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Abstract: In this paper, we present cut-free sequent calculi and natural deduction systems for
Béziau and Franceschetto’s three-valued genuine paraconsistent logics L3A and L3B. Besides, we
consider logics L3AG and L3BG which are extensions of L3A and L3B, respectively, by Heyting’s
(Gödel’s) implication.
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1 Introduction
To begin with, let us specify two propositional languages: L and L→. The first one has
the following alphabet: 〈P,∧,∨,¬, (, )〉, where P = {p, q, r, pn, qn, rn | n ∈ N} is the set
of propositional variables. The second one is L ’s extension by an implication →. The
sets F and F→, respectively, of all L ’s and L→’s formulas are defined in a standard
way. Let L be a logic which is built either in L or L→.

In logical literature, there are several definitions of paraconsistent logic. The following
list contains the most popular ones and does not pretend to be complete:1

• Priest’s definition [16]. A logic L is paraconsistent iff for some A,B ∈ F ′ it holds
that A,¬A 6|=L B, where F ′ ∈ {F ,F→}.

• Da Costa’s definition [7]. A logic L is paraconsistent iff there is A ∈ F ′ such that
6|=L ¬(A ∧ ¬A), where F ′ ∈ {F ,F→}.

• Jaśkowski’s definition [11]. A logic L is paraconsistent iff for some A,B ∈ F→ it
holds that 6|=L A→ (¬A→ B).2 .

In general case, these definitions are not equivalent. First of all, they have different re-
quirements to languages in which the considered logics are built. Priest’s definition seems
to be the most uniform one: it requires the presence of negation only in the concerned
logic. Da Costa’s definition requires the presence of negation as well as conjunction and
Jaśkowski’s one — the presence of negation as well as implication. However, even if two
different logics are built in the same language, these definitions still can be different. Let
us present some examples, using the framework of many-valued logics.

1In order to be more precise, we consider logics which are built in L and L→ only. However, one can
deal with the other languages.

2There is also a variation on the theme of Jaśkowski’s definition such that (A ∧ ¬A) → B is used
instead of A→ (¬A→ B).
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• Asenjo-Priest’s three-valued logic of paradox LP [1, 15, 16]. It is built in the lan-
guage L and has the following set of truth values: V = {1, 1/2, 0}. Its connec-
tives are defined as follows, for each A,B ∈ F : v(A ∧ B) = min(v(A), v(B)),
v(A ∨ B) = max(v(A), v(B)), and v(¬A) = 1− v(A), where v is a function, called
valuation, such that v(P ) ∈ V , for each P ∈ P. The set D2 of designated values
is {1, 1/2} and the entailment relation is defined as follows, for each Γ ⊆ F and
A ∈ F : Γ |=LP A iff for each valuation v, v(G) 6= 0 (for each G ∈ Γ) implies
v(A) 6= 0. In the case of LP, it holds that p,¬p 6|=LP q while |=LP ¬(A ∧ ¬A), for
each A ∈ F . Thus, LP is paraconsitent according to Priest’s definition, but at the
same time it is not paraconsitent according to da Costa’s one.

• An implicative extension of LP (which we will call LP→) such that v(A → B) =
v(¬A ∨ B). In the case of LP→, it holds that p,¬p 6|=LP q, |=LP ¬(A ∧ ¬A), and
|=LP (A → ¬A) → B, for each A,B ∈ F→. Thus, LP→ is not paraconsitent in
Jaśkowski’s sense as well as in Da Costa’s one, but it is paraconsitent in Priest’s
sense.

• Yet another implicative extension of LP — Thomas’ LP⇒ [20]. In the case of LP⇒,
v(A → B) = 1, if v(A) 6 v(B); v(A → B) = 0, otherwise. This implication is
Rescher’s one [17]. In this logic, it holds that p,¬p 6|=LP q, |=LP ¬(A ∧ ¬A), for
each A ∈ F→, and 6|=LP (p→ ¬p)→ q. So, LP⇒ is paraconsistent both in Priest’s
sense and Jaśkowski’s one, but not in Da Costa’s one.

• Kleene’s strong logic K3 [13] which differs from LP with respect to the set of
designated values: D1 = {1} instead of D2. As a consequence, the entailment
relation is defined as follows: Γ |=K3 A iff for each valuation v, v(G) = 1 (for
each G ∈ Γ) implies v(A) = 1, for each Γ ⊆ F and A ∈ F . In the case of K3,
6|=K3 ¬(p∧¬p) while A,¬A |=K3 B, for each A,B ∈ F→. Thus, K3 is paraconsistent
in Da Costa’s sense, but not in Priest’s one.3

One can find many other examples which show the difference between various defini-
tions of paraconsistency. We are interested in a combination of these definitions, especially
Priest’s and Da Costa’s ones. Béziau and Franceschetto [3] (see also Béziau’s paper [2])
presented two logics, L3A and L3B, which and are paraconsistent according to both
Priest’s and Da Costa’s approaches. In [3], they call these logics strong paraconsistent,
but in [2] this notion is changed to genuine paraconsistent logics.

L3A and L3B are built in the language L , V is the set of their truth values, and D2

is the set of their designated values. The connectives of L3A are defined as follows:

A ¬
1 0

1/2 1
0 1

∨ 1 1/2 0
1 1 1 1

1/2 1 1/2 1/2

0 1 1/2 0

∧ 1 1/2 0
1 1 1 0

1/2 1 1/2 0
0 0 0 0

3Usually K3 is considered as paracomplete logic. According to Sette and Carnielli [19], a logic L is
paracomplete iff there is A ∈ F ′ such that 6|=L A ∨ ¬A, where F ′ ∈ {F ,F→}.
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In L3B, the definition of disjunction is the same as for L3A while the other connectives
are defined as follows:

A ¬
1 0

1/2 1/2

0 1

∧ 1 1/2 0
1 1 1/2 0

1/2 1/2 1 0
0 0 0 0

The entailment relation in both L3A and L3B is defined in the same way as in LP.
The disjunction of L3A and L3B coincide with LP’s one. L3B’s negation is the same
as in LP also. L3A’s negation is the same as in Sette’s logic P1 [18]. As mentioned in
[3, 2], L3A’s and L3B’s conjunctions and disjunctions have the following properties:

(1) they are neoclassical, i.e. A∧B is designated iff both A and B are designated, A∨B
is designated iff either A or B are designated;

(2) they are C-extending, i.e. their restrictions on the set {1, 0} are the same as classical
conjunction and disjunction;

(3) they are commutative, i.e. A ∧B = B ∧ A and A ∨B = B ∨ A.4

L3A’s and L3B’s negations are not neoclassical, but they are C-extending. Totally,
Béziau and Franceschetto [3] have found 4 three-valued genuine paraconsistent logics
which satisfy the abovementioned conditioned. Two of them are already introduced L3A
and L3B. The other ones are the {¬,∧,∨}-fragments of P1 [18] and P2 [5, 14], respec-
tively. However, Béziau and Franceschetto exclude them into consideration in order “to
minimize molecularization (molecular propositions behaving classically)” [3, p. 137]. L3A
and L3B themselves are the {¬,∧,∨}-fragments of logics which are part of the family
8Kb [6] of logics of formal inconsistency. However, the first paper which focus on L3A
and L3B and deal explicitly with them is Béziau and Franceschetto’s [3].

Let us also mention Hernández-Tello, Arrazola Ramı́rez, and Osorio Galindo’s paper
[9] devoted to implicational extensions of L3A and L3B. Although the authors suggest
several suitable implications, they emphasize logics L3AG and L3BG which are extensions
of L3A and L3B, respectively, by Heyting’s implication [10] (which is also known as
Gödel’s one [8] and was studied by Jaśkowski [12]). Heyting’s implication is defined as
follows:

→ 1 1/2 0
1 1 1/2 0

1/2 1 1 0
0 1 1 1

4In [3, 2], this property is called symmetry and the second property is called “to be conservative
connectives”.
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Clearly, L3AG and L3BG are paraconsistent according to both Priest’s and da Costa’s
approaches. However, they are paraconsistent according to Jaśkowski’s approach also.
Thus, these logics are even more genuine paraconsistent then L3A and L3B are.

One more extension of L3B, called NH, was studied by Caret [4]. NH has Sette’s
implication [18] and the following unary operator: ◦A = ¬(A ∧ ¬A). NH is formalized
via Hilbert-style calculus and analytic tableaux [4].

The aim of our paper is to present cut-free sequent calculi and natural deduction
systems for L3A and L3B as well as L3AG and L3BG.

2 Sequent calculi for L3A and L3B
Sequent calculus SL3A for L3A has the following axioms and inference rules (for each
A,B ∈ F and Γ,∆,Θ,Λ ⊆ F ):

(AX) A,Γ⇒ A,∆

(¬¬ ⇒)
Γ⇒ ∆,¬A
¬¬A,Γ⇒ ∆

(⇒ ¬)
A,Γ⇒ ∆

Γ⇒ ∆,¬A

(∨ ⇒)
A,Γ⇒ ∆ B,Γ⇒ ∆

A ∨B,Γ⇒ ∆
(⇒ ∨)

Γ⇒ ∆, A,B

Γ⇒ ∆, A ∨B

(∧ ⇒)
A,B,Γ⇒ ∆

A ∧B,Γ⇒ ∆
(⇒ ∧)

Γ⇒ ∆, A Γ⇒ ∆, B

Γ⇒ ∆, A ∧B

(¬∨ ⇒)
¬A,¬B,Γ⇒ ∆

¬(A ∨B),Γ⇒ ∆
(⇒ ¬∨)

Γ⇒ ∆,¬A Γ⇒ ∆,¬B
Γ⇒ ∆,¬(A ∨B)

(¬∧ ⇒1)
¬A,Γ⇒ ∆ ¬B,Γ⇒ ∆

¬(A ∧B),Γ⇒ ∆
(⇒ ¬∧)

Γ⇒ ∆,¬A,¬B
Γ⇒ ∆,¬(A ∧B)

(¬∧ ⇒2)
Γ⇒ ∆, B ¬A,Θ⇒ Λ

¬(A ∧B),Γ,Θ⇒ ∆,Λ
(¬∧ ⇒3)

Γ⇒ ∆, A ¬B,Θ⇒ Λ

¬(A ∧B),Γ,Θ⇒ ∆,Λ

Sequent calculus SL3B for L3B has the following axioms and inference rules (for each
A,B ∈ F and Γ,∆,Θ,Λ ⊆ F ): (AX), (∨ ⇒), (⇒ ∨), (∧ ⇒), (⇒ ∧), (¬∨ ⇒), (¬∧ ⇒1),
(⇒ ¬∧) as well as the following ones:

(AXEM) Γ⇒ ∆, A,¬A

(¬¬ ⇒∗) A,Γ⇒ ∆

¬¬A,Γ⇒ ∆
(⇒ ¬¬)

Γ⇒ ∆, A

Γ⇒ ∆,¬¬A

(¬∧ ⇒4)
Γ⇒ ∆, A ∧B Θ⇒ Λ,¬A ∧ ¬B

¬(A ∧B),Γ,Θ⇒ ∆,Λ
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¬p⇒ ¬p ¬q ⇒ ¬q
(⇒ ¬∨∗)

¬p⇒ ¬q,¬(p ∨ q)
(⇒ ∨)

¬p⇒ ¬q ∨ ¬(p ∨ q)

Figure 1: Proof of ¬p⇒ ¬q ∨ ¬(p ∨ q) in SL3B.

(⇒ ¬∨∗) Γ⇒ ∆,¬A ¬B,Θ⇒ Λ

Γ,Θ⇒ ∆,Λ,¬(A ∨B)
(⇒ ¬∨∗∗) Γ⇒ ∆,¬B ¬A,Θ⇒ Λ

Γ,Θ⇒ ∆,Λ,¬(A ∨B)

The notion of proof in SL, where L ∈ {L3A,L3B}, is defined in a standard way. An
example of proof in SL3B is presented in Figure 1. Let SC

L , where L ∈ {L3A,L3B}, be
an extension of SL by the rule (Cut).

(Cut)
Γ⇒ ∆, A A,Θ⇒ Λ

Γ,Θ⇒ ∆,Λ

Theorem 1. For each Γ,∆ ⊆ F and L ∈ {L3A,L3B}, it holds that ` Γ ⇒ ∆ is
provable in SL iff |=L Γ⇒ ∆.

Proof. To be written.

Theorem 2. For each Γ,∆ ⊆ F and L ∈ {L3A,L3B}, it holds that ` Γ ⇒ ∆ is
provable in SL iff ` Γ⇒ ∆ is provable in SC

L

Proof. To be written.

3 Natural deduction for L3A and L3B
The set of all inference rules of natural deduction system NDL3A for L3A is as follows
(A,B,C ∈ F ):

(EFQ¬)
¬A ¬¬A

B
(EM )

A ∨ ¬A
(∨IA)

A

A ∨B
(∨IB)

B

A ∨B

(∨E)

[A] [B]
A ∨B C C

C
(∧ I) A B

A ∧B
(∧EA)

A ∧B

A
(∧EB)

A ∧B

B

(¬ ∨ I)
¬A ∧ ¬B
¬(A ∨B)

(¬ ∨ E)
¬(A ∨B)

¬A ∧ ¬B
(¬ ∧ I)

¬A ∨ ¬B
¬(A ∧B)

(¬ ∧ E1)
¬(A ∧B)

¬A ∨ ¬B
(¬ ∧ E2)

B ¬(A ∧B)

¬A
(¬ ∧ E3)

A ¬(A ∧B)

¬B
The set of all inference rules of natural deduction system NDL3B for L3B consists

of the following elements: (EM), (∨IA), (∨IB), (∨E), (∧ I), (∧EA), (∧EB), (¬ ∨ I),
(¬ ∨ E), (¬ ∧ E1) as well as the following ones:
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F

¬(q ∧ ¬r)
[p ∧ ¬r]

(∧EB)¬r
(¬ ∧ E3)¬q

¬(p ∧ ¬q)
[p ∧ ¬r]

(∧EA)p
(¬ ∧ E2)¬¬q (EFQ¬)¬(p ∧ ¬r) [¬(p ∧ ¬r)]

(])
¬(p ∧ ¬r)

Figure 2: Derivation of ¬(p ∧ ¬r) from ¬(q ∧ ¬r) and ¬(p ∧ ¬q) in NDL3A, where F is
(p ∧ ¬r) ∨ ¬(p ∧ ¬r) and (]) is an abbreviation for “(EM ), (∨E)”.

(¬ ∧ I¬A)
¬A

¬B ∨ ¬(A ∨B)
(¬ ∧ I¬B)

¬B
¬A ∨ ¬(A ∨B)

(¬ ∧ E4)
¬(A ∧B) A ∧B ¬A ∧ ¬B

C
(¬¬I) A

¬¬A
(¬¬E)

¬¬A
A

The notion of derivation in NDL, where L ∈ {L3A,L3B}, is defined in a standard
tree-format way. An example of derivation in NDL3A is presented in Figure 2.

Theorem 3. For each Γ ⊆ F , A ∈ F , and L ∈ {L3A,L3B}, it holds that ` Γ⇒ A is
provable in SC

L iff Γ ` A is provable in NDL.

Proof. By induction on the depth of derivations.

Theorem 4. For each Γ ⊆ F , A ∈ F , and L ∈ {L3A,L3B}, it holds that Γ `L A is
provable in NDL iff Γ |=L A.

Proof. Theorem follows from Theorems 1 and 3.

4 Proof theory for L3AG and L3BG

4.1 Sequent calculi for L3AG and L3BG

SLG
, where L ∈ {L3A,L3B}, is an extension of SL by the following inference rules

(A,B ∈ F→ and Γ,∆,Θ,Λ ⊆ F→):

(→⇒)
Γ⇒ ∆, A B,Θ⇒ Λ

A→ B,Γ,Θ⇒ ∆,Λ
(⇒→)

A,Γ⇒ ∆, B

Γ⇒ ∆, A→ B

(¬→ ⇒1)
A,B,Γ⇒ ∆

¬(A→ B),Γ⇒ ∆
(¬→ ⇒2)

Γ⇒ ∆,¬A Θ⇒ Λ, B

¬(A→ B),Γ,Θ⇒ ∆,Λ

(⇒ ¬→)
Γ⇒ ∆,¬B ¬A,Θ⇒ Λ

Γ,Θ⇒ ∆,Λ,¬(A→ B)

Let SC
L , where L ∈ {L3AG,L3BG}, be an extension of SL by the rule (Cut).
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Theorem 5. For each Γ,∆ ⊆ F and L ∈ {L3AG,L3BG}, it holds that ` Γ ⇒ ∆ is
provable in SL iff |=L Γ⇒ ∆.

Proof. Similarly to Theorem 1.

Theorem 6. For each Γ,∆ ⊆ F and L ∈ {L3AG,L3BG}, it holds that ` Γ ⇒ ∆ is
provable in SL iff ` Γ⇒ ∆ is provable in SC

L

Proof. Similarly to Theorem 2.

4.2 Natural deduction for L3AG and L3BG

NDLG
, where L ∈ {L3A,L3B}, is an extension of NDL by the following inference rules

(A,B,C ∈ F→):

(→I1)

[A]
B

A→ B
(MP)

A A→ B

B
(¬→I)

¬B
¬A ∨ ¬(A→ B)

(¬→E1)
¬(A→ B)

A ∧ ¬B
(¬→E2)

¬(A→ B) ¬A B

C

Theorem 7. For each Γ ⊆ F , A ∈ F , and L ∈ {L3AG,L3BG}, it holds that ` Γ⇒ A
is provable in SC

L iff Γ ` A is provable in NDL.

Proof. By induction on the depth of derivations.

Theorem 8. For each Γ ⊆ F , A ∈ F , and L ∈ {L3AG,L3BG}, it holds that Γ `L A
is provable in NDL iff Γ |=L A.

Proof. Theorem follows from Theorems 5 and 7.

5 Conclusion
To be written.

References
[1] Asenjo F.G. A calculus of antinomies // Notre Dame Journal of Formal Logic 7:

103-105, 1966.

[2] Beziau J.Y. Two genuine 3-valued paraconsistent logics // Akama S. (ed.) To-
wards Paraconsistent Engineering. Intelligent Systems Reference Library, vol. 110.
Springer, Cham, 2016.

7



[3] Beziau J.Y., Franceschetto A. Strong three-valued paraconsistent logics // Beziau
J.Y., Chakraborty M., Dutta S. (eds.) New Directions in Paraconsistent Logic.
Springer Proceedings in Mathematics & Statistics, vol. 152. Springer, New Delhi,
2015.

[4] Caret C.R. Hybridized paracomplete and paraconsistent logics // Australasian Jour-
nal of Logic 14, 1 (2017): 281–325.

[5] Carnielli W.A., Lima-Marques M. Society semantics and multiple-valued logics //
Advances in Contemporary Logic and Computer Science 235: 33-52, 1999.

[6] Carnielli W., Coniglio M., Marcos J. Logics of formal inconsistency. In: Gabbay,
D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., pp, vol. 14,
pp. 1–93. Springer (2007)

[7] Da Costa N.C.A. On the theory of inconsistent formal systems // Notre Dame
Journal of Formal Logic 15: 497-510, 1974.
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