Universal Logic III Estoril 2010 Tutorial on Truth Values Heinrich Wansing and Fabien Schang Session 2, Part 3

Fabien Schang

Fabien Schang Truth Values

3. An algebraic logic of oppositions

Fabien Schang Truth Values

Abstract

In this third part, the question-answer machinery is applied to develop a general theory of oppositions. A logical value characterizes each opposite term of an opposition, and a calculus of oppositions is made possible by recursive functions upon these values. The nature of logical negation and some of their non-classical variants is investigated.

What is a logical opposition?

DEF. 1-1: opposition.

An opposition is a 2-ary **relation** OP(a,b) standing between 2 opposite terms *a* and *b a* and *b* stand for concepts or propositions, to be reduced to propositions

In a bivalent domain of interpretation, the set of truth-values $V = \mathbf{2} = \{T,F\}$ **Proposition**: a sentence that is true (v(a) = T) or false (v(a) = F) **2** includes ($\mathbf{2}$)² = 4 ordered pairs of truth-values in the set $\mathbf{4} = \{\langle T,T \rangle, \langle T,F \rangle, \langle F,T \rangle, \langle F,F \rangle\}$

DEF. 1-2: oppositions. Each case of opposition is a set of **compossible** truth-values Let \mathbf{Q}_1 and \mathbf{Q}_2 be 2 questions about OP, \mathbf{Q}_1 : "v(a) = v(b) = F?" and \mathbf{Q}_2 : "v(a) = v(b) = T?" Let $\mathbf{A}_i = 1$ a yes-answer to \mathbf{Q}_i , $\mathbf{A}_i = 0$ a no-answer to \mathbf{Q}_i There are $(2)^2 = 4$ ordered pairs of answers $OP = \{\langle 1, 1 \rangle, \langle 1, 0 \rangle, \langle 0, 1 \rangle, \langle 0, 0 \rangle\}$

How many logical oppositions are there?

The "Aristotelian" oppositions: 4 oppositions OP = {CD,CT,SCT,SB}

DEF. 1-3: Each opposition is a set of ordered answers $\mathbf{A} = \langle \mathbf{A}_1, \mathbf{A}_2 \rangle$ Contrariety: $CT = \langle 1, 0 \rangle = \{ \langle T, F \rangle, \langle F, T \rangle, \langle F, F \rangle \}$ Contradiction: $CD = \langle 0, 0 \rangle = \{ \langle T, F \rangle, \langle F, T \rangle \}$ Subcontrariety: $SCT = \langle 0, 1 \rangle = \{ \langle T, T \rangle, \langle T, F \rangle, \langle F, T \rangle \}$ Subalternation: $SB = \langle 1, 1 \rangle = \{ \langle T, T \rangle, \langle \overline{T, F} \rangle, \langle F, T \rangle, \langle F, F \rangle \}$

Adfirmatio universalis		Negatio universalis
Omnis homo iustus est	CONTRARIAE	Nullus homo iustus est
Universale universaliter		Universale universaliter
S V B A L T E R N A E	CONTRACTORIAE	S V B A L T E R N A E
Adfirmatic particularis		Negatio particularis
Quidam homo iustus est	SVBCONTRARIAE	Quidam homo iustus non est
Universale particulariter		Universale particulariter
*		

Boethius' own diagram of the square of opposition (Meiser, adapted from Seuren)

The "Aristotelian" oppositions: 4 oppositions, whatever n may be OP = {CD,CT,SCT,SB}

DEF. 1-3: Each opposition is a set of ordered answers $\mathbf{A} = \langle \mathbf{A}_1, \mathbf{A}_2 \rangle$ Contrariety: $CT = \langle 1, 0 \rangle = \{ \langle T, F \rangle, \langle F, T \rangle, \langle F, F \rangle \}$ Contradiction: $CD = \langle 0, 0 \rangle = \{ \langle T, F \rangle, \langle F, T \rangle \}$ Subcontrariety: $SCT = \langle 0, 1 \rangle = \{ \langle T, F \rangle, \langle F, T \rangle, \langle F, T \rangle \}$ Subalternation: $SB = \langle 1, 1 \rangle = \{ \langle T, T \rangle, \langle \overline{T, F^{2}}, \langle F, T \rangle, \langle F, F \rangle \}$

2 problems:

Problem #1. Aristotle acknowledged 2 oppositions, only Problem #2: **DEF. 1-3** does not take into account the non-compossibility of $\langle T,F \rangle$ in SB (a,b) is an **asymmetric** relation between *a* and *b* Verbally **four** kinds of opposition are possible, viz. universal affirmative to universal negative, universal affirmative to particular negative, particular affirmative to universal negative, and particular affirmative to particular negative: but really there are only **three**: for the particular affirmative is only verbally opposed to the particular negative. Of the genuine opposites I call those which are universal contraries, the universal affirmative and the universal negative, e.g. 'every science is good', 'no science is good'; the others I call contradictories.

(Aristotle, *Prior Analytics*, 63b 21-30)

Aristotle's oppositions: relations of incompatibility

DEF. 1-4: OP is a relation of opposition OP(a,b), such that: $v(a) = T \implies v(b) = F$ $v(b) = T \implies v(a) = F$ Since there are **three** oppositions to affirmative statements, it follows that opposite statements may be assumed as premisses in **six** ways; we may have either universal affirmative and negative, or universal affirmative and particular negative, or particular affirmative and universal negative, and the relations between the terms may be reversed.

(Aristotle, *Prior Analytics*, 64a37-38)

I think that neither subalternation nor superalternation can be considered as relations of opposition. For example P is subaltern of $P \lor Q$, and it does not really make sense to consider them as opposed.

(Béziau (2003): 225)

Solution #1 to Problem #2: turning **DEF. 1-3** into **DEF. 1-5**

Sion (1996)

+

DEF. 1-5: Each opposition is a set of ordered answers $\mathbf{A} = \langle \mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \mathbf{A}_4 \rangle$ to 4 questions, namely: \mathbf{Q}_1 : "v(a) = v(b) = T?", \mathbf{Q}_2 : "v(a) = T, v(b) = F?", \mathbf{Q}_3 : "v(a) = F, v(b) = T?", \mathbf{Q}_4 : "v(a) = v(b) = F?".

According to Sion (1996), there are 6 oppositions: OP U {IM,UNC}

CT:	CT(a,b)	=	(0,1,1,1)
CD:	CD(a,b)	=	(0,1,1,0)
SCT:	SCT(a,b)	=	(1,1,1,0)
SB:	SB(a,b)	=	(1,0,1,1)
IM: Implicance	IM(a,b)	=	⟨1,0,0,1⟩
UN: Unconnectedness	UN(a,b)	=	(1,1,1,1)

Problem #3: **DEF. 1-5** results in $(4)^2 = 16$ ordered pairs of answers what of the $(2)^4 - 6 = 10$ remaining pairs?

Fabien SchangTruth Values

Solution #2 to Problem #1 and Problem #2: to define opposition by means of a **function**

Fabien Schang Truth Values

Let us recall that Aristotle does not introduce explicitly the notion of "subcontraries", but refers to them only indirectly as "contradictories of contraries".

(Béziau (2003): 224)

Solution #2 to Problem #1 and Problem #2: to define opposition by means of a **function**

Logical form: R(x,f(y)), R: relation; f,g,h: predicate functions; x,y: individual functions

Example 1: "my mother's son is my brother"f: son; g: mother, R: brother $\forall x \forall y (f(g(x)) \leftrightarrow R(x,y))$ Example 2: "Mother's sons are brothers"R_1: son, R_2: brother $\forall x \forall y \forall z ((R_1(x,z)) \land R_1(y,z)) \leftrightarrow R_2(x,y)))$ Example 3: "Subcontraries are contradictories of contraries"SCT: subcontrariety, cd: contradictory, CT: contrariety $\forall x \forall y (SCT(x,y) \leftrightarrow CT(cd(x),cd(y)))$

 $OP = \{CT, CD, SCT, SB\}$: set of the relations of **opposition** $op = \{ct, cd, sct, sb\}$: set of the functions of **opposites**

DEF. 1-6: OP is a relation of opposition such that, for any *a* and *b*, *b* is the opposite of *a*

CD(a,b): "*a* and *b* stand into a contradictory relation" b = cd(a): "*b* is the contradictory of *a*"

What is a logical opposite?

DEF. 2-1: A logical opposite is a function *op* from *op*(a) to b such that, for any *a*,*b*, OP(v(a),op(v(a))) = OP(v(a),v(b))

Problem #4: how to determine the value of *b*, given the value of *a*? only *cd* is a **truth-functional** function in the modern, Fregean logic

For any *a*,*b*: v(a) = T if and only if v(cd(a)) = v(b) = F

DEF. 2-2: classical negation ~ is a contradictory-forming operator, such that $v(cd(a)) = v(\sim a)$ and $CD(v(a),v(b)) = CD(v(a),v(\sim a))$

What about v(ct(a)), v(sct(a)), and v(sb(a))? Solution to Problem #4: to assign another interpretation for the opposite terms Piaget (1949) constructed a theory of intrapropositional 2-ary connectives \circ

DEF. 2-3: Every 2-ary proposition $a = (p \circ q)$ is characterized by its Disjunctive Normal Form (DNF) Each DNF is a set of ordered answers $\mathbf{A} = \langle \mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \mathbf{A}_4 \rangle$ to 4 questions: \mathbf{Q}_1 : "v(p) = v(q) = T", \mathbf{Q}_2 : "v(p) = T, v(q) = F?", \mathbf{Q}_3 : "v(p) = F, v(q) = T?", \mathbf{Q}_4 : "v(p) = v(q) = F?". It results in $(4)^2 = 16$ ordered answers that characterize a 2-ary connective \circ in $a = p \circ q$

DEF. 2-4: A logical opposite *op* is a valuation function from *a* to *b* such that, for every interpretation of *a*,*b* into \mathbf{A} , $\mathbf{A}(op(\mathbf{a})) = \mathbf{A}(\mathbf{b})$

	$\mathbf{A}(\mathbf{p} \circ \mathbf{q})$	$a = (p \circ q)$		
1.	$\langle 1,1,1,1 \rangle$	Т		
2.	(1,1,1,0)	p∨q		
3.	(1,1,0,1)	p←q		
4.	$\langle 1,0,1,1\rangle$	$p \rightarrow q$		
5.	$\langle 0,1,1,1 \rangle$	$p\uparrow q$, ~(p\land q)		
6.	(1,1,0,0)	р		
7.	(1,0,0,1)	$(p \leftrightarrow q)$		
8.	$\langle 0,0,1,1 \rangle$	~p		
9.	$\langle 0,1,1,0 \rangle$	\sim (p \leftrightarrow q)		
10.	$\langle 1,0,1,0\rangle$	q		
11.	$\langle 0,1,0,1 \rangle$	$\sim q$		
12.	(1,0,0,0)	p∧q		
13.	$\langle 0,1,0,0 \rangle$	\sim (p \rightarrow q)		
14.	$\langle 0,0,1,0 \rangle$	~(p←q)		
15.	$\langle 0,0,0,1 \rangle$	$p \sqrt{q}, \sim (p \vee q)$		
16.	$\langle 0,0,0,0 \rangle$	\perp		

Fabien Schang

Truth Values

How many opposites are there?

A theory of reversibility: Piaget INRC Group

DEF. 2-5: there is a set $op = \{I,N,R,C\}$ of **4** opposite functions such that, for any a,b, OP(A(a)), op(A(a)) = OP(A(a),A(b))Let $(A_i)'$ be the **denial** of A_i , such that $(A_i)' = 0$ iff $(A_i) = 1$ and $((A_i)')' = (A_i)$

The set of 4 operations (Klein four-group)

Ι	=	identity	$I(\mathbf{A}(a)) =$	$\langle \mathbf{A}_1(\mathbf{a}), \mathbf{A}_2(\mathbf{a}), \mathbf{A}_3(\mathbf{a}), \mathbf{A}_4(\mathbf{a}) \rangle$
Ν	=	inversion	$N(\mathbf{A}(a)) =$	$\langle A_1(a)', A_2(a)', (A_3(a)', (A_4(a)') \rangle$
R	=	reciprocity	$R(\mathbf{A}(a)) =$	$\langle \mathbf{A}_4(\mathbf{a}), \mathbf{A}_3(\mathbf{a}), \mathbf{A}_2(\mathbf{a}), \mathbf{A}_1(\mathbf{a}) \rangle$
С	=	correlation	$C(\mathbf{A}(a)) =$	$\langle \mathbf{A}_4(\mathbf{a})', \mathbf{A}_3(\mathbf{a})', \mathbf{A}_2(\mathbf{a})', \mathbf{A}_1(\mathbf{a})' \rangle$

Example: $a = (p \land q)$. Thus: $I(\mathbf{A}((p \land q)) = \langle 1000 \rangle$ $N(\mathbf{A}(p \land q)) = \langle (1)'(0)'(0)'(0)' \rangle = \langle 0111 \rangle = \mathbf{A}(\sim (p \land q)), \mathbf{A}((p \uparrow q))$ $R(\mathbf{A}(p \land q)) = \langle 0001 \rangle = \mathbf{A}(\sim (p \lor q)), \mathbf{A}((p \downarrow q))$ $C(\mathbf{A}(p \land q)) = \langle (0)'(0)'(0)'(1)' \rangle = \langle 1110 \rangle = \mathbf{A}(p \lor q)$

DEF. 2-6: N is a contradiction-forming operator *cd* such that OP(a,cd(a)) = CD(a,b)R is a (sub)contrariety-forming operator (*s*)*ct* such that OP(a,ct(a)) = CT(a,b) or SCT(a,b) C is a subalternation-forming operator *sb* such that OP(a,sb(a) = SB(a,b)

The 4 operations in *op* = {I,N,R,C} are **commutative** functions

	1		I	Ν	R	С
I = NRC	-	Ι	Ι	Ν	R	С
N = RC		Ν	Ν	Ι	С	R
R = NC C = NP		R	R	С	Ι	Ν
0 - MR		С	С	R	Ν	Ι
Piaget						

Fabien Schang Truth Values

Let us recall that Aristotle does not introduce explicitly the notion of "subcontraries", but refers to them only indirectly as "contradictories of contraries".

(Béziau (2003): 224)

Proof. SCT(a,b) = CT(*cd*(a),*cd*(b)) Let $a = (p \lor q)$. Then SCT($p \lor q, b$) = OP($p \lor q, sct(p \lor q)$) = OP($p \lor q, p \uparrow q$) $cd(p \lor q) = (p \downarrow q)$, and $cd(p \uparrow q) = (p \land q)$ OP($p \downarrow q, p \land q$) = OP($p \downarrow q, ct(p \downarrow q)$) = CT($p \downarrow q, p \land q$) Hence SCT($p \lor q, p \uparrow q$) = CT($p \downarrow q, p \land q$)

What is logical negation?

Again, **classical** negation is the contradictory-forming operator *cd*:

DEF. 2-2: classical negation ~ is a contradictory-forming operator, such that $v(cd(a)) = v(\sim(a))$ and $CD(v(a),v(b)) = CD(v(a),v(\sim(a))$

What about the other opposite-forming operators?

Béziau (2003): a translation of negations from a **modal** standpoint

The E-corner, impossible, *is a paracomplete negation (*intuitionistic negation *if the underlying modal logic is S4) and the O-corner,* not necessary, *is a* paraconsistent negation.

I argue that the three notions of opposition of the square of oppositions (contradiction, contrariety, subcontrariety) correspond to three notions of negation (classical, paracomplete, paraconsistent).

(Béziau (2003): 218)

Problem #5: how to characterize modalities within the theory of opposition? Modalities are structurally similar to **quantifiers**

Fabien Schang Truth Values

Problem #5: how to characterize modalities within the theory of opposition? Modalities are structurally similar to **quantifiers**

Problem #6: how to algebraize modalities, in the line of **Q**-A? modalities cannot be characterized algebraically, according to Dugundji (1940)

There is no finite characteristic matrix for any of Lewis and Langford's systems. (Dugundji (1940): 150) Solution to Problem #6: to algebraize modalities in a fragment of modal logics: S5

Modalities are defined in terms of generalized quantifiers in Smessaert (2009)

DEF. 3-1: modalities as generalized quantifiers.

Each modality a = X(p) is a set of ordered answers $A(p) = \langle a_1(p), a_2(p), a_3(p), a_4(p) \rangle$ to 4 questions, namely: Q_1 : "Is *p* always F?", Q_2 : "Is *p* actually (but not always) F?", Q_3 : "Is *a* actually (but not always) T?", Q_4 : "Is *a* always T?".

It results in a set of $4^2 = 16$ modal sentences, where each logical value $\langle \mathbf{a}_1(p), \mathbf{a}_2(p), \mathbf{a}_3(p), \mathbf{a}_4(p) \rangle$ is defined by the operations of meet and join

	$\mathbf{A}(\mathbf{X}(\mathbf{p}))$	a = X(p)
1.	$\langle 1,1,1,1\rangle$	Т
2.	$\langle 1,1,1,0\rangle$	$\sim \Box p$
3.	(1,1,0,1)	$\sim p \lor \Box p$
4.	$\langle 1,0,1,1\rangle$	$\sim \Box p \lor p$
5.	$\langle 0,1,1,1 \rangle$	$\sim \Box \sim p$
6.	(1,1,0,0)	~p
7.	(1,0,0,1)	$\Box \sim p \lor \Box p$
8.	$\langle 0,0,1,1 \rangle$	р
9.	$\langle 0,1,1,0 \rangle$	$\sim \Box \sim p \land \sim \Box p$
10.	$\langle 1,0,1,0\rangle$	$\Box \sim p \lor (p \land \sim \Box p)$
11.	$\langle 0,1,0,1 \rangle$	$(\sim p \land \sim \Box \sim p) \lor \Box p$
12.	(1,0,0,0)	$\Box \sim p$
13.	$\langle 0,1,0,0 \rangle$	$\sim p \land \sim \Box \sim p$
14.	$\langle 0,0,1,0 \rangle$	$p \land \sim \Box p$
15.	$\langle 0,0,0,1 \rangle$	$\Box p$
16.	$\langle 0,0,0,0 \rangle$	\bot

Fabien Schang

Truth Values

DEF. 3-2: Each opposition OP(a,b) can be characterized by the values of its relata *a* and *b* within a Boolean algebra $\mathbf{A} = (\bigcap, \cup, \subset, ', 1, 0)$. Let \bigcap and \bigcup the operations of meet and join such that, for every x_i and y_i $(1 \le i \le n)$: $(\langle x_1, ..., x_n \rangle \cap \langle y_1, ..., y_n \rangle) = (\langle x_1 \cap y_1, ..., x_n \cap y_n \rangle)$, and $(\langle x_1, ..., x_n \rangle \cup \langle y_1, ..., y_n \rangle) = (\langle x_1 \cup y_1, ..., x_n \cup y_n \rangle)$. Then: OP(a,b) = CT(a,b) iff $(\mathbf{a}(a) \cap \mathbf{a}(b)) = \langle 0000 \rangle$ and $(\mathbf{a}(a) \cup \mathbf{a}(b)) \neq \langle 1111 \rangle$ OP(a,b) = CD(a,b) iff $(\mathbf{a}(a) \cap \mathbf{a}(b)) = \langle 0000 \rangle$ and $(\mathbf{a}(a) \cup \mathbf{a}(b)) = \langle 1111 \rangle$ OP(a,b) = SCT(a,b) iff $(\mathbf{a}(a) \cap \mathbf{a}(b)) \neq \langle 0000 \rangle$ and $(\mathbf{a}(a) \cup \mathbf{a}(b)) = \langle 1111 \rangle$ OP(a,b) = SB(a,b) iff $(\mathbf{a}(a) \cap \mathbf{a}(b)) \neq \langle 0000 \rangle$ and $(\mathbf{a}(a) \cup \mathbf{a}(b)) \neq \langle 1111 \rangle$

<u>Example</u>: Let $a = p \leftrightarrow q$ and b = p; then $\mathbf{a}(a) = \langle 1001 \rangle$ and $\mathbf{a}(b) = \langle 1100 \rangle$; ($\langle 1001 \rangle \cap \langle 1100 \rangle$) = $\langle 1000 \rangle$ and ($\langle 1001 \rangle \cup \langle 1100 \rangle$) = $\langle 1101 \rangle$; hence ($\langle 1110 \rangle \cap \langle 1001 \rangle$) $\neq \langle 0000 \rangle$ and ($\langle 1110 \rangle \cup \langle 1001 \rangle$) $\neq \langle 1111 \rangle$. Therefore OP($p \leftrightarrow q, p$) = SB($p \leftrightarrow q, p$)

Note: subalternation includes, but is not equivalent with, entailment (logical <u>consequence</u>) OP(a,b) = SB₁(a,b) iff $(\mathbf{a}(a) \subset \mathbf{a}(b)) = \langle 1111 \rangle$, i.e. $(N(\mathbf{a}(a)) \cup \mathbf{a}(b)) = \langle 1111 \rangle$

Fabien SchangTruth Values

Solution to Problem #6: to algebraize modalities in a fragment of modal logics: S5

Modalities are defined in terms of generalized quantifiers in Smessaert (2009)

DEF. 3-1: modalities as generalized quantifiers.

Each modality a = X(p) is a set of ordered answers $A(p) = \langle a_1(p), a_2(p), a_3(p), a_4(p) \rangle$ to 4 questions, namely: Q_1 : "Is *p* always F?", Q_2 : "Is *p* actually (but not always) F?", Q_3 : "Is *a* actually (but not always) T?", Q_4 : "Is *a* always T?".

It results in a set of $4^2 = 16$ modal sentences, where each logical value $\langle \mathbf{a}_1(\mathbf{p}), \mathbf{a}_2(\mathbf{p}), \mathbf{a}_3(\mathbf{p}), \mathbf{a}_4(\mathbf{p}) \rangle$ is defined by the operations of meet and join

According to the characterization of OP in **DEF. 3-2**, there is more than just 1 logical hexagon of modalities

DEF. 3-3: intuitionistic negation \neg is a contrary-forming operator, such that $A(ct(a)) = A(\neg(a)), CT(A(a),A(b)) = CT(A(a),A(\neg(a))), and$

Compare with Gödel's translation: $\neg p := \Box \sim p$

DEF. 3-4: paraconsistent negation – is a subcontrary-forming operator, such that A(sct(a)) = A(-(a)), SCT(A(a),A(b)) = SCT(A(a),A(-(a))), and

Compare with Béziau's translation: $-p := \sim \Box p$

Corollary about intuitionistic and paraconsistent negations: they are **dual** to each other: $X(p) :=: \sim X \sim (p)$ defined by the same opposite-forming operator: R Problem #7 with **DEF. 3-3**: by double negation, RR = I; therefore $A(\neg \neg (a)) = A(a)$ But the Law of Double Negation doesn't hold in intuitionistic logic: $\neg \neg a \not\rightarrow a$

Solution to Problem #7: R = Nelson's **strong** negation, not Heyting's intuitionistic negation

Heyting's intuitionistic negation cannot be characterized by any of $op = \{cd, ct, sct, sb\}$ Béziau's modal translations differ from our algebraic translation: $R \neq \Box \sim$ Compare with the difference between Jain logic J₇ and Jaśkowski's Discussive Logic D₂

Schang (2009a)
Jaina logic
$$\mathbf{J}_7$$
: $-\mathbf{p} = \Diamond(\sim \mathbf{p})$ vs. Jaśkowski's \mathbf{D}_2 : $-\mathbf{p} = (\Diamond \sim)\mathbf{p}$
 $--\mathbf{p} = \Diamond(\sim \sim \mathbf{p})$ vs. $--\mathbf{p} = (\Diamond \sim \Diamond \sim)\mathbf{p}$

DEF. 3-5: a subaltern-forming operator is a **mixed double** negation, such that $A(sb(a)) = A(ct(cd(a)) = A(\neg (a))$

Problem #8: does a double negation result in a proper negation? Solution to Problem #8: a distinction between negation and **falsification**

What is falsification?

DEF. 3-6: every opposite-forming operator op is a negation, such that op(a) is the negation of a.

« Falsification »: to turn a sentence *a* into something false, given that every such sentence is a combination of truth- and falsity-assignments: $\mathbf{A}(a) = \langle \mathbf{a}_1(a), \mathbf{a}_2(a), \mathbf{a}_3(a), \mathbf{a}_4(a) \rangle$

DEF. 3-7: any opposite-forming operator *op* is a falsifying operator if and only if, for any opposite terms *a* and op(a) = b, $A(a) \cap A(b) = \langle 0,0,0,0 \rangle$

Not every negation in *op* is a falsifying negation, accordingly: only *cd* and *ct* are so

Summary

A logical opposition OP is a relation OP(a,b)
A logical opposite *op* is a function *op*(a) = b, in OP(a,*op*(a))

• Opposite functions gives rise to a variety of **negations** *cd*: classical, *ct*: paracomplete, *sct*: paraconsistent, *sb*: mixed double Negations are not the recursive functions in *op* (given $\neg \neq R$), but **intensional** functions

• Falsification is a subset of negation, i.e. {*cd*,*ct*}

A term a and its negation op(a) can be both true or false, according to op and A(a)

• No wonder if Aristotle saw SCT (let alone SB) as a "verbal" opposition sct(a) = sb(cd(a)) = cd(sb(a)) sb(a) = cd(ct(a)) = ct(cd(a)) "The contradictory of the contrary (of *a*)" AND NOT SCT(a,b) = CT(cd(a),cd(b)) "The contradictories of the contraries (*a* and *b*)" !!! SCT and SB relate a term and its double mixed negation = its weak affirmation