Universal Logic III Estoril 2010 Tutorial on Truth Values Heinrich Wansing and Fabien Schang Session 2, Part 3

Fabien Schang

3.
 An algebraic logic of oppositions

Abstract

In this third part, the question-answer machinery is applied to develop a general theory of oppositions. A logical value characterizes each opposite term of an opposition, and a calculus of oppositions is made possible by recursive functions upon these values. The nature of logical negation and some of their non-classical variants is investigated.

What is a logical opposition?

DEF. 1-1: opposition.
An opposition is a 2-ary relation $\operatorname{OP}(\mathrm{a}, \mathrm{b})$ standing between 2 opposite terms a and b a and b stand for concepts or propositions, to be reduced to propositions

In a bivalent domain of interpretation, the set of truth-values $V=\mathbf{2}=\{\mathrm{T}, \mathrm{F}\}$
Proposition: a sentence that is true $(v(\mathrm{a})=\mathrm{T})$ or false $(v(\mathrm{a})=\mathrm{F})$
$\mathbf{2}$ includes $(\mathbf{2})^{2}=4$ ordered pairs of truth-values in the set $\mathbf{4}=\{\langle\mathrm{T}, \mathrm{T}\rangle,\langle\mathrm{T}, \mathrm{F}\rangle,\langle\mathrm{F}, \mathrm{T}\rangle,\langle\mathrm{F}, \mathrm{F}\rangle\}$

DEF. 1-2: oppositions.
Each case of opposition is a set of compossible truth-values
Let \mathbf{Q}_{1} and \mathbf{Q}_{2} be 2 questions about OP, $\mathbf{Q}_{1}: " v(\mathrm{a})=v(\mathrm{~b})=\mathrm{F}$?" and $\mathbf{Q}_{2}: " v(\mathrm{a})=v(\mathrm{~b})=\mathrm{T}$?"
Let $\mathbf{A}_{i}=1$ a yes-answer to $\mathbf{Q}_{i}, \mathbf{A}_{i}=0$ a no-answer to \mathbf{Q}_{i}
There are (2) $=4$ ordered pairs of answers
$\mathrm{OP}=\{\langle 1,1\rangle,\langle 1,0\rangle,\langle 0,1\rangle,\langle 0,0\rangle\}$

How many logical oppositions are there?

The "Aristotelian" oppositions: 4 oppositions
$\mathrm{OP}=\{\mathrm{CD}, \mathrm{CT}, \mathrm{SCT}, \mathrm{SB}\}$

DEF. 1-3: Each opposition is a set of ordered answers $\mathbf{A}=\left\langle\mathbf{A}_{1}, \mathbf{A}_{2}\right\rangle$
Contrariety: $\mathrm{CT}=\langle 1,0\rangle=\{\langle\mathrm{T}, \mathrm{F}\rangle,\langle\mathrm{F}, \mathrm{T}\rangle,\langle\mathrm{F}, \mathrm{F}\rangle\}$
Contradiction: $\mathrm{CD}=\langle 0,0\rangle=\{\langle\mathrm{T}, \mathrm{F}\rangle,\langle\mathrm{F}, \mathrm{T}\rangle\}$
Subcontrariety: SCT $=\langle 0,1\rangle=\{\langle\mathrm{T}, \mathrm{T}\rangle,\langle\mathrm{T}, \mathrm{F}\rangle,\langle\mathrm{F}, \mathrm{T}\rangle\}$
Subalternation: $\mathrm{SB}=\langle 1,1\rangle=\{\langle\mathrm{T}, \mathrm{T}\rangle,\langle\mathrm{F}, \mathrm{F}\rangle,\langle\mathrm{F}, \mathrm{T}\rangle,\langle\mathrm{F}, \mathrm{F}\rangle\}$

Adfirmatio universalis		Negatio universalis
Omunis homo instus est	CONTRARIAE	Nullus homo instus est
Universale universaliter		Universale universaliter
S U B A L T E R N A E		$\begin{aligned} & \mathrm{S} \\ & \mathrm{~V} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~L} \\ & \mathrm{~T} \\ & \mathrm{E} \\ & \mathrm{R} \\ & \mathrm{~N} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{E} \\ & \hline \end{aligned}$
Adfirmatio particulan's		Negatio particularis
Quidam homo instus est	VBCONTRARIAE	Quidam homo instus nonest
Universale particulariter		Universale particulariter

Boethins' own diagram of the square of opposition (Meiser, adapted from Seuren)

The "Aristotelian" oppositions: 4 oppositions, whatever n may be $\mathrm{OP}=\{\mathrm{CD}, \mathrm{CT}, \mathrm{SCT}, \mathrm{SB}\}$

DEF. 1-3: Each opposition is a set of ordered answers $\mathbf{A}=\left\langle\mathbf{A}_{1}, \mathbf{A}_{2}\right\rangle$
Contrariety: $\mathrm{CT}=\langle 1,0\rangle=\{\langle\mathrm{T}, \mathrm{F}\rangle,\langle\mathrm{F}, \mathrm{T}\rangle,\langle\mathrm{F}, \mathrm{F}\rangle\}$
Contradiction: $\mathrm{CD}=\langle 0,0\rangle=\{\langle\mathrm{T}, \mathrm{F}\rangle,\langle\mathrm{F}, \mathrm{T}\rangle\}$
Subcontrariety: $\mathrm{SCT}=\langle 0,1\rangle=\{\langle\mathrm{T}, \mathrm{F}\rangle,\langle\mathrm{F}, \mathrm{T}\rangle,\langle\mathrm{F}, \mathrm{T}\rangle\}$
Subalternation: $\mathrm{SB}=\langle 1,1\rangle=\{\langle\mathrm{T}, \mathrm{T}\rangle,\langle\mathrm{F}, \mathrm{F}\rangle,\langle\mathrm{F}, \mathrm{T}\rangle,\langle\mathrm{F}, \mathrm{F}\rangle\}$

2 problems:
Problem \#1. Aristotle acknowledged 2 oppositions, only
Problem \#2: DEF. 1-3 does not take into account the non-compossibility of $\langle\mathrm{T}, \mathrm{F}\rangle$ in SB $\mathrm{SB}(\mathrm{a}, \mathrm{b})$ is an asymmetric relation between a and b

Verbally four kinds of opposition are possible, viz. universal affirmative to universal negative, universal affirmative to particular negative, particular affirmative to universal negative, and particular affirmative to particular negative: but really there are only three: for the particular affirmative is only verbally opposed to the particular negative. Of the genuine opposites I call those which are universal contraries, the universal affirmative and the universal negative, e.g. 'every science is good', 'no science is good'; the others I call contradictories.
(Aristotle, Prior Analytics, 63b 21-30)

Aristotle's oppositions: relations of incompatibility
DEF. 1-4: OP is a relation of opposition $\operatorname{OP}(\mathrm{a}, \mathrm{b})$, such that: $v(\mathrm{a})=\mathrm{T} \Rightarrow v(\mathrm{~b})=\mathrm{F}$
$v(\mathrm{~b})=\mathrm{T} \Rightarrow v(\mathrm{a})=\mathrm{F}$

Since there are three oppositions to affirmative statements, it follows that opposite statements may be assumed as premisses in six ways; we may have either universal affirmative and negative, or universal affirmative and particular negative, or particular affirmative and universal negative, and the relations between the terms may be reversed.
(Aristotle, Prior Analytics, 64a37-38)

I think that neither subalternation nor superalternation can be considered as relations of opposition. For example P is subaltern of $\mathrm{P} \vee \mathrm{Q}$, and it does not really make sense to consider them as opposed.
(Béziau (2003): 225)

Solution \#1 to Problem \#2: turning DEF. 1-3 into DEF. 1-5
Sion (1996)
DEF. 1-5: Each opposition is a set of ordered answers $\mathbf{A}=\left\langle\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{4}\right\rangle$ to 4 questions, namely: $\mathbf{Q}_{1}: " v(\mathrm{a})=v(\mathrm{~b})=\mathrm{T} ? ", \mathbf{Q}_{2}: " v(\mathrm{a})=\mathrm{T}, v(\mathrm{~b})=\mathrm{F} ? ", \mathbf{Q}_{3}: " v(\mathrm{a})=\mathrm{F}, v(\mathrm{~b})=\mathrm{T} ? ", \mathbf{Q}_{4}$: $" v(\mathrm{a})=v(\mathrm{~b})=\mathrm{F} ? "$.

According to Sion (1996), there are 6 oppositions: OP U \{IM,UNC\}

CT:	CT(a,b)	$=\langle 0,1,1,1\rangle$
CD:	CD(a,b)	$=\langle 0,1,1,0\rangle$
SCT:	SCT(a,b)	$=\langle 1,1,1,0\rangle$
SB:	SB(a,b)	$=\langle 1,0,1,1\rangle$
+	IM: Implicance	$\operatorname{IM}(\mathrm{a}, \mathrm{b})$
	$=\langle 1,0,0,1\rangle$	
UN: Unconnectedness	$\mathrm{UN}(\mathrm{a}, \mathrm{b})$	$=\langle 1,1,1,1\rangle$

Problem \#3: DEF. 1-5 results in $(4)^{2}=16$ ordered pairs of answers what of the $(2)^{4}-6=10$ remaining pairs?

Solution \#2 to Problem \#1 and Problem \#2: to define opposition by means of a function

Let us recall that Aristotle does not introduce explicitly the notion of "subcontraries", but refers to them only indirectly as "contradictories of contraries".
(Béziau (2003): 224)

Solution \#2 to Problem \#1 and Problem \#2: to define opposition by means of a function
Logical form: $\mathrm{R}(\mathrm{x}, f(\mathrm{y}))$, R : relation; f, g, h : predicate functions; x, y : individual functions
Example 1: "my mother's son is my brother"
f : son; g : mother, R: brother

$$
\forall \mathrm{x} \forall \mathrm{y}(f(\mathrm{~g}(\mathrm{x})) \leftrightarrow \mathrm{R}(\mathrm{x}, \mathrm{y}))
$$

Example 2: "Mother's sons are brothers"
R_{1} : son, R_{2} : brother

$$
\left.\left.\forall \mathrm{x} \forall \mathrm{y} \forall \mathrm{z}\left(\left(\mathrm{R}_{1}(\mathrm{x}, \mathrm{z})\right) \wedge \mathrm{R}_{1}(\mathrm{y}, \mathrm{z})\right) \leftrightarrow \mathrm{R}_{2}(\mathrm{x}, \mathrm{y})\right)\right)
$$

Example 3: "Subcontraries are contradictories of contraries"
SCT: subcontrariety, $c d$: contradictory, CT: contrariety $\quad \forall \mathrm{x} \forall \mathrm{y}(\mathrm{SCT}(\mathrm{x}, \mathrm{y}) \leftrightarrow \mathrm{CT}(c d(\mathrm{x}), c d(\mathrm{y})))$
$\mathrm{OP}=\{\mathrm{CT}, \mathrm{CD}, \mathrm{SCT}, \mathrm{SB}\}$: set of the relations of opposition
$o p=\{c t, c d, s c t, s b\}$: set of the functions of opposites

DEF. 1-6: OP is a relation of opposition such that, for any a and b, b is the opposite of a
$\mathrm{CD}(\mathrm{a}, \mathrm{b})$: " a and b stand into a contradictory relation"
$\mathrm{b}=c d(\mathrm{a})$: " b is the contradictory of a "

What is a logical opposite?

DEF. 2-1: A logical opposite is a function $o p$ from $o p(a)$ to b such that, for any a, b, $\mathrm{OP}(v(\mathrm{a}), \mathrm{op}(v(\mathrm{a})))=\operatorname{OP}(v(\mathrm{a}), v(\mathrm{~b}))$

Problem \#4: how to determine the value of b, given the value of a ?
only $c d$ is a truth-functional function in the modern, Fregean logic
For any $a, b: v(\mathrm{a})=\mathrm{T}$ if and only if $v(c d(\mathrm{a}))=v(\mathrm{~b})=\mathrm{F}$

DEF. 2-2: classical negation \sim is a contradictory-forming operator, such that $v(c d(\mathrm{a}))=$ $v(\sim \mathrm{a})$ and $\mathrm{CD}(v(\mathrm{a}), v(\mathrm{~b}))=\mathrm{CD}(v(\mathrm{a}), v(\sim \mathrm{a}))$

What about $v(\operatorname{ct}(\mathrm{a})), v(\operatorname{sct}(\mathrm{a}))$, and $v(s b(\mathrm{a}))$?
Solution to Problem \#4: to assign another interpretation for the opposite terms

Piaget (1949) constructed a theory of intrapropositional 2-ary connectives \circ

DEF. 2-3: Every 2-ary proposition $a=(\mathrm{p} \circ \mathrm{q})$ is characterized by its Disjunctive Normal Form (DNF)
Each DNF is a set of ordered answers $\mathbf{A}=\left\langle\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{4}\right\rangle$ to 4 questions: $\mathbf{Q}_{1}: " v(\mathrm{p})=v(\mathrm{q})=$ $\mathrm{T} ", \mathbf{Q}_{2}: " v(\mathrm{p})=\mathrm{T}, v(\mathrm{q})=\mathrm{F} ? ", \mathbf{Q}_{3}: " v(\mathrm{p})=\mathrm{F}, v(\mathrm{q})=\mathrm{T} ? ", \mathbf{Q}_{4}: " v(\mathrm{p})=v(\mathrm{q})=\mathrm{F} ? "$. It results in $(4)^{2}=16$ ordered answers that characterize a 2 -ary connective \circ in $a=\mathrm{p} \circ \mathrm{q}$

DEF. 2-4: A logical opposite $o p$ is a valuation function from a to b such that, for every interpretation of a, b into $\mathbf{A}, \mathbf{A}(o p(\mathrm{a}))=\mathbf{A}(\mathrm{b})$
$\mathbf{A}(\mathrm{p} \circ \mathrm{q}) \quad a=(\mathrm{p} \circ \mathrm{q})$

1.	$\langle 1,1,1,1\rangle$	T
2.	$\langle 1,1,1,0\rangle$	$\mathrm{p} \vee \mathrm{q}$
3.	$\langle 1,1,0,1\rangle$	$\mathrm{p} \leftarrow \mathrm{q}$
4.	$\langle 1,0,1,1\rangle$	$\mathrm{p} \rightarrow \mathrm{q}$
5.	$\langle 0,1,1,1\rangle$	$\mathrm{p} \uparrow \mathrm{q}, \sim(\mathrm{p} \wedge \mathrm{q})$
6.	$\langle 1,1,0,0\rangle$	p
7.	$\langle 1,0,0,1\rangle$	$(\mathrm{p} \leftrightarrow \mathrm{q})$
8.	$\langle 0,0,1,1\rangle$	$\sim \mathrm{p}$
9.	$\langle 0,1,1,0\rangle$	$\sim(\mathrm{p} \leftrightarrow \mathrm{q})$
10.	$\langle 1,0,1,0\rangle$	q
11.	$\langle 0,1,0,1\rangle$	$\sim \mathrm{q}$
12.	$\langle 1,0,0,0\rangle$	$\mathrm{p} \wedge \mathrm{q}$
13.	$\langle 0,1,0,0\rangle$	$\sim(\mathrm{p} \rightarrow \mathrm{q})$
14.	$\langle 0,0,1,0\rangle$	$\sim(\mathrm{p} \leftarrow \mathrm{q})$
15.	$\langle 0,0,0,1\rangle$	$\mathrm{p} \downarrow \mathrm{q}, \sim(\mathrm{p} \vee \mathrm{q})$
16.	$\langle 0,0,0,0\rangle$	\perp

How many opposites are there?

A theory of reversibility: Piaget INRC Group
DEF. 2-5: there is a set $o p=\{I, N, R, C\}$ of $\mathbf{4}$ opposite functions such that, for any a, b, $\operatorname{OP}(\mathbf{A}(\mathrm{a})), \operatorname{op}(\mathbf{A}(\mathrm{a}))=\operatorname{OP}(\mathbf{A}(\mathrm{a}), \mathbf{A}(\mathrm{b}))$
Let $\left(\mathbf{A}_{i}\right)^{\prime}$ be the denial of \mathbf{A}_{i}, such that $\left(\mathbf{A}_{\mathbf{i}}\right)^{\prime}=0$ iff $\left(\mathbf{A}_{i}\right)=1$ and $\left(\left(\mathbf{A}_{i}\right)^{\prime}\right)^{\prime}=\left(\mathbf{A}_{i}\right)$
The set of 4 operations (Klein four-group)
$\mathrm{I}=$ identity

$$
\mathrm{I}(\mathbf{A}(\mathrm{a}))=\left\langle\mathbf{A}_{1}(\mathrm{a}), \mathbf{A}_{2}(\mathrm{a}), \mathbf{A}_{3}(\mathrm{a}), \mathbf{A}_{4}(\mathrm{a})\right\rangle
$$

$\mathrm{N}=$ inversion
$\mathrm{R}=$ reciprocity
$\mathrm{C}=$ correlation
$\mathrm{N}(\mathbf{A}(\mathrm{a}))=\left\langle\mathbf{A}_{1}(\mathrm{a})^{\prime}, \mathbf{A}_{2}(\mathrm{a})^{\prime},\left(\mathbf{A}_{3}(\mathrm{a})^{\prime},\left(\mathbf{A}_{4}(\mathrm{a})^{\prime}\right\rangle\right.\right.$
$R(\mathbf{A}(\mathrm{a}))=\left\langle\mathbf{A}_{4}(\mathrm{a}), \mathbf{A}_{3}(\mathrm{a}), \mathbf{A}_{2}(\mathrm{a}), \mathbf{A}_{1}(\mathrm{a})\right\rangle$
$C(\mathbf{A}(a))=\left\langle\mathbf{A}_{4}(a)^{\prime}, \mathbf{A}_{3}(a)^{\prime}, \mathbf{A}_{2}(a)^{\prime}, \mathbf{A}_{1}(a)^{\prime}\right\rangle$

Example: $a=(\mathrm{p} \wedge \mathrm{q})$. Thus:
$\mathrm{I}(\mathbf{A}((\mathrm{p} \wedge \mathrm{q}))=\langle 1000\rangle$
$\mathrm{N}(\mathbf{A}(\mathrm{p} \wedge \mathrm{q}))=\left\langle(1)^{\prime}(0)^{\prime}(0)^{\prime}(0)^{\prime}\right\rangle=\langle 0111\rangle=\mathbf{A}(\sim(\mathrm{p} \wedge \mathrm{q})), \mathbf{A}((\mathrm{p} \uparrow \mathrm{q}))$
$R(\mathbf{A}(\mathrm{p} \wedge \mathrm{q}))=\langle 0001\rangle \quad=\quad \mathbf{A}(\sim(\mathrm{p} \vee \mathrm{q})), \mathbf{A}((\mathrm{p} \downarrow \mathrm{q}))$
$\mathbf{C}(\mathbf{A}(\mathrm{p} \wedge \mathrm{q}))=\left\langle(0)^{\prime}(0)^{\prime}(0)^{\prime}(1)^{\prime}\right\rangle=\langle 1110\rangle=\mathbf{A}(\mathrm{p} \vee \mathrm{q})$

DEF. 2-6: N is a contradiction-forming operator $c d$ such that $\mathrm{OP}(\mathrm{a}, c d(\mathrm{a}))=\mathrm{CD}(\mathrm{a}, \mathrm{b})$
R is a (sub)contrariety-forming operator $(s) c t$ such that $\mathrm{OP}(\mathrm{a}, \operatorname{ct}(\mathrm{a}))=\mathrm{CT}(\mathrm{a}, \mathrm{b})$ or $\operatorname{SCT}(\mathrm{a}, \mathrm{b})$ C is a subalternation-forming operator $s b$ such that $\mathrm{OP}(\mathrm{a}, s b(\mathrm{a})=\mathrm{SB}(\mathrm{a}, \mathrm{b})$

The 4 operations in $o p=\{I, N, R, C\}$ are commutative functions

Let us recall that Aristotle does not introduce explicitly the notion of "subcontraries", but refers to them only indirectly as "contradictories of contraries".
(Béziau (2003): 224)

```
Proof. SCT(a,b)=CT(cd(a),cd(b))
Let }a=(\textrm{p}\vee\textrm{q}).Then SCT(p\veeq,b)=OP(p\veeq, sct(p\veeq))= OP(p\veeq,p\uparrowq
cd(p\veeq) = (p\downarrowq), and cd(p\uparrowq) = (p\wedgeq)
OP(p}\downarrowq,p,p\wedgeq)=OP(p\downarrowq,ct(p\downarrowq))=CT(p \downarrowq,p\wedgeq
Hence SCT(p\veeq,p\uparrowq)=CT(p\downarrowq,p\wedgeq)
```


What is logical negation?

Again, classical negation is the contradictory-forming operator $c d$:
DEF. 2-2: classical negation \sim is a contradictory-forming operator, such that $v(c d(\mathrm{a}))=$ $v(\sim(\mathrm{a}))$ and $\mathrm{CD}(v(\mathrm{a}), v(\mathrm{~b}))=\mathrm{CD}(v(\mathrm{a}), v(\sim(\mathrm{a}))$

What about the other opposite-forming operators?
Béziau (2003): a translation of negations from a modal standpoint

The E-corner, impossible, is a paracomplete negation (intuitionistic negation if the underlying modal logic is $S 4$) and the O-corner, not necessary, is a paraconsistent negation.
I argue that the three notions of opposition of the square of oppositions (contradiction, contrariety, subcontrariety) correspond to three notions of negation (classical, paracomplete, paraconsistent).
(Béziau (2003): 218)

Problem \#5: how to characterize modalities within the theory of opposition? Modalities are structurally similar to quantifiers

Problem \#5: how to characterize modalities within the theory of opposition? Modalities are structurally similar to quantifiers

Problem \#6: how to algebraize modalities, in the line of $\mathbf{Q}-\mathbf{A}$?
modalities cannot be characterized algebraically, according to Dugundji (1940)

There is no finite characteristic matrix for any of Lewis and Langford's systems.
(Dugundji (1940): 150)

Solution to Problem \#6: to algebraize modalities in a fragment of modal logics: S5
Modalities are defined in terms of generalized quantifiers in Smessaert (2009)

DEF. 3-1: modalities as generalized quantifiers.
Each modality $a=\mathrm{X}(p)$ is a set of ordered answers $\mathbf{A}(\mathrm{p})=\left\langle\mathbf{a}_{1}(\mathrm{p}), \mathbf{a}_{2}(\mathrm{p}), \mathbf{a}_{3}(\mathrm{p}), \mathbf{a}_{4}(\mathrm{p})\right\rangle$ to 4 questions, namely: \mathbf{Q}_{1} : "Is p always F ?", \mathbf{Q}_{2} : "Is p actually (but not always) F ?", \mathbf{Q}_{3} : "Is a actually (but not always) T?", \mathbf{Q}_{4} : "Is a always T?".

It results in a set of $4^{2}=16$ modal sentences, where each logical value $\left\langle\mathbf{a}_{1}(\mathrm{p}), \mathbf{a}_{2}(\mathrm{p}), \mathbf{a}_{3}(\mathrm{p}), \mathbf{a}_{4}(\mathrm{p})\right\rangle$ is defined by the operations of meet and join
$\mathbf{A}(\mathrm{X}(\mathrm{p})) \quad a=\mathrm{X}(\mathrm{p})$
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
$\langle 1,1,1,1\rangle$
$\langle 1,1,1,0\rangle$
$\langle 1,1,0,1\rangle$
$\langle 1,0,1,1\rangle$
$\langle 0,1,1,1\rangle$
$\langle 1,1,0,0\rangle$
$\langle 1,0,0,1\rangle$
$\langle 0,0,1,1\rangle$
$\langle 0,1,1,0\rangle$
$\langle 1,0,1,0\rangle$
$\langle 0,1,0,1\rangle$
$\langle 1,0,0,0\rangle$
$\langle 0,1,0,0\rangle$
$\langle 0,0,1,0\rangle$
$\langle 0,0,0,1\rangle$
$\langle 0,0,0,0\rangle$

$$
a=\mathrm{X}(\mathrm{p})
$$

DEF. 3-2: Each opposition $\operatorname{OP}(\mathrm{a}, \mathrm{b})$ can be characterized by the values of its relata a and b within a Boolean algebra $A=(\Omega, U, \subset,, 1,0)$. Let \cap and U the operations of meet and join such that, for every x_{i} and $\mathrm{y}_{\mathrm{i}}(1<i<n):\left(\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\rangle \cap\left\langle\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right\rangle\right)=\left(\left\langle\mathrm{x}_{1} \cap \mathrm{y}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \cap \mathrm{y}_{\mathrm{n}}\right\rangle\right)$, and $\left(\left\langle\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\rangle \cup\left\langle\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right\rangle\right)=\left(\left\langle\mathrm{x}_{1} \cup \mathrm{y}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \cup \mathrm{y}_{\mathrm{n}}\right\rangle\right)$. Then:
$\mathrm{OP}(\mathrm{a}, \mathrm{b})=\mathrm{CT}(\mathrm{a}, \mathrm{b}) \quad$ iff $\quad(\mathbf{a}(\mathrm{a}) \cap \mathbf{a}(\mathrm{b}))=\langle 0000\rangle$ and $(\mathrm{a}(\mathrm{a}) \cup \mathbf{a}(\mathrm{b})) \neq\langle 1111\rangle$
$\mathrm{OP}(\mathrm{a}, \mathrm{b})=\mathrm{CD}(\mathrm{a}, \mathrm{b}) \quad$ iff $\quad(\mathbf{a}(\mathrm{a}) \cap \mathbf{a}(\mathrm{b}))=\langle 0000\rangle$ and $(\mathbf{a}(\mathrm{a}) \cup \mathbf{a}(\mathrm{b}))=\langle 1111\rangle$
$\mathrm{OP}(\mathrm{a}, \mathrm{b})=\operatorname{SCT}(\mathrm{a}, \mathrm{b}) \quad$ iff $\quad(\mathbf{a}(\mathrm{a}) \cap \mathbf{a}(\mathrm{b})) \neq\langle 0000\rangle$ and $(\mathbf{a}(\mathrm{a}) \cup \mathbf{a}(\mathrm{b}))=\langle 1111\rangle$
$\mathrm{OP}(\mathrm{a}, \mathrm{b})=\operatorname{SB}(\mathrm{a}, \mathrm{b}) \quad$ iff $\quad(\mathrm{a}(\mathrm{a}) \cap \mathbf{a}(\mathrm{b})) \neq\langle 0000\rangle$ and $(\mathbf{a}(\mathrm{a}) \cup \mathbf{a}(\mathrm{b})) \neq\langle 1111\rangle$

Example: Let $a=\mathrm{p} \leftrightarrow \mathrm{q}$ and $b=\mathrm{p}$; then $\mathbf{a}(\mathrm{a})=\langle 1001\rangle$ and $\mathbf{a}(\mathrm{b})=\langle 1100\rangle ;(\langle 1001\rangle \cap\langle 1100\rangle)$ $=\langle 1000\rangle$ and $(\langle 1001\rangle \cup\langle 1100\rangle)=\langle 1101\rangle$; hence $(\langle 1110\rangle \cap\langle 1001\rangle) \neq\langle 0000\rangle$ and $(\langle 1110\rangle \cup$ $\langle 1001\rangle) \neq\langle 1111\rangle$. Therefore $\operatorname{OP}(\mathrm{p} \leftrightarrow \mathrm{q}, \mathrm{p})=\mathrm{SB}(\mathrm{p} \leftrightarrow \mathrm{q}, \mathrm{p})$

Note: subalternation includes, but is not equivalent with, entailment (logical consequence) $\mathrm{OP}(\mathrm{a}, \mathrm{b})=\mathrm{SB}_{1}(\mathrm{a}, \mathrm{b}) \quad$ iff $\quad(\mathbf{a}(\mathrm{a}) \subset \mathbf{a}(\mathrm{b}))=\langle 1111\rangle$, i.e. $(\mathrm{N}(\mathbf{a}(\mathrm{a})) \cup \mathbf{a}(\mathrm{b}))=\langle 1111\rangle$

Solution to Problem \#6: to algebraize modalities in a fragment of modal logics: S5
Modalities are defined in terms of generalized quantifiers in Smessaert (2009)

DEF. 3-1: modalities as generalized quantifiers.
Each modality $a=\mathrm{X}(p)$ is a set of ordered answers $\mathbf{A}(\mathrm{p})=\left\langle\mathbf{a}_{1}(\mathrm{p}), \mathbf{a}_{2}(\mathrm{p}), \mathbf{a}_{3}(\mathrm{p}), \mathbf{a}_{4}(\mathrm{p})\right\rangle$ to 4 questions, namely: \mathbf{Q}_{1} : "Is p always F ?", \mathbf{Q}_{2} : "Is p actually (but not always) F?", \mathbf{Q}_{3} : "Is a actually (but not always) T?", \mathbf{Q}_{4} : "Is a always T?".

It results in a set of $4^{2}=16$ modal sentences, where each logical value $\left\langle\mathbf{a}_{1}(\mathrm{p}), \mathbf{a}_{2}(\mathrm{p}), \mathbf{a}_{3}(\mathrm{p}), \mathbf{a}_{4}(\mathrm{p})\right\rangle$ is defined by the operations of meet and join

According to the characterization of OP in DEF. 3-2, there is more than just 1 logical hexagon of modalities

the 7th hexagon (Pellissier)

Fabien Schang
Truth Values

DEF. 3-3: intuitionistic negation \neg is a contrary-forming operator, such that $\mathbf{A}(\operatorname{ct}(\mathrm{a}))=$ $\mathbf{A}(\neg(\mathrm{a})), \mathrm{CT}(\mathbf{A}(\mathrm{a}), \mathbf{A}(\mathrm{b}))=\mathrm{CT}(\mathbf{A}(\mathrm{a}), \mathbf{A}(\neg(\mathrm{a}))$, and

Compare with Gödel's translation:
$\neg \mathrm{p}:=\square \sim \mathrm{p}$

DEF. 3-4: paraconsistent negation - is a subcontrary-forming operator, such that $\mathbf{A}(\operatorname{sct}(\mathrm{a}))$
$=\mathbf{A}(-(\mathrm{a})), \operatorname{SCT}(\mathbf{A}(\mathrm{a}), \mathbf{A}(\mathrm{b}))=\operatorname{SCT}(\mathbf{A}(\mathrm{a}), \mathbf{A}(-(\mathrm{a}))$, and
Compare with Béziau's translation:
$-\mathrm{p}:=\sim \square \mathrm{p}$
Corollary about intuitionistic and paraconsistent negations:
they are dual to each other: $\mathrm{X}(\mathrm{p}):=: \sim \mathrm{X} \sim(\mathrm{p})$
defined by the same opposite-forming operator: R

Problem \#7 with DEF. 3-3: by double negation, RR = I; therefore $\mathbf{A}(\neg \neg(\mathrm{a}))=\mathbf{A}(\mathrm{a})$ But the Law of Double Negation doesn't hold in intuitionistic logic: $\neg \neg \mathrm{a} \nrightarrow \mathrm{a}$

Solution to Problem \#7: R = Nelson's strong negation, not Heyting's intuitionistic negation
Heyting's intuitionistic negation cannot be characterized by any of $o p=\{c d, c t, s c t, s b\}$
Béziau's modal translations differ from our algebraic translation: $\mathrm{R} \neq \square \sim$
Compare with the difference between Jain logic \mathbf{J}_{7} and Jaśkowski's Discussive Logic \mathbf{D}_{2}
Schang (2009a)

$$
\text { vs. Jaśkowski's } \mathbf{D}_{2}:-\mathrm{p}=(\diamond \sim) \mathrm{p}
$$

vs.

$$
--p=(\diamond \sim \Delta \sim) p
$$

DEF. 3-5: a subaltern-forming operator is a mixed double negation, such that $\mathbf{A}(s b(a))=$ $\mathbf{A}(\operatorname{ct}(\operatorname{cd}(\mathrm{a}))=\mathbf{A}(\neg \sim(\mathrm{a}))$

Problem \#8: does a double negation result in a proper negation?
Solution to Problem \#8: a distinction between negation and falsification

$$
\begin{aligned}
& \text { Jaina logic } \mathbf{J}_{7}:-\mathrm{p}=\diamond(\sim \mathrm{p}) \\
& --p=\diamond(\sim \sim p)
\end{aligned}
$$

What is falsification?

DEF. 3-6: every opposite-forming operator $o p$ is a negation, such that $o p(a)$ is the negation of a.
«Falsification »: to turn a sentence a into something false, given that every such sentence is a combination of truth- and falsity-assignments: $\mathbf{A}(a)=\left\langle\mathbf{a}_{1}(a), \mathbf{a}_{2}(a), \mathbf{a}_{3}(a), \mathbf{a}_{4}(a)\right\rangle$

DEF. 3-7: any opposite-forming operator $o p$ is a falsifying operator if and only if, for any opposite terms a and $o p(\mathrm{a})=\mathrm{b}, \mathbf{A}(\mathrm{a}) \cap \mathbf{A}(\mathrm{b})=\langle 0,0,0,0\rangle$

Not every negation in $o p$ is a falsifying negation, accordingly: only $c d$ and $c t$ are so

Summary

- A logical opposition OP is a relation $\mathrm{OP}(\mathrm{a}, \mathrm{b})$

A logical opposite $o p$ is a function $o p(\mathrm{a})=\mathrm{b}$, in $\operatorname{OP}(\mathrm{a}, o p(\mathrm{a}))$

- Opposite functions gives rise to a variety of negations
$c d$: classical, ct: paracomplete, sct: paraconsistent, $s b$: mixed double
Negations are not the recursive functions in $o p$ (given $\neg \neq \mathrm{R}$), but intensional functions
- Falsification is a subset of negation, i.e. $\{c d, c t\}$

A term a and its negation $o p(a)$ can be both true or false, according to $o p$ and $\mathbf{A (a)}$

- No wonder if Aristotle saw SCT (let alone SB) as a "verbal" opposition
$s c t(\mathrm{a})=s b(c d(\mathrm{a}))=c d(s b(\mathrm{a}))$
$s b(\mathrm{a})=c d(c t(\mathrm{a}))=\operatorname{ct}(c d(\mathrm{a})) \quad$ "The contradictory of the contrary (of $a)$ " AND NOT
$\operatorname{SCT}(\mathrm{a}, \mathrm{b})=\mathrm{CT}(c d(\mathrm{a}), c d(\mathrm{~b})) \quad$ "The contradictories of the contraries $(a$ and $b)$ " !!!
SCT and SB relate a term and its double mixed negation $=$ its weak affirmation

