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Abstract. We continue the investigations initiated in the recent papers
[7, 11] where Bayes logics have been introduced to study the general
laws of Bayesian belief revision. In Bayesian belief revision a Bayesian
agent revises (updates) his prior belief by conditionalizing the prior on
some evidence using the Bayes rule. In this paper we take the more
general Jeffrey formula as a conditioning device and study the corre-
sponding modal logics that we call Jeffrey logics, focusing mainly on
the countable case. The containment relations among these modal log-
ics are determined and it is shown that the logic of Bayes and Jeffrey
updating are very close. It is shown that the modal logic of belief revi-
sion determined by probabilities on a finite or countably infinite set of
elementary propositions is not finitely axiomatizable. The significance of
this result is that it clearly indicates that axiomatic approaches to belief
revision might be severely limited.
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1. Background and overview

This paper continues the investigations initiated in the recent papers [7, 11]
where Bayes logics have been introduced to study the modal logical properties
of statistical inference (Bayesian belief revision) based on Bayes conditional-
ization.

Suppose (X,B, p) is a probability space where the probability measure
p describes knowledge of statistical information of elements of B. In the ter-
minology of probabilistic belief revision one says that elements in B stand
for the propositions that an agent regards as possible statements about the
world, and the probability measure p represents an agent’s prior degree of
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beliefs in the truth of these propositions. Belief revision is about to learn
new pieces of information: Learning proposition A ∈ B to be true, the agent
revises his prior p on the basis of this evidence and replaces p with some new
probability measure q (often called posterior) that can be regarded as the
probability measure that the agent infers from p on the basis of the informa-
tion (evidence) that A is true. This transition from p to q is what is called
statistical inference. We say in this situation that “q can be learned from p”1

and that “it is possible to obtain/learn q from p”. This clearly is a modal talk
and calls for a logical modeling in terms of concepts of modal logic. Indeed,
the core idea of the paper [7] was to look statistical inference as an accessi-
bility relation between probability measures: the probability measure q can
be accessed from the probability measure p if for some evidence A we can
infer from p to q. (For more motivation on how exactly modal logic come to
the picture we refer to the introduction of [7]).

But how do we get q? One possible answer is a fundamental model of
statistical inference, the standard Bayes model that relies on Bayes condition-
alization of probabilities: given a prior probability measure p and an evidence
A ∈ B the inferred measure q is defined by conditionalizing p upon A using
the Bayes rule:

q(H)
.
= p(H | A) =

p(H ∩A)

p(A)
(∀H ∈ B) (1.1)

provided p(A) 6= 0. When q can be obtained from p using Bayes condition-
alization upon some evidence A we say that q is Bayes accessible from p.
The paper [7] studied the logical aspects of this type of inference from the
perspective of modal logic and also hints that a similar analysis could be car-
ried out when Bayes accessibility is replaced by the more general accessibility
based on Jeffrey conditionalization.

Indeed, Bayesian belief revision is just a particular type of belief revision:
Various rules replacing the Bayes rule have been considered in the context of
belief change, and one important particular type is Jeffrey conditionalization
(see [32] and [9]). Jeffrey conditioning is a way of inferring to a new probability
q from the prior probability p and from an uncertain evidence ri assigned to
a finite2 partition {Ei}i<n of X (ri ≥ 0,

∑
i<n ri = 1, p(Ei) > 0) by making

use of the Jeffrey rule:

q(H)
.
=
∑
i<n

p(H | Ei)ri (1.2)

1This terminology is common in the literature of machine learning or artificial intelligence
[22], [3], and it might be slightly confusing because one also says the “Agent learns the

evidence”. But the conceptual structure of the situation is clear: The Agent’s “learning” q
means the Agent infers q from some evidence (using conditionalization as inference device,
see later).
2Finiteness of the partition does not play a crucial role here, in fact, it turns out from

Section 3 that from the modal logical point of view allowing infinite (countable) partitions
does not make any difference. See the discussion in Section 3.
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Jeffrey conditioning provides a more general method than Bayesian condi-
tioning: if we assume that an element of the partition becomes certain (i.e.
ri = 1 for some index i), then the Jeffrey rule (1.2) reduces to the Bayes rule
q(H) = p(H | Ei). On this basis the Bayes rule is a special case of the Jeffrey
rule. Taking the Jeffrey rule as an inference device gives rise to what we call
Jeffrey accessibility: we say that q can be Jeffrey accessed from p if q can be
obtained from p using (1.2) with some uncertain evidence. The aim of the
current paper is to study the modal logical character of Jeffrey accessibility in
a similar manner as it had been done in [7] and [11] with Bayes accessibility.

For monographic works on Bayesianism we refer to [19], [6], [32]; for pa-
pers discussing basic aspects of Bayesianism, including conditionalization, see
[18], [16], [14], [30], [17], [31]; for a discussion of Jeffrey’s conditionalization,
see [10].

Two remarks are in order here. First, in the literature of probabilistic
updating apart from the Bayes and Jeffrey rules various other rules have
been studied to update a prior probability, such as entropy maximalization
or minimalization principles among others. Conditionalizing is a concept and
technique in probability theory that is much more general than the Bayes
rule (1.1) (also called “ratio formula” [25]). Both the Bayes rule and Jeffrey
rule are special cases of conditioning with respect to a σ-field, see [4][Chapters
33-34] and [13] for further discussion of the relation of Bayes and Jeffrey rules
to the theory of conditionalization via conditional expectation determined by
σ-fields. We refer to [9] for a comparison of such methods.

Second, let us note here that there is a huge literature on other types
of belief revision as well. Without completeness we mention: the AGM pos-
tulates in the seminal work of Alchurrón–Gärdenfors–Makinson [1]; the dy-
namic epistemic logic [29]; van Benthem’s dynamic logic for belief revision
[28]; probabilistic logics, e.g. Nilsson [23]; and probabilistic belief logics [2].
Typically, in this literature beliefs are modeled by sets of formulas defined
by the syntax of a given logic and axioms about modalities are intended to
prescribe how a belief represented by a formula should be modified when
new information and evidence are provided. Viewed from the perspective of
such theories of belief revision our intention in this paper, following [7], is
very different. We do not try to give a plausible set of axioms in some nicely
designed logic to capture desired features of (probabilistic) belief revision.
On the contrary, we take the model that is actually used in applications of
probabilistic learning theory and aim at an in-depth study of this model from
a purely logical perspective. Bayesian probabilistic inference is relevant not
only for belief change: Bayes and Jeffrey conditionalization are the typical
and widely applied inference rules also in situations where probability is inter-
preted not as subjective degree of belief but as representing objective matters
of fact. Finding out the logical properties of such types of probabilistic infer-
ence has thus a wide interest going way beyond the confines of belief revision.
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Below we recall the most important preliminary definitions from [7]
and define the central subjects of the present paper. Concerning notions in
modal logic we refer to the books Blackburn–Rijke–Venema [5] and Chagrov–
Zakharyaschev [8]. We take the standard unimodal language given by the
grammar

a | ⊥ | ¬ϕ | ϕ ∧ ψ | ♦ϕ (1.3)

defining formulas ϕ, where a belongs to a nonempty countable set Φ of propo-
sitional letters. We use more-or-less standard notation and terminology but
to be on the safe side the most basic concepts are recalled in the Appendix.

Formal background. For a measurable space 〈X,B〉 we denote by M(X,B)
the set of all probability measures over 〈X,B〉. M(X,B) serves as the set of
“possible worlds” in the Kripkean terminology and Bayes accessibility rela-
tion has been defined in [7] as follows: For v, w ∈ M(X,B) we say that w is
Bayes accessible from v if there is an A ∈ B such that w(·) = v( · | A). We
denote the Bayes accessibility relation on M(X,B) by R(X,B). [7] introduces
the notion of Bayes frames and Bayes logics:

Definition 1.1 (Bayes frames). A Bayes frame is a Kripke frame 〈W,R〉 that
is isomorphic, as a directed graph, to F(X,B) = 〈M(X,B), R(X,B)〉 for a
measurable space 〈X,B〉.

For convenience, we rely on the convention that elementary events {x}
for x ∈ X always belong to the algebra B; the reader can easily convince
himself that this convention can be bypassed for the purposes of this paper. As
a result, note that if the measurable space 〈X,B〉 is finite or countably infinite,
then B must be the powerset algebra ℘(X). Therefore, in the countable case
(i.e. when X is countable) instead of writing F(X,℘(X)), M(X,℘(X)) or
R(X,℘(X)) we sometimes simply write F(X), M(X) or R(X), respectively.

Definition 1.2 (Bayes logics). A family of normal modal logics have been
defined in [7] based on finite or countable or countably infinite or all Bayes
frames as follows.

BL<ω = {φ : (∀n ∈ N) F(n, ℘(n))  φ} (1.4)

BLω = {φ : F(ω, ℘(ω))  φ} (1.5)

BL≤ω = BL<ω ∩BLω (1.6)

BL = {φ : (∀ Bayes frames F) F  φ} (1.7)

We call BL<ω (resp. BL≤ω) the logic of finite (resp. countable) Bayes frames;
however, observe that the set of possible worlds M(X,B) of a Bayes frame
F(X,B) is finite if and only if X is a one-element set, otherwise it is at least
of cardinality continuum.

Bayes logics in Definition 1.2 capture the laws of Bayesian learning:
BL<ω is the set of general laws of Bayesian learning based on all finite Bayes
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frames, while the general laws of Bayesian learning independent of the par-
ticular representation 〈X,B〉 of the events is then the modal logic BL. The
following theorem has been proved in [7]3.

Theorem 1.3. The following (non)containments hold.

• S4 ⊆ BL ⊆ BLω = BL≤ω ( BL<ω,
• S4.1 ( BLω,
• S4.1 + Grz ( BL<ω.

The logic of finite Bayes frames has completely been described in [7] and, in
particular, it has been shown that

• BL<ω has the finite frame property ([7][Proposition 5.8]),
• BL<ω is not finitely axiomatizable ([7][Propositions 5.9]).

In a similar manner we define Jeffrey accessibility: Given two measures
p, q ∈ M(X,B) we say that q is Jeffrey accessible from p if there is a finite
partition {Ei}i<n and uncertain evidence ri assigned to this partition (ri ≥ 0,∑
i<n ri = 1, p(Ei) > 0) such that eq. (1.2) holds. Denote the corresponding

accessibility relation by J(X,B).

Definition 1.4 (Jeffrey frames). A Jeffrey frame is a Kripke frame 〈W,R〉 that
is isomorphic, as a directed graph, to J (X,B) = 〈M(X,B), J(X,B)〉 for a
measurable space 〈X,B〉.

A remark similar as above applies here: if the underlying set X of the
measurable space 〈X,B〉 is countable, then we may write J (X) and J(X)
instead of the longer J (X,℘(X)) and J(X,℘(X)).

Definition 1.5 (Jeffrey logics). A family of normal modal logics is defined for
a cardinal κ and n ∈ {=, <,≤} as follows.

JLnκ = {φ : (for all 〈X,B〉 with |X|n κ) J (X,B)  φ} (1.8)

JL = {φ : (∀ Jeffrey frames J ) J  φ} (1.9)

We call JL<ω (resp. JLω) the logic of finite (resp. countable) Jeffrey frames
or sometimes we use the term “finite (resp. countable) Jeffrey logic”.

Jeffrey logics in Definition 1.5 capture the laws of Jeffrey updating:
JL<ω is the set of general laws of Jeffrey learning based on all finite Jeffrey
frames, while the general laws of Jeffrey learning independent of the partic-
ular representation 〈X,B〉 of the events is then the modal logic JL.

From the point of view of applications of probabilistic updating the
most important classes of Bayes and Jeffrey frames are the ones determined
by measurable spaces 〈X,B〉 having a finite or a countably infinite X. Taking

3Some of the basic terminology of modal logic, such as what S4 is, is recalled in the
Appendix.
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the first steps, this paper focuses only on the case with countable X, never-
theless, questions similar to what we ask here could be raised in connection
with standard Borel spaces, e.g. when B is the Borel (or Lebesgue) σ-algebra
over the unit interval X = [0, 1]. It seems that countability of X serves as a
dividing line and continuous spaces require different techniques than the ones
employed here (cf. [11] where Bayes updating over standard Borel spaces was
investigated).

Overview of the paper. Firstly, in Section 2 we discuss the connections of
Jeffrey logics to a list of modal axioms that are often considered in the liter-
ature. In particular, Proposition 2.1 shows that JL ` S4 but JL 6`M (thus
JL 6` S4.1), JL≤ω ` S4.1 and JLnκ 6` Grz for any n ∈ {=, <,≤} and
κ > 1. Then, Theorem 2.2 clarifies the containments between the different
Jeffrey logics:

S4 ⊆ JL ⊆ JLω = JL≤ω ⊆ JL<ω ⊆ JLn+k ⊆ JLn (1.10)

In Section 3 we prove that the logic of Jeffrey updating (in the countable
case) coincide with the logic of absolute continuity (see Theorem 3.7). The
interesting part is when X is countably infinite: as a side result it turns out
that from the modal logical point of view it does not matter whether or not
we allow infinite partitions in the Jeffrey formula (1.2). In other words, the
general laws that apply to Jeffrey learning are the same in both cases (and
coincide with that of absolute continuity).

In Section 4 we ask the question “how close Bayes and Jeffrey logics
are?” It turns out that finiteness of X serves as a dividing line: there is a
proper containment

JLn ( BLn and JL<ω ( BL<ω (1.11)

The case with countably infinite X, however, seems to show a completely
different behavior. Theorem 4.6 disqualifies a large class of normal modal
logics L that can possibly be put in between JLω ( L ( BLω. We also
show that JLω is indistinguishable from BLω within a large class of modal
formulas (Corollary 4.7). It seems that the standard techniques fail to make
a distinction between JLω and BLω and thus we conjecture that they are
indeed the same. This we articulated in Problem 4.8: Are the logics JLω and
BLω the same?

Finally, Section 5 deals with finite axiomatizability of the logics JL<ω
and JLω. Theorem 5.8 states that the logic of finite Jeffrey frames JL<ω
is not finitely axiomatizable, while Theorem 5.16 claims the same non fi-
nite axiomatizability result for JLω (moreover countable Jeffrey logics are
not axiomatizable by any set of formulas using finitely many variables). The
situation is thus similar to that of Bayes logics (recall that BL<ω is not
finitely axiomatizable, see [7][Propositions 5.9]). Such no-go results have a
philosophical significance: they tell us that there is no finite set of formulas
from which all general laws of Bayesian belief revision and Bayesian learning
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based on probability spaces with a countable set of propositions can be de-
duced. Bayesian learning and belief revision based on such simple probability
spaces are among the most important instances of probabilistic updatings
because they are widely used in applications. If the axiomatic approach to
belief revision is not capable to characterize the logic of the simplest, para-
digm form of belief revision, then this casts doubt on the general enterprize
that aims at axiomatizations of belief revision systems. The cases with finite
or countably infinite X require different techniques, therefore this section is
divided into two subsections, accordingly.

2. Modal principles of Jeffrey updating

In this section we discuss the connections of Jeffrey logics to a list of modal
axioms that are often considered in the literature: the T, 4, M and Grz
axioms (see Appendix).

We claim first that each Jeffrey frame is an S4-frame, that is, the acces-
sibility relation of the frame is reflexive and transitive. Take any Jeffrey frame
J (X,B) = 〈W,R〉. As we mentioned earlier Bayes conditioning is a special
case of Jeffrey conditioning. This immediately implies reflexivity of R as for
all probability measures w ∈W we have w(·) = w( · | X). As for transitivity,
suppose u, v, w ∈ W with uRv and vRw. Taking into account the Jeffrey
formula (1.2), we need two partitions {Ei} and {Fj} and uncertain evidences
ri and sj assigned to these partitions such that v(H) =

∑
i u(H | Ei)ri and

w(H) =
∑
j v(H | Fj)sj . Checking transitivity of R requires some efforts

but only basic algebra is involved (such as reordering sums) and thus we
skip the lengthy calculations and only hint that one should take the common
refinement {Ei ∩ Fj}i,j of the two partitions with suitable values ti,j calcu-
lated from the values ri and sj . Consequently J (X,B)  S4 and therefore
S4 ⊆ JL.

An S4-frame is an S4.1-frame if it validates the axiom M that requires
the existence of endpoints: the frame J (X,B) = 〈W,R〉 validates M if and
only if R has endpoints in the following sense:

∀w∃u(wRu ∧ ∀v(uRv → u = v)) (2.1)

If X is countable, then the Dirac measures δ{x} for x ∈ X are endpoints: take
any u ∈ W and pick x ∈ X such that u({x}) 6= 0. Then δ{x} = u( · | {x}).
It follows that S4.1 ⊆ JL≤ω. (We will see later on that this containment is
proper as JL≤ω is not finitely axiomatizable).

On the other hand, we claim that M /∈ JL and consequently S4.1 6⊆ JL.
To this end it is enough to give an example for a Jeffrey frame J (X,B) in
which there are paths without endpoints. Consider the frame J ([0, 1],B)
where [0, 1] is the unit interval and B is the Borel σ-algebra. Then, for the
Lebesgue measure w we have

J ([0, 1],B) 6|= ∃u(wRu ∧ ∀v(uRv → u = v)) (2.2)
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We note that none of the logics JLnκ (for n ∈ {=, <,≤} and κ > 1)
contain the Grzegorczyk axiom Grz as a Jeffrey frame J always contains a
complete subgraph of cardinality continuum.

Summing up we get the following proposition.

Proposition 2.1. The following statements hold:

• JL ` S4 but JL 6`M, in particular JL 6` S4.1.
• JL≤ω ` S4.1.
• JLnκ 6` Grz for any n ∈ {=, <,≤} and κ > 1. �

The containments between different Jeffrey logics are clarified in the next
theorem.

Theorem 2.2. The following containments hold.

S4 ⊆ JL ⊆ JLω = JL≤ω ⊆ JL<ω ⊆ JLn+k ⊆ JLn (2.3)

Proof. From the very definition the following containments are straightfor-
ward:

JL ⊆ JL≤ω ⊆ JL<ω ⊆ JLn and JL ⊆ JL≤ω ⊆ JLω (2.4)

Next we show JLm ⊆ JLn for m > n and JLω ⊆ JL<ω. The proof relies
on Lemma 2.3. If 〈X,B〉 and 〈Y,S〉 are measurable spaces, then we say that
〈X,B〉 can be embedded into 〈Y,S〉 (〈X,B〉 ↪→ 〈Y,S〉 in symbols) if there
is a surjective measurable function f : Y → X such that f−1 : B → S is a
σ-algebra homomorphism.

Lemma 2.3. If 〈X,B〉 ↪→ 〈Y,S〉, then J (Y,S)� J (X,B)

Proof. Let f : Y → X be a surjective measurable function (f−1 : B → S is
a σ-algebra homomorphism). For a probability measure p ∈ M(Y,S) let us
assign the probability measure F (p) ∈M(X,B) defined by the equation

F (p)(A) = p
(
f−1(A)

)
(A ∈ B) (2.5)

Then F : J (Y,S)� J (X,B) is a surjective bounded morphism. �

Now, for m > n we have J (m) � J (n) and J (ω) � J (n). Hence,
the containments JLm ⊆ JLn for m > n and JLω ⊆ JL<ω follow. We also
obtain JLω = JL≤ω as JL≤ω = JLω ∩ JL<ω. �

3. Relation to absolute continuity

Considering equation (1.2) (or even equation (1.1)) it is easy to see that
q has value 0 on every element H ∈ B which has p-probability zero. The
technical expression of this is that q is absolutely continuous with respect to
p. Therefore absolute continuity is necessary for Bayes or Jeffrey accessibility.
In general, for p, q ∈ M(X,B) we say that q is absolutely continuous with
respect to p (q � p in symbols) if p(A) = 0 implies q(A) = 0 for all A ∈ B.

Let us now assume that X = {x0, . . . , xn−1} is finite and take any
probability measure p ∈ M(X,℘(X)). If q ∈ M(X,℘(X)) is a probability
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measure such that q � p, then by taking the partition Ei = {xi} for i < n
and the uncertain evidence ri = q(Ei), we get

q(H) =
∑
i<n

p(H | Ei)ri (3.1)

for all H ⊆ X. This means that given any prior probability p and an other
probability q that is absolutely continuous with respect to p, if the probability
space is finite, then q can be obtained from p by the Jeffrey rule. In other
words, absolute continuity and Jeffrey accessibility coincide in the finite case.
This motivates us to introduce Kripke frames where the accessibility relation
is defined by absolute continuity, as follows.

Definition 3.1. For a probability space 〈X,B〉 we define the Kripke frame

A(X,B) =
〈
M(X,B), �

〉
(3.2)

where � stands for absolute continuity: For probability measures p, q ∈
M(X,B) we write p � q (or q � p) if p(A) = 0 implies q(A) = 0 for all
A ∈ B.

Definition 3.2 (Logics of Absolute Continuity). In a similar manner to Defini-
tions 1.2 and 1.5 we define a family of normal modal logics based on absolute
continuity. Let κ be a cardinal and n ∈ {=, <,≤}.

ACLnκ = {φ : (for all 〈X,B〉 with |X|n κ) A(X,B)  φ} (3.3)

ACL = {φ : (∀〈X,B〉) A(X,B)  φ} (3.4)

Our observation at the beginning of this section proves the next proposition.

Proposition 3.3. JLn = ACLn and JL<ω = ACL<ω for any n ∈ N.

Proof. For a finite X a probability measure q ∈ M(X,℘(X)) can be ob-
tained from p ∈M(X,℘(X)) by means of Jeffrey conditionalizing if and only
if p� q. This implies that the frames A(X) and J (X) are identical. Conse-
quently ACLn = Λ(A(n)) = Λ(J (n)) = JLn, and ACL<ω =

⋂
nACLn =⋂

n JLn = JL<ω. �

What about the countably infinite case? The answer depends on whether
or not we allow infinite partitions in the Jeffrey formula (1.2).

If we allow infinite partitions in the Jeffrey formula (1.2) and X is
countably infinite, say X = N, then taking the partition Ei = {i} and the
values ri = q({i}) for i ∈ N, Jeffrey formula leads to

q(H) =
∑
i∈N

p(H | Ei)ri (3.5)

for all H ∈ ℘(N), provided p, q ∈ M(N, ℘(N)) are such that p � q. This
immediately ensures that q is Jeffrey accessible from p if and only if q is
absolutely continuous with respect to p, and in particular JLω = ACLω.

There are good reasons, however, to keep the partition in the Jeffrey
formula finite. The requirement that the uncertain evidence is given by a
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probability measure on a proper, non-trivial partition can be important: oth-
erwise, as we have seen it, every probability measure can be obtained from
itself as evidence – a triviality. The recent paper [12] argues that even in the
finite case (i.e. when X is finite) it makes sense not to consider the trivial
partition in the Jeffrey rule (as we did in eq. (3.1)). However, by sticking to
all proper partitions in Jeffrey accessibility we would lost transitivity4 which
is a well-desired property in the context of learning theory. The natural way
to overcome this problem is to not allow all proper partitions but rather just
the restricted set of finite partitions. This way we can keep transitivity and
also, as we will shortly see, the infinite Jeffrey logic JLω will still coincide
with ACLω. In other words, from the logical point of view whether or not we
allow infinite partitions in the Jeffrey rule (1.2) does not make any difference.
The rest of this section is devoted to prove this statement.

Recall that for a countable X, the support of a probability measure
u ∈M(X,℘(X)) is the set supp(u) = {x ∈ X : u({x}) 6= 0}.

Lemma 3.4. Let p, q, r be probability measures over the measure space 〈N, ℘(N)〉
and suppose that both q and r are Jeffrey accessible from p and supp(q) =
supp(r). Then r is Jeffrey accessible from q and vice versa.

Proof. Let p, q and r be as in the statement. According to Proposition 7.2,
as both q and r are Jeffrey accessible from p, we have that the Radon–
Nikodym derivatives dq

dp and dr
dp are step functions p-almost everywhere. As

supp(q) = supp(r), q and r are mutually absolutely continuous. In order
to get that r is Jeffrey accessible from q, it is enough (by Proposition 7.2
again) to check that the Radon–Nikodym derivative dr

dq is a step function,

q-almost everywhere. But dr
dq = dr

dp ·
dp
dq except for a q-measure zero set, and it

is straightforward that the product of two step functions is a step function.
That q is Jeffrey accessible from r is completely similar. �

Proposition 3.5. JLω ⊆ ACLω.

Proof. It is enough to prove that A(ω)EJ (ω). Indeed, we claim that when-
ever p ∈ J (ω) is a faithful measure (meaning that it has full support supp(p) =
ω), then the generated subframe J p is isomorphic to A(ω). For this we only
need that if q and r are Jeffrey accessible from p and supp(q) = supp(r), then
r is Jeffrey accessible from q and vice versa. This exactly is Lemma 3.4. �

Proposition 3.6. JLω ⊇ ACLω.

Proof. It is enough to prove that
⊎
A(ω)� J (ω) for a suitable disjoint union⊎

A(ω). Indeed, recall that
⊎
A(ω)� J (ω) implies Λ

(
A(ω)

)
⊆ Λ

(⊎
A(ω)

)
⊆

Λ
(
J (ω)

)
, that is, ACLω ⊆ JLω. The construction is as follows.

4The common refinement of two proper partitions can lead to the trivial partition, see the
example in Figure 4 in [12].
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For a non-empty subset X ⊆ ω consider those probability measures in
J (ω) whose support is X and write

SX =
{
u ∈M(ω, ℘(ω)) : supp(u) = X

}
. (3.6)

As the Jeffrey accessibility relation is transitive, SX can be partitioned into
clicks. A click is a maximal subset K of SX such that any two u, v ∈ K are
mutually Jeffrey accessible. Let KX

α be an enumeration of the clicks of SX
(α < κX for some cardinal κX depending on X). Note that each KX

α is either
a 1-element set or has continuum many elements depending on whether or
not X is a 1-element set.

For each α < κω take a disjoint copy Aα(ω) of A(ω) and write

AXα =
{
u ∈ Aα(ω) : supp(u) = X

}
. (3.7)

Note that each Aωα has continuum many elements.
Finally, take arbitrary bijections Fα : Aωα → Kω

α (for α < κω) and let
F =

⋃
α<κω

Fα be the union of these bijections. As the copies Aωα are disjoint,

F is a well-defined bijection between
⋃
αA

ω
α and Sω (this latter set is taken

as a subset of J (ω)).
The content of Lemma 3.4 can be interpreted in our context as follows.

Take any probability p ∈ J (ω) with supp(p) = X. Suppose Y ⊆ X is a non-
empty subset and q, r are measures in J (ω) such that supp(q) = supp(r) = Y
and both q and r can be Jeffrey accessed from p. Then q and r must belong
to the same click of SY . It follows that F can be extended from

⋃
αA

ω
α to

the entire
⋃
αA(ω)α in a homomorphic way. Checking that this extension is

indeed a bounded morphism is not hard and left to the reader. �

Summing up, independently of whether or not we allow infinite parti-
tions in the Jeffrey formula (1.2) we obtained the following theorem.

Theorem 3.7. For all countable cardinals κ and n ∈ {=, <,≤} we have

JLnκ = ACLnκ. (3.8)

Proof. The equations JLn = ACLn for n ∈ ω and JL<ω = ACL<ω is
Proposition 3.3. Combining Propositions 3.5 and 3.6 we get JLω = ACLω.
Finally, JL≤ω = ACL≤ω follows from the previous results and the definition.

�

This result enables us to use the frames A(n) and A(ω) instead of the
more complex Jeffrey frames J (n) and J (ω).

4. How close Bayes and Jeffrey logics are?

One of the main results in [7] is Theorem 5.2 which relates Bayes logics to
Medvedev logics. We start by recalling definitions and theorems from [26] and
[7]. Medvedev’s logic of finite problems and its extension to infinite problems
by Skvortsov originate in intuitionistic logic. (For an overview we refer to the
book [8] and to Shehtman [26]; Medvedev’s logic of finite problems is covered
in the papers [21, 27, 24, 26, 20, 15]).
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Definition 4.1 (Medvedev frame). A Medvedev frame is a frame that is iso-
morphic (as a directed graph) to P0(X) = 〈℘(X) r {∅},⊇〉 for a non-empty
finite set X.

Medvedev’s logic ML<ω is the modal logic that corresponds to the Medvedev
frames:

MLn =
⋂{

Λ
(
〈℘(X) r {∅},⊇〉

)
: |X| = n

}
(4.1)

ML<ω =
⋂{

Λ
(
〈℘(X) r {∅},⊇〉

)
: |X| non-empty, finite

}
(4.2)

A Skvortsov frame is defined in the same way as a Medvedev frame except
with X is a non-empty set of any cardinality. We denote the corresponding
Skvortsov logics by MLα for sets X of cardinality α. It has been proved (see
Theorem 2.2 in [27]) that

ML
def
=
⋂
α

MLα = MLω (4.3)

As a slight abuse of notation we will use the term Medvedev frame for any
frame of the form P0(X) (thus X need not be finite here).

Theorem 5.2 of [7] states the containments below.

ML = MLω = ML≤ω ( ML<ω ( MLn
∪ q q q q
BL ( BLω = BL≤ω ( BL<ω ( BLn

(4.4)

A consequence of this result is that when the underlying set X of the
measurable space is countable we can use the more easy-to-handle Medvedev
frames instead of Bayes frames.

Lemma 4.2. For a countable X the mapping f : A(X)� P0(X) defined by

f(p) = supp(p) (4.5)

is a surjective bounded morphism.

Proof. Surjectivity of f is straightforward. f is a homomorphism (preserves
accessibility) because for p, q ∈ M(X,℘(X)) we have p � q if and only if
supp(p) ⊇ supp(q). To verify the zig-zag property, suppose supp(p) ⊇ A. We
need q ∈M(X,℘(X)) such that p� q and supp(q) = A. Finding such a q is
easy, take for example the conditional probability q(·) = p(· | A). �

Corollary 4.3. ACLnκ ⊆ MLnκ holds for n ∈ {=, <,≤} and κ countable.

Proof. Immediate from Lemma 4.2. �

Corollary 4.4. JLnκ ⊆ BLnκ holds for n ∈ {=, <,≤} and κ countable.

Proof. Combine Corollary 4.3, Theorem 3.7 and Theorem 5.2. in [7]. �
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We note that none of the logics ACLn (for n > 1) contain the Grzegor-
czyk axiom Grz as A(n) always contain a complete subgraph of cardinality
continuum. It is easy to check that Medvedev frame over a finite set P0(n)
validate Grz, that is, Grz ∈ BL<ω. Therefore we get

JLn ( BLn and JL<ω ( BL<ω (4.6)

To have all the containments between Bayes and Jeffrey logics the only
question remained is whether JLω = BLω. (By Corollary 4.4 we know that
JLω ⊆ BLω). The Grzegorczyk axiom does not differentiate between JLω
and BLω as none of these logics contain the formula Grz. In fact, we prove
that JLω is indistinguishable from BLω within a large class of modal for-
mulas. On the other hand the standard techniques (generated subframes,
bounded morphisms) to prove the equality of the two logics do not seem to
work: none of A(ω)E P0(ω) or

⊎
P0(ω)� A(ω) holds.

We call a Kripke frame F click free if there are no two different worlds
in F that are mutually accessible, i.e. the largest click in F has size at most
one. Note that click freeness enables reflexive points.

Lemma 4.5. Let F be a click free S4-frame. Then P0(ω)� F if and only if
A(ω)� F .

Proof. (⇒) The claim that P0(ω)� F implies A(ω)� F is straightforward
as any bounded morphism f : P0(ω) � F can be lifted up to a bounded
morphism f+ : A(ω)� F by letting f+(p)

.
= f(supp(p)) for p ∈M(ω, ℘(ω)).

(⇐) That A(ω) � F implies P0(ω) � F can be verified by observing
that click freeness of F ensures that all points of a click in A(ω) must be
mapped to the same point of F . Thus any morphism f : A(ω) � F can be
pushed down to a morphism f− : P0 � F by letting for all ∅ 6= X ⊆ ω,
f−(X)

.
= f(p) for any p ∈M(ω, ℘(ω)) with supp(p) = X. �

Theorem 4.6. There is no normal modal logic L such that

JLω ( L ( BLω (4.7)

and L is the logic of a click free S4-frame F with A(ω)� F .

Proof. Immediate from Lemma 4.5. �

The previous theorem tells us that if we would like to distinguish JLω
from BLω, then the standard technique of finding a bounded morphic image
of A(ω) that does the distinction fails (provided that this bounded morphic
image is transitive and click free). We note that every modal formula is vali-
dated on a suitable finite, transitive, click free frame, thus Theorem 4.6 gives
the impression that the two logics JLω and BLω coincide. Applying the same
technique the next Corollary tells us that JLω is indistinguishable from BLω
within a large class of modal formulas called Jankov – de Jongh formulas (cf.
Theorem 7.1 in the Appendix).

Corollary 4.7. For a transitive, click free frame F we have

χF ∈ JLω ⇔ χF ∈ BLω (4.8)



14 Z. Gyenis

Proof. Combine Lemma 4.5 with Theorem 7.1. �

We end this section by an open problem.

Problem 4.8. Are the logics JLω and BLω the same?

Part of the question in Problem 4.8 is this: Is there any frame F such
that A(ω)� F but P0(ω) 6� F? Such a frame F must contain a proper click
(must not be click free).

5. Non finite axiomatizability

For a natural number l a logic L is l-axiomatizable if it has an axiomatization
using only formulas whose propositional variables are among p1, . . . , pl. Every
finitely axiomatizable logic is l-axiomatizable for a suitable l: take l to be the
maximal number of variables the finitely many axioms in question use.

The main message of this section is that countable Jeffrey logics JL<ω,
JLω and JL≤ω are not finitely axiomatizable. In fact, it turns out from
the proof that they cannot even be axiomatized with (possibly infinitely
many) formulas using the same finitely many propositional letters. Thus,
these logics are not finite schema axiomatizable either. The finite and the
countably infinite cases require slightly different techniques, therefore we split
the proof into two subsections, accordingly.

Also recall that the logic of countable Jeffrey frames is proved to be
equal to that of absolute continuity (see Theorem 3.7). This allows us to use
the frames A(X) of absolute continuity rather than the more complicated
Jeffrey frames J (X). Phrasing it differently: we in fact show that the logics
ACL<ω, ACLω and ACL≤ω are not finitely axiomatizable and then refer to
the fact that JLnκ = ACLnκ for all countable cardinals κ and n ∈ {=, <,≤}
(see Theorem 3.7).

5.1. The finite case

We aim at proving ACL<ω is not finitely axiomatizable. We show first that
ACL<ω is a logic of finite frames, thus it has the finite frame property.

For each k, n ∈ N we define the finite frame Ak(n) as follows. Take
the frame A(n). For each non-singleton set A ⊆ n the frame A(n) con-
tains a complete subgraph of cardinality continuum (measures p with support
supp(p) = A). Replace this infinite complete graph with the complete graph
on k vertices and keep everything else fixed. A more precise definition is the
following.

Definition 5.1. Let n, k > 0 be natural numbers. For each non-singleton set
a ∈ ℘(n)− {∅} take new distinct points [a]1, . . . , [a]k, and for each singleton
a ∈ ℘(n) take [a]1 = · · · = [a]k to be a single new point. The set of possible
worlds of the frame Ak(n) is the set

Ak(n) =
{

[a]1, . . . , [a]k : a ∈ ℘(n)− {∅}
}

(5.1)
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For two points [a]i, [b]j ∈ Ak(n) we define the accessibility relation → as

[a]i → [b]j if and only if a ⊇ b (5.2)

Lemma 5.2. For all n and k we have A(n)� Ak(n).

Proof. For a measure p ∈ M(n) the support supp(p) is a non-empty subset
of n, therefore [supp(p)]1, . . ., [supp(p)]k are elements of Ak(n). Take any
mapping f : M(n)→ Ak(n) such that

f(p) = [supp(p)]i for some i ∈ {1, . . . , k} (5.3)

and f is a surjection. Such a mapping clearly exists as for each a ∈ ℘(n)−{∅}
we have

|{p : supp(p) = a}| = 2ℵ0 > k (5.4)

We claim that f is a surjective bounded morphism:
Homomorphism. Take p, q ∈ M(n) and suppose f(p) = [supp(p)]i, f(q) =
[supp(q)]j . Then p � q if and only if supp(p) ⊇ supp(q) if and only if
[supp(p)]i → [supp(q)]j .
Zag property. Assume f(p) → [a]i for some a ∈ ℘(n) − {∅}. This can be
the case if and only if supp(p) ⊇ a. By surjectivity of f there is q such that
f(q) = [a]i, whence supp(p) ⊇ supp(q) which means p� q. �

Lemma 5.3. For each modal formula ϕ there is k ∈ N such that A(n) 1 ϕ
implies Ak(n) 1 ϕ.

Proof. We prove that if ϕ uses the propositional letters p1, . . . , pk only, then
A(n) 1 ϕ implies A2k(n) 1 ϕ. If A(n) 1 ϕ, then there is an evaluation
V such that the model 〈A(n), V 〉 1 ϕ. The truth of a formula in a model
depends only on the evaluation of the propositional letters the formula uses,
therefore we may assume that V is restricted to p1, . . ., pk.

For x ∈ A(n) we define a 0–1 sequence of length k according to whether
x ∈ V (pi) holds for 1 ≤ i ≤ k:

Px(i) =

{
1 if x ∈ V (pi)
0 otherwise.

(1 ≤ i ≤ k) (5.5)

As there are 2k different 0–1 sequences of length k, the number of possible
Px’s is at most 2k.

Take any surjective mapping f : A(n)→ A2k(n) such that

f(x) = [supp(x)]i for some i ∈ {1, . . . , k} (5.6)

and for x, y ∈ A(n) with supp(x) = supp(y) we have

Px = Py implies f(x) = f(y) (5.7)

Such a mapping f must exist as for each non-singleton a ∈ ℘(n)−{∅} we have
2k elements [a]1, . . ., [a]2k in A2k(n), and this is the number of the possible
Px’s. Let us now define the evaluation V ′ over A2k(n) by

V ′(pi) = {f(x) : x ∈ V (pi)} (5.8)
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for 1 ≤ i ≤ k. Condition (5.7) ensures that if x and y agree on p1, . . . , pk,
then so do the images f(x) and f(y). Thus, V ′ is well-defined. Following the
proof of 5.2 one obtains that

f : 〈A(n), V 〉 � 〈A2k(n), V ′〉 (5.9)

is a surjective bounded morphism. As 〈A(n), V 〉  ¬ϕ we arrive at 〈A2k(n), V ′〉 
¬ϕ. This means A2k(n) 1 ϕ. �

Proposition 5.4. ACL<ω =
⋂∞
n=1

⋂∞
k=1 Λ (Ak(n)).

Proof. By combining Lemmas 5.2 and 5.3 the equality
∞⋂
n=1

Λ (A(n)) =

∞⋂
n=1

∞⋂
k=1

Λ (Ak(n)) (5.10)

follows immediately. The left-hand side of the equation is the definition of
ACL<ω. �

Corollary 5.5. Finite Jeffrey logic JL<ω has the finite frame property.

Proof. JL<ω = ACL<ω by Theorem 3.7 and thus Proposition 5.4 implies

JL<ω =

∞⋂
n=1

∞⋂
k=1

Λ (Ak(n)) (5.11)

As each frame Ak(n) is finite, the proof is complete. �

Proposition 5.6. Let K be a class of finite, transitive frames, closed under
point-generated subframes. For every finite, transitive, point-generated frame
F we have

F  Λ(K) if and only if ∃(G ∈ K) G � F . (5.12)

Proof. (⇐) If there is G ∈ K such that G � F , then Λ(K) ⊆ Λ(G) ⊆ Λ(F).
(⇒) By way of contradiction suppose G 6� F for all G ∈ K. Then by

Theorem 7.1 we have G  χ(F) for all G ∈ K, in particular, χ(F) ∈ Λ(K). It
is straightforward to see that F 1 χ(F), thus F 1 Λ(K). �

Theorem 5.7. ACL<ω is not finitely axiomatizable.

Proof. A logic L is not finitely axiomatizable if and only if for any formula
φ ∈ L there is a frame Fφ such that Fφ 1 L but Fφ  φ.

We will use the proof that Medvedev’s modal logic of finite problems,
ML<ω, is not finitely axiomatizable. We refer to [26] where it has been proved
that for each modal formula φ ∈ ML<ω there is a finite, transitive, point-
generated frame Gφ such that Gφ  φ while Gφ 1 ML<ω. The construction
therein is such that Gφ is click free.

We intend to show that Gφ 1 ACL<ω. This is enough because ACL<ω ⊂
ML<ω. By Proposition 5.4 ACL<ω is the logic of the class K = {Ak(n) :
n, k ∈ N} of finite, transitive frames, closed under point-generated subframes.
Therefore, to show Gφ 1 ACL<ω, by Proposition 5.6 it is enough to prove
that Gφ is not a bounded morphic image of any Ak(n). Suppose, seeking
a contradiction, that there exists a bounded morphism f : Ak(n) � Gφ.
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Then for each a ∈ ℘(n) − {∅} the elements [a]1, . . ., [a]k should be mapped
into the same point xa in Gφ. This is because the points [a]i are all acces-
sible from each other, while in Gφ there are no non-singleton sets in which
points are mutually accessible. It follows that f induces a bounded mor-
phism f∗ : P0(n) → Gφ from the Medvedev frame P0(n) into Gφ by letting
f∗(a) = xa for a ∈ ℘(n)− {∅}. But this is impossible as Gφ 1 ML<ω. �

Theorem 5.8. Finite Jeffrey logic JL<ω is not finitely axiomatizable.

Proof. JL<ω = ACL<ω by Theorem 3.7 and this latter logic is not finitely
axiomatizable by Theorem 5.7. �

5.2. The countably infinite case

To gain non finite axiomatizability results for the countable Jeffrey logic JLω
we follow the method presented in Shehtman [26] and we recall the most
important lemmas that we make use of.

Definition 5.9 ([26]). For m > 0 and k > 2 the Chinese lantern is the S4-
frame C(k,m) formed by the set

{(i, j) : (1 ≤ i ≤ k−2, 0 ≤ j ≤ 1) or (i = k−1, 1 ≤ j ≤ m) OR (i = k, j = 0)}
(5.13)

with the accessibility relation being an ordering:

(i, j) ≤ (i′, j′) iff (i, j) = (i′, j′) OR i > i′ (5.14)

C(m, k) is illustrated on page 373 in [26], however, we will not need any
particular information about C apart from two lemmas that we recall below.

Lemma 5.10 (Lemma 22 in [26]). Let φ be a modal formula using l variables
and let m > 2l. Then C(k,m) 1 φ implies C(k, 2l) 1 φ.

Lemma 5.11 (Lemma 24 in [26]). For any n > 1 we have C(2n, 2n) ML<ω.

Let F = 〈W,≤〉 be a finite ordering (partially ordered set) and pick
x ∈ W . y is an immediate successor of x if x < y and there is no x < z < y.
(As usual < means ≤ ∩ 6=). The branch index bF (x) is the cardinality of
the set of immediate successors of x, and the depth dF (x) is the least upper
bound of cardinalities of chains in F whose least element is x. Thus, dF (x) = 1
means that x has no immediate successors. F is duplicate-free if it is finite,
generated and bF (u) 6= 1 for any u ∈W (cf. Shehtman [26]).

Lemma 5.12. P0(ω) 6� C(k, 2k).

Proof. This is essentially Lemma 17 in [26]. Note that C(k,m) is duplicate-
free. The point u = (k, 0) in C(k, 2k) has depth d(u) = k and branch index
b(u) = 2k. If there were P0(ω) � C(k, 2k), then by Lemma 17 in [26] we
would have b(u) < 2d(u) which is impossible. �

Theorem 5.13. Let L be a normal modal logic with S4 ⊆ L ⊆ML<ω. Suppose
that for every l ≥ 1 and k > l there is n ≥ k such that χ(C(k, 2n)) ∈ L. Then
L is not l-axiomatizable for any number l.
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Proof. By way of contradiction suppose L is l-axiomatizable, that is, L =
S4+Σ where Σ is a set of formulas that can use only the first l propositional
variables. Let k = 2l. By assumption there is n ≥ k so that χ(C(k, 2n)) ∈ L.
That Σ axiomatizes L means that every formula in L can be derived (in
the normal modal calculus) from a finite set of axioms from Σ. Therefore
there is an l-formula φ ∈ L such that χ(C(k, 2n)) ∈ S4 + φ. This implies, by
Theorem 7.1(B), that C(k, 2n) 1 φ. As n ≥ k = 2l > l, Lemma 5.10 ensures
C(k, 2l) 1 φ. In particular, C(k, 2l) 1 L.

On the other hand Lemma 5.10 implies (as k = 2l) that C(k, 2l) 
ML<ω. By assumption L ⊆ML<ω so it follows that C(k, 2l)  L which is a
contradiction. �

Corollary 5.14. Let F be a frame, L = Λ(F) and assume S4 ⊆ L ⊆ML<ω.
Suppose for any k ≥ 1 there is n ≥ k such that for all u ∈ F we have
Fu 6� C(k, 2n). Then L is not l-axiomatizable for any finite number l.

Proof. Under the given assumptions Theorem 7.1(A) implies that for all k ≥
1 there is n ≥ k so that χ(C(k, 2n)) ∈ L. Then Theorem 5.13 applies. �

Theorem 5.15. ACLω is not finitely axiomatizable (in fact, it is not l-axio-
matizable for any finite number l).

Proof. We intend to apply Corollary 5.14. ACLω = Λ(A(ω)) and the con-
tainments S4 ⊆ ACLω ⊆ML<ω hold (see Theorem 2.2). Write A = A(ω).
In order to use Corollary 5.14 we only need to verify that for any k ≥ 1
there is n ≥ k such that for all u ∈ A we have Au 6� C(k, 2n). It is easy to
see that for all u ∈ A, Au is isomorphic either to A(ω) or to A(n) depend-
ing on whether or not u has an infinite support. Therefore it is enough to
check A 6� C(k, 2k). As C(k, 2k) is a transitive, click free frame, according to
Lemma 4.5 if A � C(k, 2k), then we also have P0(ω) � C(k, 2k). But this
latter is impossible by Lemma 5.12. �

Theorem 5.16. Countable Jeffrey logic JLω is not finitely axiomatizable (in
fact, it is not l-axiomatizable for any finite number l).

Proof. JLω = ACLω by Theorem 3.7 and this latter logic is not finitely
axiomatizable by Theorem 5.15. �

6. Closing words and further research directions

Our aim was to study the modal logical character of Jeffrey accessibility
in a similar manner as it has been done in [7] and [11] concerning Bayes
accessibility. We have seen that the modal logic of Jeffrey learning always
extends S4, and extends S4.1 only if the underlying measurable space is
countable (see Proposition 2.1). Containments between the different Jeffrey
logics were clarified in Theorem 2.2:

S4 ⊆ JL ⊆ JLω = JL≤ω ⊆ JL<ω ⊆ JLn+k ⊆ JLn. (6.1)
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and the relations of Jeffrey logics to Bayes logics were also drawn in Section
4:

JLn ( BLn and JL<ω ( BL<ω (6.2)

Equality between JLω and BLω remained open. Theorem 4.6 and Corollary
4.7 hints that they might be equal and in Problem 4.8 we ask whether the
logics JLω and BLω coincide.

We regard Section 5 the main result of the paper. Theorem 5.8 states
that the logic of finite Jeffrey frames JL<ω is not finitely axiomatizable,
while Theorem 5.16 claims the same non finite axiomatizability result for
JLω (moreover countable Jeffrey logics are not axiomatizable by any set of
formulas using finitely many variables). The picture is thus analogous to that
of Bayes logics, see [7][Propositions 5.9]. The significance of these results is
that they clearly indicate that axiomatic approaches to belief revision might
be severely limited.

It is a longstanding open question whether Medvedev’s logic of finite
problems ML<ω (and thus Bayes logic BL<ω) is recursively axiomatizable
(see [8], Chapter 2). Since the class of Medvedev frames is a recursive class
of finite frames, BL<ω is co-recursively enumerable. It follows that if ML<ω
is recursively axiomatizable, then BL<ω is decidable. According to Corollary
5.5 finite Jeffrey logic JL<ω has the finite frame property. The proof reveals
that JL<ω is a logic of a recursive class of finite frames, thus JL<ω is co-
recursively enumerable, as well. We are not aware any similar result for JLω,
neither do we know whether Jeffrey logics are recursively axiomatizable. We
conjecture that recursive axiomatizability of Jeffrey logics would solve the
similar question for Medvedev’s logic, thus the problem might be severely
hard.

Problem 6.1. Are any of the logics JL<ω and JLω recursively axiomatizable?

Finally, we have already mentioned that in the literature of probabilis-
tic updating apart from the Bayes and Jeffrey rules various other rules have
been studied to update a prior probability, such as entropy maximalization or
minimalization principles, among others. We do believe that a similar anal-
ysis should be carried out when Bayes or Jeffrey accessibility is replaced by
some other accessibility relation based on these various probability updating
principles.

7. Appendix

ω is the least infinite cardinal (that is, the set of natural numbers). By a
frame we always understand a Kripke frame, that is, a structure of the form
F = 〈W,R〉, where W is a non-empty set (of possible worlds) and R ⊆W×W
a binary relation (accessibility). Kripke models are tuples M = 〈W,R, [| · |]〉
based on frames F = 〈W,R〉, and [| · |] : Φ → ℘(W ) is an evaluation of
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propositional letters. Truth of a formula ϕ at world w is defined in the usual
way by induction:

• M, w  p ⇐⇒ w ∈ [| p |] for propositional letters p ∈ Φ.
• M, w  ϕ ∧ ψ ⇐⇒ M, w  ϕ AND M, w  ψ.
• M, w  ¬ϕ ⇐⇒ M, w 6 ϕ.
• M, w  ♦ϕ ⇐⇒ there is v such that wRv and M, v  ϕ.

Formula ϕ is valid over a frame F (F  ϕ in symbols) if and only if it is true
at every point in every model based on the frame. For a class C of frames
the modal logic of C is the set of all modal formulas that are valid on every
frame in C:

Λ(C) =
{
φ : (∀F ∈ C) F  φ

}
(7.1)

Λ(C) is always a normal modal logic. Let us recall the most standard list of
modal axioms (frame properties) that are often considered in the literature
(cf. [5] and [8]).

Basic frame properties
Name Formula Corresponding frame property
T �φ→ φ accessibility relation R is reflex-

ive
4 �φ→ ��φ accessibility relation R is tran-

sitive
M �♦φ→ ♦�φ 2nd order property not to be

covered here
Grz �(�(φ→ �φ)→ φ)→ φ T + 4 + ¬∃P (∀w ∈

P )(∃v wRv)(v 6= w ∧ P (v))
S4 T + 4 preorder
S4.1 T + 4 + M preorder having endpoints

For two frames F = 〈W,R〉 and G = 〈W ′, R′〉 we write F E G if F is
(isomorphic as a frame to) a generated subframe of G. We recall that if FEG,
then G  φ implies F  φ, whence Λ(G) ⊆ Λ(F) (see Theorem 3.14 in [5]). If
w ∈W , then we write Fw to denote the subframe of F generated by w, and
we call such subframes point-generated subframes. Further, let F � G de-
note a surjective, bounded morphism (sometimes called p-morphisms). Such
morphisms preserve the accessibility relation and have the zig-zag property
(see [5]). Recall that if F � G, then F  φ implies G  φ, hence Λ(F) ⊆ Λ(G)
(see Theorem 3.14 in [5]). We also recall that (∀i) Fi  φ implies

⊎
Fi  φ

(for the definition of the disjoint union
⊎

of frames see Definition 3.13 in [5]).
In the special case when Fi = F it follows that Λ(F) ⊆ Λ(

⊎
F) (Theorem

3.14 in [5]).
The next theorem is due to Jankov and de Jongh.

Theorem 7.1 (cf. Proposition 4 in [26]). Let F be a generated finite S4-frame.
Then there is a modal formula χ(F) with the following properties:

(A) For any S4-frame G we have G 1 χ(F) if and only if ∃u Gu � F .
(B) For any logic L ⊇ S4 we have L ⊆ Λ(F) if and only if χ(F) /∈ L.
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LetX be countable and consider probability measures p, q ∈M(X,℘(X)).
Suppose that q is absolutely continuous to p. The Radon–Nikodym derivative
dq
dp can be expressed as

dq

dp
(x) =

{
q({x})
p({x}) if p({x}) 6= 0

∗ otherwise.

where ∗ denotes any value ( dqdp is determined up to p-measure zero, only).

This is because∑
x∈A

f(x)q({x}) =

∫
A

f dq =

∫
A

f
dq

dp
dp =

∑
x∈A

f(x)
q({x})
p({x})

p({x})

Proposition 7.2. Let X be a countable set and consider probability measures
p, q ∈M(X,℘(X)). The following are equivalent

(a) q is Jeffrey accessible from p: there is a finite partition {Ei}i of X such
that p(Ei) 6= 0 and

q(H) =
∑
i

p(H | Ei)q(Ei) for all H ⊆ X

(b) q is absolutely continuous with respect to p and the range of the function
dq
dp is finite except for a p-measure zero set.

Proof. (⇒) Suppose q is Jeffrey accessible from p, that is, there is a finite
partition {Ei}i<n of X with p(Ei) 6= 0 and a probability measure r : {Ei} →
[0, 1] such that

q(H) =
∑
i<n

p(H ∩ Ei)
p(Ei)

r(Ei) (H ∈ S) (7.2)

As p(H) = 0 implies q(H) = 0, q is absolutely continuous with respect to
p. Suppose for some i < n there are a, b ∈ Ei which are not p-measure zero
elementary events. Then by (7.2) we have

q({a}) =
p({a})
p(Ei)

r(Ei), q({b}) =
p({b})
p(Ei)

r(Ei) =⇒ q({a})
p({a})

=
q({b})
p({b})

This shows that dq
dp is constant on each Ei (p-almost everywhere).

(⇐) Let X+ = {x ∈ X : p({x}) > 0} and X0 = X rX+. By q � p it

follows that the Radon–Nikodym derivative dq
dp exists and by assumption it

is a step function on X+. Define

Ey =

{
x ∈ X+ :

q({x})
p({x})

= y

}
for y ∈ ran

(
dq

dp

)
Then {Ey}y∈ran(dq/dp) is a finite partition of X+ and dq

dp is constant on each

block Ey of this partition. Pick an arbitrary Ey and replace it by Ey ∪ X0
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(we need to have a partition of X such that the blocks of this partition are
not p-measure zero, thus we can get rid of X0 by adding it to any block Ey).
For convenience we denote this new block by the same letter Ey. Define a
measure r on the σ-subalgebra generated by the partition {Ey}y∈ran(dq/dp)
by the equation

r(Ey) = y · p(Ey).

Note that r defines a probability measure because∑
y∈ran(dq/dp)

r(Ey) =
∑
y

y · p(Ey) =
∑
y

y
∑
x∈Ey

p({x})

=
∑
x∈X

dq

dp
(x)p({x}) =

∑
X

q({x}) = 1

We claim that

q(H) =
∑

y∈ran(dq/dp)

p(H ∩ Ey)

p(Ey)
r(Ey) (for H ∈ S)

For all x ∈ X there is a unique j such that x ∈ Ej . Therefore∑
y

p({x} ∩ Ey)

p(Ey)
r(Ey) =

p({x})
p(Ej)

r(Ej) = q({x})

This latter equation holds because x ∈ Ej iff dq
dp (x) = j iff q({x})

p({x}) = j,

consequently

r(Ej) = j · p(Ej) =
q({x})
p({x})

p(Ej)

This completes the proof. �
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The author is grateful to Miklós Rédei for all the pleasant conversations
about this topic (and often about more important other topics). The author
would like to acknowledge the Premium Postdoctoral Grant of the Hungarian
Academy of Sciences and the Hungarian Scientific Research Found (OTKA),
contract number: K100715.

References

[1] C. Alchourron, P. Gärdenfors, and D. Makinson. On the logic of theory change:
partial meet contraction and revision functions. The Journal of Symbolic Logic,
50:510–530, 1985.

[2] F. Bacchus. Probabilistic belief logics. In Proceedings of European Conference
on Artificial Intelligence (ECAI-90), pages 59–64, 1990.

[3] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University
Press, Cambridge, 2012.

[4] P. Billingsley. Probability and Measure. John Wiley & Sons, New York, Chich-
ester, Brisbane, Toronto, Singapore, Third edition, 1995.



On the modal logic of Jeffrey conditionalization 23

[5] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2002.

[6] L. Bovens and S. Hartmann. Bayesian Epistemology. Oxford University Press,
2004.
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