that, as can easily be verified, there
are bi-ordered interpretations B such that:

- B  •C v D but neither B  •∃R.C v ∃R.D nor B  ∃•R.C v ∃R.D;

- B  •R v S but B 6 •∃R.C v ∃S.D;

- Either B 6 •∃R.C v ∃•R.C or B 6 ∃•R.C v •∃R.C, or both.

Since they are elementary non-monotonic operators, our typicality operators can be
used to define further non-monotonic constructs. An interesting example is the notion of
defeasible subsumption of the forms C @∼D [15, 17, 22], for C,D ∈ L•, and R@∼ S [18, 20],
for R, S roles, and that we can see as abbreviations for, respectively, the L•-GCI •C v D
and the L•-RIA •R v S. (Note that both versions of @∼ are defined for full ALCH•
and that • may also occur on the RHS of such statements.) That this characterisation
of defeasible subsumption is appropriate from the NMR point of view is witnessed by the
following result:

Proposition 3 For every bi-ordered interpretation B, every C,D,E ∈ L•, and every role
R, S, T , the following properties hold:

(RefT ) B  C @∼ C (RefR) B  R@∼R

(LLE)
B  C ≡ D, B  C @∼ E

B  D @∼ E
(And)

B  C @∼D, B  C @∼ E
B  C @∼D u E

(Or)
B  C @∼ E, B  D @∼ E
B  C tD @∼ E

(RWT )
B  C @∼D, B  D v E

B  C @∼ E

(RWR)
B  R@∼ S, B  S v T

B  R@∼ T
(CM)

B  C @∼D, B  C @∼ E
B  C uD @∼ E

Proof:
(RefT ): Let x ∈ ∆B be such that x ∈ min<B CB. Then clearly x ∈ CB and therefore
B  C @∼ C.

(RefR): Analogous to (RefT ) above.

(LLE): Assume that B  C@∼E and B  C ≡ D. Then min<B CB ⊆ EB. Since B  C ≡ D,
we have CB = DB, and therefore min<B CB = min<B DB. Hence min<B DB ⊆ EB, and
therefore B  D @∼ E.
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(And): Assume we have both B  C @∼ D and B  C @∼ E, i.e., min<B CB ⊆ DB and
min<B CB ⊆ EB, and then min<B CB ⊆ DB∩EB, from which follows min<B CB ⊆ (DuE)B.
Hence B  C @∼D u E.

(Or): Assume we have both B  C @∼ E and B  D @∼ E. Let x ∈ min<B(C tD)B. Then
x is minimal in CB ∪DB, and therefore either x ∈ min<B CB or x ∈ min<B DB. In either
case x ∈ EB. Hence B  C tD @∼ E.

(RWT ): Assume we have both B  C @∼ D and B  D v E, i.e., min<B CB ⊆ DB and
DB ⊆ EB. Hence min<B CB ⊆ EB and therefore B  C @∼ E.

(RWR): Analogous to (RWT ) above.

(CM): Assume we have both B  C @∼ D and B  C @∼ E. Then min<B CB ⊆ DB and
min<B CB ⊆ EB. Let x ∈ min<B(C uD)B. We show that x ∈ min<B CB. Suppose this is
not the case. Since <B is well-founded, there must be x′ ∈ min<B CB s.t. x′ <B x. Because
B  C @∼D, x′ ∈ DB, and then x′ ∈ CB ∩DB, i.e., x′ ∈ (C uD)B. From this and x′ <B x it
follows that x is not minimal in (C uD)B, which is a contradiction. Hence x ∈ min<B CB.
From this and min<B CB ⊆ EB, it follows that x ∈ EB. Hence B  C uD @∼ E.

That is, defining @∼ for both concepts and roles in terms of •, thereby giving it a seman-
tics in terms of our bi-ordered interpretations, delivers a notion of defeasible subsumption
satisfying the (ALCH• versions of the) KLM properties for preferential consequence rela-
tions [34]. These properties are usually seen as formalising the minimal requirements that
any appropriate notion of defeasible consequence (of which @∼ is an instance) is supposed to
satisfy. They have been discussed at length in the literature on non-monotonic reasoning
for both the propositional and the DL cases [15, 17, 27, 28, 34, 35] and therefore we shall
not repeat so here.

Let KB be an ALCH• knowledge base and α a statement. We say KB entails α,
denoted KB |= α, if B  α for every B such that B  KB. In the case KB = ∅, we say α
is preferentially valid and denote it as |= α. Assuming the example knowledge base on
Page 5, we have KB |= john : ¬∃pays.Tax.

The following result will come in handy in the definition of a tableau system in Section 4,
as it shows that all reasoning problems for ALCH• can be reduced to knowledge base
satisfiability. Its proof is analogous to that of its classical counterpart in the DL literature
and we shall omit it here:

Lemma 3 Let KB be an ALCH• knowledge base and let a be an individual name not
occurring in KB. For every C,D ∈ L•, KB |= C v D iff KB |= C u ¬D v ⊥ iff
KB ∪ {a : C u¬D} |= ⊥. Moreover, for every b, c ∈ I, KB |= b : C iff KB ∪ {b : ¬C} |= ⊥,
and KB |= (b, c) : R iff KB ∪ {(b, c) : ¬R} |= ⊥.
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4 Tableaux for preferential reasoning in ALCH•

In this section, we define a tableau-based algorithm for deciding consistency of an ALCH•
knowledge base. Our main purpose is to show the existence of a proof procedure forALCH•
that is sound and complete w.r.t. our preferential semantics and therefore we shall not
concern ourselves with optimisation matters. (Our terminology and presentation follow
those by Baader et al. [4] in the classical case.)

We start by observing that, for every bi-ordered interpretation B and every C,D ∈ L•,
B  C v D if and only if B  > v ¬CtD. In that respect, we can assume w.l.o.g. that all
GCIs in a TBox are of the form > v E, for some E ∈ L•. As we shall see, this assumption
will simplify matters when handling the information in a TBox in the tableau rules.

Note also that we can assume w.l.o.g. that the ABox is not empty, for if it is, one can
add to it the vacuous assertion a : >, for some new individual name a. It is easy to see
that the resulting (non-empty) ABox is preferentially equivalent to the original one.

Next, we define a few notions that will be useful in the remaining of the section.

Definition 4 (Subconcepts) Let C ∈ L•. The set of subconcepts of C, denoted sub(C)
is inductively defined as follows:

- If C = A ∈ C ∪ {>,⊥}, then sub(C) = {A};

- If C = C1 u C2 or C = C1 t C2, then sub(C) = {C} ∪ sub(C1) ∪ sub(C2);

- If C = ¬D or C = •D or C = ∃r.D or C = ∀r.D, then sub(C) = {C} ∪ sub(D).

Given a knowledge base KB = T ∪ R ∪ A, the set of subconcepts of KB is defined as
sub(KB) := sub(T ) ∪ sub(A), where

sub(T ) :=
⋃

CvD∈T

(sub(C) ∪ sub(D)), sub(A) :=
⋃

a:C∈A

sub(C)

Definition 5 (a-Concepts and (a, b)-Roles) Let A be an ABox and let a, b be individual
names appearing in A. With conA(a) := {C | a : C ∈ A} we denote the set of concepts
that a is an instance of w.r.t. A; with rolesA(a, b) := {R | (a, b) : R ∈ A} ∪ {¬R | (a, b) :
¬R ∈ A} we denote the set of roles instantiated by (a, b) w.r.t. A.3

Definition 6 (Ancestor) Let A be an ABox. For every a, b ∈ I and r ∈ R, if (a, b) :
r ∈ A, we say b is a (r-) successor of a and a is a predecessor of b. We call ancestor
(respectively, descendant) the transitive closure of predecessor (respectively, successor). An
individual is called root if it has no ancestor.

3Of course, our language does not have Boolean role constructors [1, Chapter 5] and therefore, strictly
speaking, ¬R is not a role. Here we shall abuse notation as it will ease the presentation.
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The following definition is used to ensure termination:

Definition 7 (Blocking) Let A be an ABox and a, b ∈ I. We say that a is blocked by b
in A if ( i) b is an ancestor of a, and ( ii) conA(a) ⊆ conA(b). We say a is blocked in A if
itself or some of its ancestors is blocked by some individual name.

We are now ready for the definition of the expansion rules for ALCH•-concepts. The
classical expansion rules are shown in Figure 1, whereas the rules handling typicality-based
constructs are shown in Figure 2.

¬-rule: if 1. a : ¬¬C ∈ A, and
2. a : C /∈ A

then A := A ∪ {a : C}
u+-rule: if 1. a : C uD ∈ A, and

2. {a : C, a : D} 6⊆ A
then A := A ∪ {a : C, a : D}

t+-rule: if 1. a : C tD ∈ A, and
2. {a : C, a : D} ∩ A = ∅

then A := A ∪ {a : E}, for some E ∈ {C,D}
u−-rule: if 1. a : ¬(C uD) ∈ A, and

2. {a : ¬C, a : ¬D} ∩ A = ∅
then A := A ∪ {a : E}, for some E ∈ {¬C,¬D}

t−-rule: if 1. a : ¬(C tD) ∈ A, and
2. {a : ¬C, a : ¬D} 6⊆ A

then A := A ∪ {a : ¬C, a : ¬D}
vT -rule: if 1. a : C ∈ A, > v D ∈ T , and

2. a : D /∈ A
then A := A ∪ {a : D}

vR-rule: if 1. (a, b) : R ∈ A, R v S ∈ R, and
2. (a, b) : S /∈ A

then A := A ∪ {(a, b) : S}
∃+-rule: if 1. a : ∃R.C ∈ A, and

2. there is no b s.t. {(a, b) : R, b : C} ⊆ A, and
3. a is not blocked

then A := A ∪ {(a, c) : R, c : C}, for c new in A
∀+-rule: if 1. {a : ∀R.C, (a, b) : R} ⊆ A, and

2. b : C /∈ A
then A := A ∪ {b : C}

∃−-rule: if 1. {a : ¬∃R.C, (a, b) : R} ⊆ A, and
2. b : ¬C /∈ A

then A := A ∪ {b : ¬C}
∀−-rule: if 1. a : ¬∀R.C ∈ A, and

2. there is no b s.t. {(a, b) : R, b : ¬C} ⊆ A, and
3. a is not blocked

then A := A ∪ {(a, c) : R, c : ¬C}, for c new in A

Figure 1: Classical expansion rules for the ALCH• tableau.

The rules in Figure 1 are as in the classical case, except for the fact that concepts and
roles in the scope of classical operators may contain the typicality operator •.
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In the ALCH• expansion rules we make use of two additional structures, namely <
and � (see the rules in Figure 2). Their respective purpose is to build the skeleton of a
preference relation on individual names and on pairs of individuals appearing in the ABox.
In the unravelling of the complete clash-free ABox (see below), if there is any, < and �
are used to define the preference relations in the constructed bi-ordered interpretation (see
proof of Lemma 4 in Appendix A). We shall use b < . . . < a (respectively, (c, d)� . . .�
(a, b)) to denote the existence of a path from b to a (respectively, from (c, d) to (a, b)) in <
(respectively, �).

Rules •+C and •+r in Figure 2 take care of positive typical instances of, respectively,
concepts and roles. First, they make sure that typical instances of concepts and roles are
indeed instances thereof. Second, they ensure Properties (1) and (2) above (cf. paragraph
following Definition 3).

Rule •−C handles non-typical instances of a concept. There are two possible reasons for
an object not to be a typical member of a class C: either it is not in C, or it is, but there
is another instance of C that is more preferred than it. This is captured by the or-like
branch in the rule.

The •−r -rule handles the non-typical instantiations of roles and its rationale is analogous
to that of the •−C-rule.

Finally, Rules •?C and •?r handle lack of information about an instance’s typicality. If
we know a is in C, but nothing about a being typical in C or not, then we have to explore
two possibilities, namely, if a is a typical instance of C, and if it is not. An analogous
reasoning holds for instances of a role.

Definition 8 (Complete and clash-free ABox) Let A be an ABox. We say A con-
tains a clash if there is a ∈ I and C ∈ L• such that {a : C, a : ¬C} ⊆ A or there are
a, b ∈ I and a role R such that {(a, b) : R, (a, b) : ¬R} ⊆ A. We say A is clash-free if
it does not contain a clash. A is complete if contains a clash or if none of the expansion
rules in Figures 1 and 2 is applicable to A.

Let ndexp(·) denote a function taking as input a clash-free ABox A, a nondeterministic
rule ρ from Figures 1 and 2, and an assertion α ∈ A such that ρ is applicable to α in A. In
our case, the nondeterministic rules are the t+-, u−- and •−C-rules. The function returns
a set ndexp(A, ρ, α) containing each of the possible ABoxes resulting from the application
of ρ to α in A.

The tableau-based procedure for checking consistency of an ALCH• knowledge base
KB = T ∪ R ∪ A is given in Algorithm 1 below. It uses Function Expand to apply the
rules in Figures 1 and 2 to A w.r.t. T and R.

We can now state the main result of the present section.

Theorem 1 Algorithm 1 is sound and complete w.r.t. preferential consistency of ALCH•
knowledge bases.
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•+C-rule: if 1. a : •C ∈ A, and either
2.1. a : C /∈ A or
2.2. b : ¬C /∈ A, for some b s.t. b < . . . < a

then A := A ∪ {a : C, b : ¬C}
•−C-rule: if 1. a : ¬•C ∈ A, and

2. a : ¬C /∈ A, and
3. there is no b s.t. b : C ∈ A and b < . . . < a

then (a) A := A ∪ {a : ¬C}, or
(b) A := A ∪ {a : C, c : C} and < := < ∪ {(c, a)}, for c new in A

•+r -rule: if 1. (a, b) : •r ∈ A, and either
2.1. (a, b) : r /∈ A or
2.2. (c, d) : ¬r /∈ A, for some (c, d) s.t. (c, d)� . . .� (a, b)

then A := A ∪ {(a, b) : r, (c, d) : ¬r}
•−r -rule: if 1. (a, b) : ¬•r ∈ A, and

2. (a, b) : ¬r /∈ A, and
3. there are no c, d s.t. (c, d) : r ∈ A and (c, d)� . . .� (a, b)

then (a) A := A ∪ {(a, b) : ¬r}, or
(b) A := A ∪ {(a, b) : r, (e, f) : r} and � := � ∪ {((e, f), (a, b))}, for e, f new in A

•?C-rule: if 1. a : C ∈ A, and
2. {a : •C, a : ¬•C} ∩ A = ∅

then A := A ∪ {a : E}, for some E ∈ {•C,¬•C}
•?r-rule: if 1. (a, b) : r ∈ A, and

2. {(a, b) : •r, (a, b) : ¬•r} ∩ A = ∅
then A := A ∪ {(a, b) : R}, for some R ∈ {•r,¬•r}

Figure 2: •-based expansion rules for the ALCH• tableau.

Proof:
The result follows from Lemmas 4 and 5 in Appendix A.

5 Related work
To the best of our knowledge, the first approach to an explicit notion of typicality in DLs
was the one by Giordano et al. [25]. They introduced a typicality operator T(·), applicable
to concepts only, and for which they define a preferential semantics that is a special case
of ours, in the sense that they place a preference relation only on objects of the domain.
In their setting, a concept of the form T(C), understood as referring to the typical objects
falling under C, serves as a macro for the sentence C u �¬C in a description language
extended with a modality capturing the behaviour of a preference relation on objects.
Hence, the intuition of x ∈ (T(C))I = (C u�¬C)I is that x is an instance of C and any
other object that is more preferred than x falls under ¬C. (This semantic characterisation
can be shown to be analogous to the one we have given here if preferences on pair of objects
are not taken into account.) It is worth pointing out, though, that in Giordano et al.’s
framework, the typicality operatorT(·) is tacitly assumed to occur only in the left-hand side
of GCIs and not in the scope of other concept constructors. Not having such a syntactic
constraint is a feature of our approach that we have put forward in the present work.
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Algorithm 1: Consistent(KB)
Input: An ALCH• knowledge base KB = T ∪ R ∪A

1 if Expand(KB) 6= ∅ then
2 return “Consistent”

3 else
4 return “Inconsistent”

Function Expand(KB)
Input: An ALCH• knowledge base KB = T ∪ R ∪A

1 while A is not complete do
2 Select a rule ρ that is applicable to A;
3 if ρ is a nondeterministic rule then
4 Select an assertion α ∈ A to which ρ is applicable;
5 if there is A′ ∈ ndexp(A, ρ, α) with Expand(T ∪ R ∪A′) 6= ∅ then
6 return Expand(T ∪ R ∪A′)
7 else
8 return ∅

9 else
10 Apply ρ to A

11 if A contains a clash then
12 return ∅
13 else
14 return 〈A, <,�〉

When it comes to reasoning about typicality, Giordano et al. have defined a tableau
calculus for their preferential extension of DLs [28]. There are many similarities between
their calculus and the one we presented here. Besides having a simpler presentation, our
calculus does not have to explicitly handle an extra modality in the way Giordano et al.’s
does, and is therefore more elegant.

More recently, Giordano et al. have gone beyond preferential entailment in that they
have also explored a definition of non-monotonic entailment for their description logic
of typicality [30] corresponding to the well-known notion of rational closure as studied
by Lehmann and Magidor in the propositional case [35]. Semantically, and roughly, this
amounts to a version of a minimal-model semantics, in which some interpretations are
preferred over others. This is a promising extension of our work that we may consider.
Nevertheless, special care must be taken since Giordano et al.’s approach has a circum-
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scriptive [37, 38] flavour to it (even if not completely) in that it relies on the explicit
specification by the knowledge engineer of a set of concepts for which atypical instances
must be minimised.

Booth et al. [11, 12] investigated the addition of a typicality operator • to propositional
logic, of which the semantics is given in terms of KLM ranked models [35]. The logic thus
obtained is more expressive than that of KLM conditional statements, allowing us to
move beyond propositional defeasible conditionals. Following up on that, Booth et al. [10]
investigated two semantic versions of entailment in the presence of •, constructed using
two different forms of minimality. Both are based on the notion of rational closure defined
by Lehmann and Magidor for KLM-style conditionals. It was shown that (i) these notions
of entailment can be viewed as generalised definitions of rational closure; (ii) that they are
equivalent w.r.t. the conditional language originally proposed by Kraus et al., but (iii) they
are different in the language enriched with •. We may consider taking the approach by
Booth et al. as a springboard to investigate rationality and different forms of non-monotonic
entailment for ALCH•.

Britz et al. [14] have introduced the notion of defeasible role restrictions, a variant of
generalised quantifiers [36]. The idea is to extend the concept language with an additional
construct

∨∼, the defeasible value restriction. The semantics of
∨∼r.C is then given by all

objects of the domain such that all of their minimal r-related objects are C-instances. This
is useful in situations where certain classical concept descriptions may be too strong.

Recently, Britz and Varzinczak have lifted the preferential semantics to also allow for
orderings on role-interpretations [18, 20], as we have done here, and multi-orderings on
objects of the domain [19, 21]. The latter give us the handle needed to introduce a notion
of context in defeasible subsumption relations making typicality a relativised construct.
The former provides a semantics for defeasible role inclusions of the form r @∼ s and for
defeasible role assertions such as “r is usually transitive”, “r and s are usually disjoint”, as
well as others.

Another recent proposal is the approach by Bonatti et al. [6, 9], which introduces a
normality operator N(·) on concepts only but that can also be used in the scope of other
operators, as in the statement N(C)uN(D) v ∃r.N(E). The resulting system, DLN , is not
based on the preferential approach, though, and as a consequence their closure operation
does not allow defeasible subsumption to satisfy the preferential properties. Nevertheless,
Bonatti et al.’s approach satisfies some interesting properties on the meta-level. It also has
the advantage of being computationally tractable for any tractable classical DL.

6 Concluding remarks
We have introduced ALCH•, a description logic allowing for an explicit notion of typicality
that can be applied to both concepts and roles and of which the intuition is to capture the
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most typical instances of, respectively, classes and relations. We have seen that ALCH•
can be given a simple and intuitive semantics in terms of partially-ordered structures in
the spirit of the preferential approach to defeasible reasoning. We have defined a tableau-
based proof procedure for ALCH• that we have shown to be sound and complete w.r.t.
our preferential semantics.

When compared to other approaches to non-monotonicity in DLs, the novelty ofALCH•
resides in the provision of a unifying framework for typicality of both classes and relations
and that can serve as the foundation for extensions of defeasible DLs of increasing expres-
sivity, with non-monotonicity at the level of concepts as well as that of roles.

Space considerations have prevented us from showing termination of our tableau-based
algorithm. Nonetheless, the result does hold and therefore we can claim there is a decision
procedure for satisfiability of ALCH• knowledge bases.

As for the computational complexity of reasoning with generalALCH• knowledge bases,
we conjecture it is exptime-complete, and therefore in the same complexity class of the
problem of reasoning with general (classical) ALCH knowledge bases. The algorithm we
presented is not optimal in that it can be shown to run in time that is doubly exponential
in the size of the input knowledge base. An investigation of optimal tableaux for ALCH•
reasoning is a task we shall for now leave for future work.

The work here presented can be taken further in many ways. Some concrete next
steps comprise: (i) An extension of the underlying language with further DL constructs
such as cardinality restrictions, role operations, nominals and role assertions [1], along
with new notions of typicality that those may call for, or even non-monotonic versions of
the classical operators [18, 20]; (ii) An extension of the preferential semantics to allow
for multi-orderings on both objects and role interpretations, each ordering standing for a
notion of context [19] and giving rise to a context-based typicality operator for concepts
and roles, and (iii) An investigation of non-monotonic entailment for ALCH•, in particular
of what the notion of rational closure [35] semantically corresponds to when ordering pairs
of objects. (The work by Booth et al. [10] on entailment for propositional typicality may
provide us with a starting point for tackling this issue.)
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A Proof of Theorem 1
We remind the reader that we can assume w.l.o.g. that all GCIs in a TBox are of the
form > v E, for E ∈ L•, and that the ABox is non-empty (cf. beginning of Section 4).

Lemma 4 Let KB = T ∪ R ∪ A. If Consistent(KB) returns “Consistent”, then KB is
preferentially consistent.

Proof:
Let KB = T ∪ R ∪ A and assume Consistent(KB) returns “Consistent”. Then the result
of Expand(KB) is non-empty. Let 〈A′, <A′ ,�A′〉 be the result returned by Expand(KB).
Hence A′ is a complete and clash-free ABox. Moreover, since the expansion rules never
delete assertions, we have A ⊆ A′. In what follows, we will:

1. Define a modification 〈A′′, <,�〉 of 〈A′, <A′ ,�A′〉 to deal with blocked individuals
in A′ and such that A ⊆ A′′;

2. Show that A′′ is complete and clash-free;

3. Use A′′, along with < and �, to construct a suitable bi-ordered interpretation sat-
isfying KB, which is a witness to the preferential consistency of KB.

Dealing with 1. Let A′′, < and � be defined as follows:

A′′ := {a : C | a : C ∈ A′ and a is not blocked} ∪
{(a, b) : R | (a, b) : R ∈ A′ and b is not blocked} ∪
{(a, b′) : R | (a, b) : R ∈ A′, a is not blocked and b is blocked by b′} ∪
{(a, b) : ¬R | (a, b) : ¬R ∈ A′ and a, b are not blocked}

< := {(a, b) | (a, b) ∈ <A′ and b is not blocked} ∪
{(a, b′) | (a, b) ∈ <A′ , a is not blocked and b is blocked by b′}

� := {((a, b), (c, d)) | ((a, b), (c, d)) ∈ �A′ and b, d are not blocked} ∪
{((a, b), (c, d)) | ((a, b), (c, d)) ∈ �A′ , a, c are not blocked,

b is blocked by b′ and d is blocked by d′}

It is not hard to see that A ⊆ A′′: first note that A ⊆ A′; then observe that for all
assertions a : C, (a, b) : R and (a, b) : ¬R in A, both a and b are root individuals (see
Definition 6), and therefore can never be blocked.

An immediate consequence of the definition of A′′ is the following property: For every
a, b in A′′,A′,
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conA′′(a) = conA′(a) and rolesA′′(a, b) = rolesA′(a, b) (∗)

Moreover, it is not hard to see that, by construction, < and � simulate <A′ and �A′′

for non-blocked (and pairs of non-blocked) individuals.

Dealing with 2. Since A′ is clash-free, A′′ is also clash-free, for if A′′ contained a clash,
Property (∗) would imply A′ has a clash, too. It remains to show that A′′ is complete,
which we do by showing that none of the expansion rules is applicable to A′′.

- ¬-rule: If a : ¬¬C ∈ A′′, then by (∗) we get a : ¬¬C ∈ A′, and since A′ is complete,
we have a : C ∈ A′. By (∗) we have a : C ∈ A′′, and then the ¬-rule is not applicable
to A′′.

- u+-rule: If a : CuD ∈ A′′, then by (∗) we have a : CuD ∈ A′. Since A′ is complete,
{a : C, a : D} ⊆ A′. By (∗) again, {a : C, a : D} ⊆ A′′ and therefore the u+-rule is
not applicable to A′′.

- t+-rule: If a : CtD ∈ A′′, then by (∗) we have a : CtD ∈ A′. Since A′ is complete,
{a : C, a : D} ∩ A′ 6= ∅. By (∗) again, {a : C, a : D} ∩ A′′ 6= ∅ and therefore the
t+-rule is not applicable to A′′.

- u−- and t−-rules are analogous to the two previous cases.

- vT -rule: Let > v D ∈ T . If a : C ∈ A′′, then by (∗) we have a : C ∈ A′. Since A′
is complete, a : D ∈ A′, too. By (∗) again, we get a : D ∈ A′′ and therefore the
vT -rule is not applicable to A′′.

- vR-rule: Let R v S ∈ R. If (a, b) : R ∈ A′′, then by (∗) we have (a, b) : R ∈ A′.
Since A′ is complete, (a, b) : S ∈ A′, and then by (∗) we have (a, b) : S ∈ A′′. Hence
the vR-rule is not applicable to A′′.

- ∃+-rule: If a : ∃R.C ∈ A′′, then by (∗) a : ∃R.C ∈ A′. This implies a is not blocked
in A′, and therefore there is b s.t. {(a, b) : R, b : C} ⊆ A′, for A′ is complete. There
are two possible cases:

– b is not blocked: Then {(a, b) : R, b : C} ⊆ A′′, from the construction of A′′;
– b is blocked: Since a is not blocked and is b’s predecessor, we must have that b

is blocked by some b′ in A′. Hence we have (i) (a, b′) : R ∈ A′′, by construction
of A′′. Clearly, b′ is not blocked because it is an ancestor of b which is a
successor of an individual that is not blocked. Also, conA′(b) ⊆ conA′(b′), and
then b′ : C ∈ A′. This and (∗) imply (ii) b′ : C ∈ A′′. From (i) and (ii) follows
{(a, b′) : R, b′ : C} ⊆ A′′.

In both cases above, the ∃+-rule is not applicable to A′′.
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- ∀+-rule: If {a : ∀R.C, (a, b′) : R} ⊆ A′′, then a : ∀R.C ∈ A′, by (∗), and neither a
nor b′ is blocked in A′. There are two possible cases:

– (a, b′) : R ∈ A′: Then b′ : C ∈ A′, for A′ is complete. From (∗) we get
b′ : C ∈ A′′;

– (a, b′) : R /∈ A′: Then there is b s.t. (a, b) : R ∈ A′, with b blocked by b′ in A′,
and b : C ∈ A′, since A′ is complete. Moreover, since conA′(b) ⊆ conA′(b′), we
have b′ : C ∈ A′. This and (∗) yield b′ : C ∈ A′′.

In both cases above, the ∀+-rule is not applicable to A′′.

- ∃−- and ∀−-rules are analogous to the two previous cases.

- •+C-rule: If a : •C ∈ A′′, then by (∗) we have a : •C ∈ A′. Since A′ is complete,
a : C ∈ A′ and for all b s.t. b <A′ . . . <A′ a, b : ¬C ∈ A′. By (∗) again and the
construction of <, we have a : C ∈ A′′ and for all b s.t. b < . . . < a, b : ¬C ∈ A′′.
Hence the •+C-rule is not applicable to A′′.

- •−C-rule: If a : ¬•C ∈ A′′, then by (∗) we have a : ¬•C ∈ A′. Since A′ is complete,
we have either (i) a : ¬C ∈ A′, or (ii) {a : C, c : C} ⊆ A′ and (c, a) ∈<A′ . From (i)
and (∗) follows (iii) a : ¬C ∈ A′′. From (ii), (∗) and the construction of < follows
(iv) {a : C, c : C} ⊆ A′′ and (c, a) ∈<. In either of (ii) and (iv), the •−C-rule is not
applicable to A′′.

- •+r -rule: If (a, b) : •r ∈ A′′, there are two possible cases:

– (a, b) : •r ∈ A′: Then, since A′ is complete, (a, b) : r ∈ A′, and for all (c, d) s.t.
(c, d)�A′ . . .�A′ (a, b), (c, d) : ¬r ∈ A′. By (∗) and the construction of �, we
get (a, b) : r ∈ A′′ and for all (c, d) s.t. (c, d)� . . .� (a, b), (c, d) : ¬r ∈ A′′;

– (a, b) : •r /∈ A′: Then, there is b′ s.t. (a, b′) : •r ∈ A′, with b′ blocked by b
in A′. Since A′ is complete, (a, b′) : r ∈ A′ and for all (c, d) s.t. (c, d) �A′

. . . �A′ (a, b′), (c, d) : ¬r ∈ A′. Then, by construction of A′′ and �, we have
(a, b) : r ∈ A′′, and for all (c, d) s.t. (c, d)� . . .� (a, b), (c, d) : ¬r ∈ A′′.

In both cases above, the •+r -rule is not applicable to A′′.

- •−r -rule: If (a, b) : ¬•r ∈ A′′, then by (∗) we have (a, b) : ¬•r ∈ A′. From complete-
ness of A′, we have either (i) (a, b) : ¬r ∈ A′, or (ii) {(a, b) : r, (c, d) : r} ⊆ A′ and
((c, d), (a, b)) ∈�A′ . If (i) is the case, (a, b) : ¬r ∈ A′′. If (ii) is the case, since c, d
are not blocked (they are root individuals, for they were freshly introduced), we have
{(a, b) : r, (c, d) : r} ⊆ A′′ and ((c, d), (a, b)) ∈�. In both (i) and (ii), the •−r -rule is
not applicable to A′′.
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- •?C-rule: If a : C ∈ A′′, then by (∗) a : C ∈ A′. Since A′ is complete, {a : •C, a :
¬•C}∩A′ 6= ∅. By (∗) again, {a : •C, a : ¬•C}∩A′′ 6= ∅, and therefore the •?C-rule
is not applicable to A′′.

- •?r-rule: If (a, b) : r ∈ A′′, then by (∗) (a, b) : r ∈ A′. Since A′ is complete,
{(a, b) : •r, (a, b) : ¬•r} ∩ A′ 6= ∅. By (∗) again, {(a, b) : •r, (a, b) : ¬•r} ∩ A′′ 6= ∅,
and therefore the •?r-rule is not applicable to A′′.

Dealing with 3. We use A′′ together with < and� to construct a suitable model B for KB
as follows:

- ∆B := {a | a is an individual name occurring in A′′};

- aB := a, for each individual name occurring in A′′;

- AB := {a | A ∈ conA′′(a)}, for each concept name occurring in A′′;

- rB := {(a, b) | (a, b) : r ∈ A′′}, for each role name occurring in A′′;

- <B := <+;

- �B := �+.

We show that B := 〈∆B, ·B, <B,�B〉 is a bi-ordered interpretation satisfying KB =
T ∪ R ∪A.

First we show that B is a bi-ordered interpretation (cf. Definition 1):

- ∆B 6= ∅, as we assumed A 6= ∅ and A ⊆ A′′;

- By construction, ·B maps every individual name in A′′ to an element of ∆B, every
concept name A ∈ sub(A′′) to a subset of ∆B, and every role name r occurring in A′′
to a subset of ∆B ×∆B;

- It is easy to see that both <B and�B are well-founded strict partial orders, for (i) in
both < and � no reflexive elements are ever introduced, as only pairs containing
either a new individual name a or a new pair (a, b) are added at the beginning of
the respective chain; (ii) by an analogous argument, no symmetric elements are ever
added to < or �; (iii) taking their transitive closure clearly delivers a transitive
relation, and (iv) since both < and� are finite, we have that <B and�B are finite,
too, and therefore the orderings are well-founded.

Hence, B is a bi-ordered interpretation.

Now we show that B satisfies all concepts and role assertions in A, all GCIs in T , and
all RIAs in R.

We start by showing that B satisfies all concepts and role assertions in A′′, and since
A ⊆ A′′, we will get B  A. First, it is not hard to see that, by its construction, B satisfies
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all role assertions in A′′. To see that B satisfies all concept assertions in A′′, we show the
following property:

If a : C ∈ A′′, then aB ∈ CB (∗∗)

The proof is by induction on the structure of concepts:

Induction basis: Let C = A ∈ C. By the definition of B, if a : C ∈ A′′, then aB ∈ CB.

Induction steps: (Since there is no NNF for L•—cf. paragraph following Proposition 1—
we have to analyse more cases than if it had been otherwise. Moreover, note that the case
C = ¬D, for an arbitrary D, can be reduced to all the others below through De Morgan’s
laws and therefore we do not address it explicitly here.)

- Let C = ¬A, for A ∈ C. Since A′′ is clash-free, a : ¬A ∈ A′′ implies a : A /∈ A′′, and
therefore A /∈ conA′′(a). From this and the construction of B, it follows that a /∈ AB.

- Let C = D u E. If a : D u E ∈ A′′, then, since A′′ is complete, {a : D, a : E} ⊆ A′′,
otherwise the u+-rule would be applicable to A′′. By the induction hypothesis,
aB ∈ DB and aB ∈ EB, and therefore aB ∈ DB ∩ EB = (D u E)B.

- Let C = DtE. If a : DtE ∈ A′′, then, since A′′ is complete, {a : D, a : E}∩A′′ 6= ∅,
otherwise the t+-rule would be applicable to A′′. By the induction hypothesis,
aB ∈ DB or aB ∈ EB, and therefore aB ∈ DB ∪ EB = (D t E)B.

- Let C = ∀R.D. We distinguish two cases, namely R = r and R = •r, for r ∈ R.

– Case R = r: Assume a : ∀r.D ∈ A′′, and let (aB, bB) ∈ rB, for an arbitrary b.
Then, by construction of B, (a, b) : r ∈ A′′, and since A′′ is complete and
a : ∀r.D ∈ A′′, we have b : D ∈ A′′, otherwise the ∀+-rule would be applicable
to A′′. By the induction hypothesis, bB ∈ DB. Since b is arbitrary, the above
holds for all b s.t. (aB, bB) ∈ rB and therefore aB ∈ (∀r.D)B.

– Case R = •r: Assume a : ∀•r.D ∈ A′′, and let (aB, bB) ∈ (•r)B, for an ar-
bitrary b. Assume (a, b) : •r /∈ A′′. Then, since (a, b) : r ∈ A′′ (because
(aB, bB) ∈ (•r)B ⊆ rB), the •?r-rule is applicable to A′′. Hence (a, b) : •r ∈ A′′.
Moreover, since A′′ is complete and a : ∀•r.D ∈ A′′, we have b : D ∈ A′′,
otherwise the ∀+-rule would be applicable to A′′. By the induction hypothesis,
bB ∈ DB. Since b is arbitrary, the above holds for all b s.t. (aB, bB) ∈ (•r)B and
therefore aB ∈ (∀•r.D)B.

- Let C = ∃R.D. Again, we distinguish two cases: R = r and R = •r, for r ∈ R.

– Case R = r: Let a : ∃r.D ∈ A′′. Since A′′ is complete, {(a, b) : r, b : D} ⊆ A′′.
By the construction of B, (aB, bB) ∈ rB. By the induction hypothesis, bB ∈ DB.
Putting these results together gives us aB ∈ (∃r.D)B.
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– Case R = •r: Let a : ∃•r.D ∈ A′′. Since A′′ is complete, {(a, b) : •r, (a, b) :
r, b : D} ⊆ A′′. By the construction of B, (aB, bB) ∈ rB and there is no c, d
s.t. (cB, dB) �B (aB, bB). Hence (aB, bB) ∈ (•r)B. By the induction hypothesis,
bB ∈ DB. Therefore, aB ∈ (∃•r.D)B.

- Let C = •D. Assume a : •D ∈ A′′. Since A′′ is complete, a : D ∈ A′′ (and by the
induction hypothesis we have aB ∈ DB), and for every b s.t. b < . . . < a, b : ¬D ∈ A′′.
As we already know, bB ∈ (¬D)B. Hence, by the construction of B, for every bB s.t.
bB <B aB, bB ∈ (¬D)B, and therefore aB ∈ min<B DB.

- Let C = ¬•D. Assume a : ¬•D ∈ A′′. Since A′′ is complete, either a : ¬D ∈ A′′ or
{a : D, c : D} ⊆ A′′ and c < a. If a : ¬D ∈ A′′, then by the induction hypothesis
aB ∈ (¬D)B and therefore aB ∈ (¬•D)B. If {a : D, c : D} ⊆ A′′ and c < a,
then aB ∈ DB and cB ∈ DB (by the induction hypothesis) and cB <B aB (by the
construction of B). Hence aB /∈ (•D)B, i.e., aB ∈ (¬•D)B.

This concludes the proof of (∗∗). Hence B  A′′ and therefore B  A.

Now we show that B is a model of T . Let > v D ∈ T and let a be an arbitrary
individual occurring in A′′. Since A′′ is complete, a : D ∈ A′′. Hence a = aB ∈ DB, since
B  A′′. Given that a is arbitrary (i.e., we assumed any a ∈ ∆B, the set of individual
names in A′′), we have ∆B ⊆ DB, as required. Hence B  T .

Finally, we show that B is a model of R. First, recall that the elements of R have one
of four possible forms, namely r v s, r v •s, •r v s and •r v •s. We analyse each case.

- Assume r v s ∈ R. If (aB, bB) ∈ rB, then (a, b) : r ∈ A′′, by construction of B.
Since A′′ is complete, (a, b) : s ∈ A′′, and then (aB, bB) ∈ sB.

- Assume r v •s ∈ R. If (aB, bB) ∈ rB, then (a, b) : r ∈ A′′, by construction of B.
Since A′′ is complete, {(a, b) : •s, (a, b) : s} ⊆ A′′ and then (aB, bB) ∈ min�B sB.

- Assume •r v s ∈ R. If (aB, bB) ∈ (•r)B, then (aB, bB) ∈ rB and (a, b) : r ∈ A′′.
We must have (a, b) : •r ∈ A′′, otherwise the •?r-rule would be applicable. Hence
(a, b) : s ∈ A′′, and then (aB, bB) ∈ sB.

- Assume •r v •s ∈ R. If (aB, bB) ∈ (•r)B, then (aB, bB) ∈ rB and (a, b) : r ∈ A′′.
We must have (a, b) : •r ∈ A′′, otherwise the •?r-rule would be applicable. Hence
(a, b) : •s ∈ A′′, and then (aB, bB) ∈ min�B sB.

Hence B  R.

Putting all the results together, we have that B  KB and therefore KB is preferentially
satisfiable.
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Lemma 5 Let KB = T ∪R∪A. If KB is preferentially consistent, then Consistent(KB)
returns “Consistent”.

Proof:
Assume KB = T ∪ R ∪ A is preferentially consistent, and let B = 〈∆B, ·B, <B,�B〉 be a
model of KB. In particular, B  A. Since A is consistent, it does not contain a clash.

If A is complete, and since it is clash-free, Expand(KB) returns A and Consistent(KB)
returns “Consistent”.

Assume A is not complete. Then Expand(KB) performs iterations of the while loop
until A is complete; each iteration selects a rule and applies it, possibly calling Expand(·)
recursively. We show that this while loop in Expand(·) preserves consistency. We do so by
analysing all possible cases of applicable rules:

- ¬-rule: If a : ¬¬C ∈ A, then aB ∈ (¬¬C)B = CB and therefore B is a model
of A ∪ {a : C}. Hence A is still consistent after the rule is applied.

- u+-rule: If a : C uD ∈ A, then aB ∈ (C uD)B = CB ∩DB, and then both aB ∈ CB
and aB ∈ DB. Hence B is a model of A ∪ {a : C, a : D}, so A is still consistent after
the application of the rule.

- t+-rule: If a : C t D ∈ A, then aB ∈ (C t D)B = CB ∪ DB, i.e., either aB ∈ CB

or aB ∈ DB. Hence at least one of the ABoxes A′ ∈ ndexp(A,t+, a : C t D) is
consistent. Then Expand(T ∪R∪A′) is called recursively with A′ being consistent,
and we can repeat the same argument.

- u−- and t−-rules are analogous to both cases above.

- vT -rule: If a : C ∈ A and > v D ∈ T , then aB ∈ DB in any model B of T ∪R∪A,
so B is still a model of T ∪ R ∪A ∪ {a : D}.

- vR-rule: If (a, b) : R ∈ A and R v S ∈ R, then both (aB, bB) ∈ RB and RB ⊆ SB

in any model B of T ∪ R ∪ A, and therefore (aB, bB) ∈ SB. Hence B is a model
of A ∪ {(a, b) : S} and A is still consistent.

- ∃+-rule: If a : ∃R.C ∈ A, then aB ∈ (∃R.C)B, and then there is some x ∈ ∆B s.t.
(aB, x) ∈ RB and x ∈ CB. It is not hard to see that there is a model B′ of A that is
identical to B, except that for some new individual name d, we have dB = x. Clearly,
B′ is a model of A∪ {(a, d) : r, d : C}, so A is still consistent after the application of
the rule.

- ∀+-rule: If {a : ∀R.C, (a, b) : R} ⊆ A, then aB ∈ (∀R.C)B, (aB, bB) ∈ RB, and
bB ∈ CB. Then B is a model of A ∪ {b : C}, and therefore A is still consistent after
the rule is applied.

- ∃−- and ∀−-rules are analogous to those above.
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- •+C-rule: If a : •C ∈ A, then aB ∈ min<B CB. Let b be s.t. b < . . . < a. If b : C ∈ A,
then b was created by the •−C-rule (which is the only rule that creates <-elements),
and then a : ¬•C ∈ A, which is impossible, as A is clash-free. Therefore b : C /∈ A.
It is not hard to see that there is a model B′ of A that is identical to B, except for
the fact that bB ∈ (¬C)B. Hence B satisfies A ∪ {a : C, b : ¬C}. Since b is arbitrary,
A is still consistent after the rule is applied.

- •−C-rule: If a : ¬•C ∈ A, then aB /∈ min<B CB, i.e., either (i) aB /∈ CB or (ii) aB ∈ CB
and there is b s.t. bB <B aB and bB ∈ CB. If (i) is the case, then B is a model of
A ∪ {a : ¬C}. If (ii) is the case, then B is a model of A ∪ {b : C}. In both cases, A
is still consistent after the application of the rule.

- •+r -rule: If (a, b) : •r ∈ A, then (aB, bB) ∈ min�B rB. Let c, d be s.t. (c, d) � . . . �
(a, b). If (c, d) : r ∈ A, then (c, d) was created by the •−r -rule (which is the only rule
that creates �-elements), and then (a, b) : ¬•r ∈ A, which is impossible, since A
is clash-free. Hence (c, d) : r /∈ A. It is not hard to see that there is a model B′
of A that is identical to B, except for the fact that (aB

′
, bB

′
) /∈ rB′ . Hence B satisfies

A ∪ {(a, b) : r, (c, d) : ¬r}. Since c, d are arbitrary, A is still consistent after the rule
is applied.

- •−r -rule: If (a, b) : ¬•r ∈ A, then (aB, bB) /∈ min�B rB, i.e., either (i) (aB, bB) /∈ rB or
(ii) (aB, bB) ∈ rB and there is (c, d) s.t. (cB, dB)�B (aB, bB) and (cB, dB) ∈ rB. If (i)
is the case, then B is a model of A ∪ {(a, b) : ¬r}. If (ii) is the case, then B is a
model of A ∪ {(a, b) : r, (c, d) : r}. In both cases, A is still consistent after the rule
is applied.

- •?C-rule: If a : C ∈ A, then aB ∈ CB. Then either aB ∈ min<B CB or not. If aB ∈
min<B CB, then B satisfies A∪{a : •C}. If not, then B is a model of A∪{a : ¬•C}.
In both cases, A is still consistent after the application of the rule.

- •?r-rule: If (a, b) : r ∈ A, then (aB, bB) ∈ rB. Hence either (aB, bB) ∈ min�B rB

or not. If (aB, bB) ∈ min�B rB, then B satisfies A ∪ {(a, b) : •r}. If not, then B is
a model of A ∪ {(a, b) : ¬•r}. In both cases, A is still consistent after the rule is
applied.

The proof of Theorem 1 follows immediately from Lemmas 4 and 5.
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