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Abstract

In this third part, the question-answer machinery 1s applied to develop a general
theory of oppositions. A logical value characterizes each opposite term of an
opposition, and a calculus of oppositions 1s made possible by recursive functions
upon these values. The nature of logical negation and some of their non-classical
variants is investigated.
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What is a logical opposition?

DEF. 1-1: opposition.
An opposition 1s a 2-ary relation OP(a,b) standing between 2 opposite terms a and b
a and b stand for concepts or propositions, to be reduced to propositions

In a bivalent domain of interpretation, the set of truth-values V=2 = {T,F}
Proposition: a sentence that is true (v(a) =T) or false (v(a) = F)
2 includes (2)* = 4 ordered pairs of truth-values in the set 4 = {[T, TLIT,FCIF, TLIF,FO)

DEF. 1-2: oppositions.

Each case of opposition is a set of compossible truth-values

Let Q; and Q- be 2 questions about OP, Q;: “v(a) = v(b) = F?” and Q.: “v(a) = v(b) =T?”
Let A; =1 a yes-answer to Q;, A; = 0 a no-answer to Q;

There are (2)* = 4 ordered pairs of answers

OP = {1,1LI1,0LI0,1LI0,003
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How many logical oppositions are there?

The “Aristotelian” oppositions: 4 oppositions
OP = {CD,CT,SCT,SB}

DEF. 1-3: Each opposition is a set of ordered answers A = [A;,A,L]
Contrariety: CT = [1,0LF= {{T,FLIF TLIF,F[}

Contradiction: CD = [0,0LF {[T,FLIF, T

Subcontrariety: SCT = [0,1[F {{T,TLIT,FLIF, T

Subalternation: SB = [1, 1= {[T, TLtHFCIF, TLIF,F[J
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Adfirmatio universalis

Mepario urdversalis

Cirnmis homo mstas est CONTRARIAE Mulhis hormeo nstus est
Triversale Triversale
universaliter wiversaliter
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Adfirmatio parficulans Mepatio parficularis
Cruidam homo fastus est SVBCONTRARIAE Cridam homo mstus
Tniversale Tniversale
partimulariter partimulariter

Boethms' cwmn diagram of the square of opposition (Meiser, adapted from Seuren)
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The ““Aristotelian” oppositions: 4 oppositions, whatever #» may be
OP = {CD,CT,SCT,SB}

DEF. 1-3: Each opposition is a set of ordered answers A = [A;,Ax[]
Contrariety: CT = O,0C= {[(T,FLIF, TLIF,F [}

Contradiction: CD = [0,0LF {[T,FLIF, T}

Subcontrariety: SCT = [0,1 = { [T,FLIF, TLIF, T

Subalternation: SB = 0,1F { (T, TLtHEFLIF, TLIF,FO§

2 problems:
Problem #1. Aristotle acknowledged 2 oppositions, only

Problem #2: DEF. 1-3 does not take into account the non-compossibility of [T,Fllin SB
SB(a,b) 1s an asymmetric relation between a and b
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Verbally four kinds of opposition are possible, viz. universal
affirmative to universal negative, universal affirmative to particular
negative, particular affirmative to universal negative, and particular
affirmative to particular negative: but really there are only three: for
the particular affirmative is only verbally opposed to the particular
negative. Of the genuine opposites I call those which are universal
contraries, the universal affirmative and the universal negative, e.g.
‘every science is good’, ‘no science is good’; the others I call
contradictories.

(Aristotle, Prior Analytics, 63b 21-30)
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Aristotle's oppositions: relations of incompatibility

DEF. 1-4: OP is a relation of opposition OP(a,b), such that: v(a) =T [0 w(b)=F
v(ib)=T O wa)=F
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Since there are three oppositions to affirmative statements, it follows
that opposite statements may be assumed as premisses in Six ways;
we may have either universal affirmative and negative, or universal
affirmative and particular negative, or particular affirmative and

universal negative, and the relations between the terms may be
reversed.

(Aristotle, Prior Analytics, 64a37-38)
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[ think that neither subalternation nor superalternation can be
considered as relations of opposition. For example P is subaltern of
PLIQ, and it does not really make sense to consider them as opposed.

(Béziau (2003): 225)
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Solution #1 to Problem #2: turning DEF. 1-3 into DEF. 1-5

Sion (1996)

DEF. 1-5: Each opposition 1s a set of ordered answers A = [A;,A»,A3 A4llto 4 questions,
namely: Qi: “v(a) = v(b) = T?”, Qa: “v(a) =T, v(b) = F?”, Qs: “v(a) = F, v(b) = T?”, Qu:
“v(a) =v(b) = F?”.

According to Sion (1996), there are 6 oppositions: OP U {IM,UNC}

CT: CT(a,b) = [0,1,1,10
CD: CD(a,b) = [0,1,1,00
SCT: SCT(a,b) = [,1,1,00
SB: SB(a,b) = [,0,1,10
+  IM: Implicance IM(a,b) = 0({,0,0,10

UN: Unconnectedness ~ UN(a,b) 1,1,1,10

Problem #3: DEF. 1-5 results in (4)* = 16 ordered pairs of answers
what of the (2)* — 6 = 10 remaining pairs?
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Solution #2 to Problem #1 and Problem #2: to define opposition by means of a function
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Let us recall that Aristotle does not introduce explicitly the notion of
“subcontraries”, but refers to them only indirectly as
“contradictories of contraries”.

(Béziau (2003): 224)
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Solution #2 to Problem #1 and Problem #2: to define opposition by means of a function
Logical form: R(x,/(y)), R: relation; f,g,A: predicate functions; x,y: individual functions

Example 1: “my mother's son is my brother”

f: son; g: mother, R: brother OxOy (f(g(x)) « R(x,y))
Example 2: “Mother's sons are brothers”
Ri: son, R,: brother OxOyDz (Ri(x,2)) L Ri(y,2)) < Ra(x,y)))

Example 3: “Subcontraries are contradictories of contraries”
SCT: subcontrariety, cd: contradictory, CT: contrariety [Ox[y (SCT(x,y) « CT(cd(x),cd(y)))

OP = {CT,CD,SCT,SB}: set of the relations of oppeosition
op = {ct,cd,sct,sb}: set of the functions of opposites

DEF. 1-6: OP is a relation of opposition such that, for any a and b, b is the opposite of a

CD(a,b): “a and b stand into a contradictory relation”
b = cd(a): “b 1s the contradictory of a”
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What is a logical opposite?

DEF. 2-1: A logical opposite 1s a function op from op(a) to b such that, for any a,b,
OP(v(a),op(v(a))) = OP(v(a),"(b))

Problem #4: how to determine the value of b, given the value of a?
only cd is a truth-functional function in the modern, Fregean logic

For any a,b: v(a) =T if and only 1f v(cd(a)) = v(b) = F

DEF. 2-2: classical negation ~ is a contradictory-forming operator, such that v(cd(a)) =
v(~a) and CD(v(a),v(b)) = CD(v(a),v(~a))

What about v(ct(a)), v(sct(a)), and v(sb(a)) ?
Solution to Problem #4: to assign another interpretation for the opposite terms
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Piaget (1949) constructed a theory of intrapropositional 2-ary connectives o

DEF. 2-3: Every 2-ary proposition a = (poq) is characterized by its Disjunctive Normal
Form (DNF)

Each DNF is a set of ordered answers A = [A;,A,,A3 Al lto 4 questions: Qi: “v(p) = v(q) =

T7, Qa: “v(p) =T, w(q) = F?”, Qs: “v(p) = F, v(q) = T?”, Qu: “v(p) = v(q) = F?".
It results in (4)° = 16 ordered answers that characterize a 2-ary connective o in a = poq

DEF. 2-4: A logical opposite op 1s a valuation function from a to b such that, for every
interpretation of a,b into A, A(op(a)) = A(b)
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A(poq) a =(poq)
1. ,1,1,10 T
2. 1,1,1,00 plg
3. 1,1,0,10 pP—q
4, [1,0,1,1L] P—q
5. [0,1,1,10 ptq, ~(pLiq)
6. 1,1,0,00 P
7. [1,0,0,10 (poq)
8. [0,0,1,10 ~p
9. [0,1,1,00 ~(p-Qq)
10. [1,0,1,00 q
11. [0,1,0,10 ~q
12. [1,0,0,00 pllq
13. [0,1,0,00 ~(p-q)
14. [0,0,1,00] ~(p —Qq)
15. [0,0,0,101 pl g, ~(pLg)
16. [0,0,0,00 []
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How many opposites are there?

A theory of reversibility: Piaget INRC Group

DEF. 2-5: there is a set op = {ILN,R,C} of 4 opposite functions such that, for any a,b,
OP(A(a)),op(A(a)) = OP(A(a),A(b))

Let (Ai)' be the denial of A, such that (Ai)' = 0 iff (A;) = 1 and ((A))")' = (A))

The set of 4 operations (Klein four-group)

I = identity I(A(a)) = [Ai(a),Ax(a),Az(a),As(a)l]

N = inversion N(A(a)) = [Ai(a),Ax(a),(Az(a),(Asa)'l
R = reciprocity R(A(a)) = [A4(a),As(a),Az(a),A(a)l]

C = correlation C(A(a)) = [A4(a),As(a),Axa)',As(a)']
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Example: a = (pllq). Thus:

I(A((pLg)) = [000L

N(A(pLg) = W)'(0)©O)©oyd = D010 = A(~(pLq).A((ptq)
R(A(pL) = 0001 = A(~(pL),A((p! )
CA(ptg) = WO)O)YO)MT = O1lod = A(pli)

DEF. 2-6: N is a contradiction-forming operator cd such that OP(a,cd(a)) = CD(a,b)
R is a (sub)contrariety-forming operator (s)ct such that OP(a,ct(a)) = CT(a,b) or SCT(a,b)
C is a subalternation-forming operator sb such that OP(a,sb(a) = SB(a,b)

The 4 operations in op = {I,N,R,C} are commutative functions

I N R C
I =HRC I|I N RC
gfﬁg N{NICR
C B RIEC I N
cle NI

Piaget
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Let us recall that Aristotle does not introduce explicitly the notion of

“subcontraries”, but refers to them only indirectly as
“contradictories of contraries”.

(Béziau (2003): 224)

Proof. SCT(a,b) = CT(cd(a),cd(b))

Let a = (pLq). Then SCT(pLq,b) = OP(pLq, sct(pL.q)) = OP(pLqg,ptq)
cd(pLq) = (p!q), and cd(pt q) = (pLq)

OP(p!q,pLq) = OP(plq,ct(pl q)) = CT(p! q,pLq)

Hence SCT(pLqg,pt1q) =CT(p! q,pLq)
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What is logical negation?

Again, classical negation is the contradictory-forming operator cd:

DEF. 2-2: classical negation ~ is a contradictory-forming operator, such that v(cd(a)) =
v(~(a)) and CD(v(a),v(b)) = CD(v(a),v(~(a))

What about the other opposite-forming operators?

Béziau (2003): a translation of negations from a modal standpoint
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The E-corner, impossible, is a paracomplete negation (intuitionistic
negation if the underlying modal logic is S4) and the O-corner, not
necessary, is a paraconsistent negation.

I argue that the three notions of opposition of the square of
oppositions (contradiction, contrariety, subcontrariety) correspond to
three notions of negation (classical, paracomplete, paraconsistent).

(Béziau (2003): 218)
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w0 A0
classieal logical hexagon paracommplete hextagon paracomsistent hexagon
(estat and Blanche) (Beéman) (Bézan)
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Problem #5: how to characterize modalities within the theory of opposition?
Modalities are structurally similar to quantifiers
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Problem #5: how to characterize modalities within the theory of opposition?
Modalities are structurally similar to quantifiers

Problem #6: how to algebraize modalities, in the line of Q-A?
modalities cannot be characterized algebraically, according to Dugundji (1940)
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There is no finite characteristic matrix for any of Lewis and

Langford's systems.
(Dugundji (1940): 150)
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Solution to Problem #6: to algebraize modalities in a fragment of modal logics: S5
Modalities are defined in terms of generalized quantifiers in Smessaert (2009)

DEF. 3-1: modalities as generalized quantifiers.

Each modality a = X(p) is a set of ordered answers A(p) = [ai(p),a(p),as(p).as(p)lto 4
questions, namely: Q;: “Is p always F?”, Q.: “Is p actually (but not always) F?”’, Qs;: “Is a

actually (but not always) T?”, Qa4: “Is a always T?”.

It results in a set of 4° = 16 modal sentences, where each logical value
[A1(p),ax(p),as(p),as(p)Lls defined by the operations of meet and join
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A(X(p)) a = X(p)
1. 1,1,1,10 T
2. 1,1,1,00 ~[p
3. 1,1,0,10 ~p L Lp
4, 1,0,1,10 ~Lp Op
5. [0,1,1,10 ~L~p
6. 1,1,0,00 ~p
7. [1,0,0,101 Ll~p OLp
8. [0,0,1,101 P
0. [0,1,1,000 ~L~p O~Llp
10. [1,0,1,00] Ll~p O(p O~Llp)
11. [0,1,0,101 (~p U~U~p) OLp
12. [1,0,0,00] Ll~p
13. [0,1,0,001 ~p U~Ll~p
14. [0,0,1,001 p U~Llp
15. [0,0,0,1] CIp
16. [0,0,0,00] []
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DEF. 3-2: Each opposition OP(a,b) can be characterized by the values of its relata a and b
within a Boolean algebra & = (N,U,0,',1,0). Let N and U the operations of meet and join
such that, for every x; and yi (1 <i <n): (Xi,....xoLN B¥1,...,ya0 = (X1 N yp,...Xa N yal), and
(Xy,....xaLU ¥1,...,ya 0 = (X1 U yy,...,.Xa U yo[). Then:

OP(a,b) =CT(a,b) iff (a(a) N a(b)) =10000Lkand (a(a) U a(b))z 11111

OP(a,b) =CD(a,b) iff (a(a) N a(b)) =[0000Cand (a(a) U a(b)) =[11111

OP(a,b) =SCT(a,b) 1iff (a(a) N a(b))# [0000Land (a(a) U a(b)) =[1111L]

OP(a,b) =SB(a,b) iff (a(a) N a(b)) # [0000Land (a(a) U a(b)) #[1111L]

Example: Let a = p~ qand b = p; then a(a) = [1001Land a(b) = [1100L; (L1001L N [11000)

= [1000Cand (L1001C U [11000) = [1101L; hence (L1110L N [1001[) # [0000Cand ([1110L U
[10010) # [1111L. Therefore OP(p -~ q,p) = SB(p - q,p)

Note: subalternation includes, but is not equivalent with, entailment (logical consequence)
OP(a,b) =SBi(a,b) iff (a(a) Oa(b)) =[1111[, i.e. (N(a(a)) Ua(b))=[111101
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Solution to Problem #6: to algebraize modalities in a fragment of modal logics: S5
Modalities are defined in terms of generalized quantifiers in Smessaert (2009)

DEF. 3-1: modalities as generalized quantifiers.

Each modality a = X(p) is a set of ordered answers A(p) = [ai(p),a(p),as(p).as(p)lto 4
questions, namely: Q;: “Is p always F?”, Q.: “Is p actually (but not always) F?”’, Qs;: “Is a

actually (but not always) T?”, Qa4: “Is a always T?”.

It results in a set of 4° = 16 modal sentences, where each logical value
[A1(p),ax(p),as(p),as(p)Lls defined by the operations of meet and join

According to the characterization of OP in DEF. 3-2, there is more than just 1 logical
hexagon of modalities
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DEF. 3-3: intuitionistic negation - is a contrary-forming operator, such that A(c#(a)) =
A(=(a)), CT(A(a),A(b)) = CT(A(a),A(=(a)), and

Compare with Godel's translation:
ap = L~p
DEF. 3-4: paraconsistent negation — 1s a subcontrary-forming operator, such that A(sc#(a))

=A(—a)), SCT(A(a),A(b)) = SCT(A(a),A(—(a)), and

Compare with Béziau's translation:
—p:=~Llp

Corollary about intuitionistic and paraconsistent negations:

they are dual to each other: X(p) :=: ~X~(p)
defined by the same opposite-forming operator: R
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Problem #7 with DEF. 3-3: by double negation, RR = I; therefore A(—=—(a)) = A(a)
But the Law of Double Negation doesn't hold 1n intuitionistic logic: —-—-a - a

Solution to Problem #7: R = Nelson's strong negation, not Heyting's intuitionistic negation

Heyting's intuitionistic negation cannot be characterized by any of op = {cd,ct,sct,sb}
Béziau's modal translations differ from our algebraic translation: R # [1~
Compare with the difference between Jain logic J; and Jaskowski's Discussive Logic D,

Schang (2009a)
Jaina logic J7: — p = O(~p) vs. Jaskowski's Dy: —p = (O~)p
——p=9(~p) vs. —=p=(0~0~)p

DEF. 3-5: a subaltern-forming operator is a mixed double negation, such that A(sb(a)) =
A(ct(cd(a)) = A(~~(a))

Problem #8: does a double negation result in a proper negation?
Solution to Problem #8: a distinction between negation and falsification
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What is falsification?

DEF. 3-6: every opposite-forming operator op 1s a negation, such that op(a) 1s the negation
of a.

« Falsification »: to turn a sentence a into something false, given that every such sentence
1s a combination of truth- and falsity-assignments: A(a) = [a,(a),a.(a),as(a),as(a)l]

DEF. 3-7: any opposite-forming operator op is a falsifying operator if and only if, for any
opposite terms a and op(a) = b, A(a) N A(b) =[0,0,0,0L]

Not every negation in op is a falsifying negation, accordingly: only cd and cf are so
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Summary

* A logical opposition OP is a relation OP(a,b)
A logical opposite op is a function op(a) = b, in OP(a,op(a))

* Opposite functions gives rise to a variety of negations
cd: classical, ct: paracomplete, sct: paraconsistent, sb: mixed double
Negations are not the recursive functions in op (given = # R), but intensional functions

 Falsification is a subset of negation, i.e. {cd,ct}
A term a and its negation op(a) can be both true or false, according to op and A(a)

« No wonder 1f Aristotle saw SCT (let alone SB) as a “verbal” opposition
sct(a) = sb(cd(a)) = cd(sb(a))

sb(a) = cd(ct(a)) = ct(cd(a)) “The contradictory of the contrary (of a)”
AND NOT
SCT(a,b) = CT(cd(a),cd(b)) “The contradictories of the contraries (a and )" !!!

SCT and SB relate a term and its double mixed negation = its weak affirmation
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