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(Blanck)

“[Scientific concepts] are free creations of
human mind and are not, however, it may
seen, uniquely determined by the external
world.” (Einstein & Infeld (1938), p.33)



iv



Preface

E
ver since I was invited by Jean-Yves Béziau to present
a tutorial on the structure of empirical sciences at the
World Congress and School on Universal Logic III,
I became quite enthusiastic but also worried about

the way of approaching the subject. The first reason for such
a worry was that I would like to present a course which would
not be just a repetition of what can be found in the (already
wide) literature on the subject. In fact, I would like to em-
phasize some points our research group in Florianópolis (the
capital of the Santa Catarina State, in the South of Brazil),
sponsored by the Brazilian Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico, CNPq, has been studying and
has becoming to communicate to specialized audiences in con-
ferences and papers. This could be a nice opportunity to give
a general account of at least part of these studies, and so I tried
to keep the text as closer as I could from our discussions. Our
research group has been much influenced by Professor New-
ton da Costa, one of the outstanding today’s philosophers of
science. His insistence that any philosophical discussion on

v
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science must be not only speculative, but strongly grounded
on science itself, should be taken in consideration. In agree-
ment with this idea, I tried to be quite careful with the choice
of the involved subjects, and I decided to advance some ideas
on the importance in considering the logic and mathematical
framework where the philosophical discussions (apparently)
takes place. Really, in discussing philosophy of science, we
usually speak of the structure of scientific theories, on the
concept of truth, on the nature of the models of the theories,
and so on. These are few examples of concepts that depend
on the place where the discussion is performed, that is, they
depend (in a certain sense) on the mathematical stuff which
is usually only informally presupposed. Usually, a theory of
sets is assumed without any discussion, and all happens as the
mathematical objects we need are there, as the working sci-
entist (even the mathematician) usually assume (as a kind of
Planonism).1 What are the consequences of these assumptions
for the foundational discussion? We shall see some of them in
this book.

Our discussions have gained in much from the participation
of our colleague and friend Otávio Bueno, from the University
of Miami, who is a member of our research group and who
has contributed in much with the discussion on these subjects.
Obviously that it is not possible to cover all the details neither

1Roughly speaking, as Fraenkel et al. explain, a Platonist is convinced that corresponding to each well-
defined concept, say a monadic predicate or condition, there exists an object (a set or class) which comprises
all and those entities that fulfill that condition, being an entity on its own right (Fraenkel et al. 1973, p.332).
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in a short course like this nor in the corresponding notes that
form part of this little book. Thus, this text must be considered
as a first approach to the subject we intend to develop in a more
extensive and detailed joint work in the near future.

The basic idea I would like to enlighten is the emphasis in
some aspects of the notion of model of scientific theories, in a
sense that have been not much discussed in the philosophical
literature. In particular, I shall follow da Costa in arguing that
the mathematical (set-theoretical) structures that are taken as
models of the relevant empirical sciences are not first-order
structures (or order–1 structures, as we shall call them), thus
being not covered by standard model theory, as it is not un-
common to find philosophers make reference to.2 Really, it
is not uncommon to find philosophers referring to the models
of scientific theories (such as some physical theories) as they
were (order–1) structures of the kind

A = 〈D,R1, . . . ,Rk〉, (1)

where D is a non-empty set and the Ri (i = 1, . . . , k) are n-ary
relations on D, these relations having as ‘relata’ just elements
of D, but not subsets of these elements or other ‘higher’ rela-
tions. If standard model theory they need to be order–1 struc-
tures, for these are the structures treated by standard model
theory. But, as we shall see, most of the interesting structures

2For instance, see the definition of structure given in Hodges 1993, p.2. The recent second edition of
the superb book on mathematical logic by Yuri Manin treats model theory in the same vein (Manin 2010,
ch.10).
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related to scientific theories are not order-1 structures of this
kind. These imprecisions in the philosophical discourse seem
to be raisen due to a confusion about the order of a structure
and the order of the corresponding language where these struc-
tures are (in general) dealt with. Taking this fact into account,
I have decided to address an introductory text dealing with
some of these questions, trying to enlighten the necessary dis-
tinctions.

As far as I was writing these notes, I was realizing with no
surprise that much more would be said, and that much more
details would be presented with care. But I needed to end my
text, and so some topics necessarily were left without the care-
ful discussion they deserve. Thus this book should be taken as
an introductory text on the theme, and I hope that the Bibliog-
raphy provides additional informations for anyone interested
in the subject. I also hope that these notes can be improved
with suggestions and criticism, and I will welcome them.

Despite I have been much influenced by da Costa’s ideas,
I owe much also to Maria Luisa Dalla Chiara and Giuliano
Toraldo di Francia, whose work on the foundations of physics
I have followed (at least in part) ever since the 1980s, and to
Patrick Suppes’ approach, which has interested me so much
over the years.

To be faithful to the scope of the Congress, I tried to be more
‘universal’ as I could. Universal Logic, as I understand it, can
be seen as the general study of logic, without paying necessary
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attention to specific systems, which is in accordance (as it is
well known) with the term ‘Universal Algebra’ used by White-
head in his infamous book on the subject (from 1898). Thus, I
tried to offer to the readers and to those who attend the tutorial
an ‘universal’ discussion on structures, languages and models
of scientific theories. Almost all the time I shall be following
da Costa’s ideas and teachings. But of course I do not wish
to compromise him with the way I present the subject here.
Anyway, I would like to thank him for his kind patience for so
long discussions and teachings. I also thank Jean-Yves for the
invitation, so as my colleagues Otávio Bueno and Antonio M.
N. Coelho, and my students Jonas Becher Arenhart Arenhart
and Fernando T. F. Moraes for the interest and suggestions.

Florianópolis, February 2010
D.K.
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Chapter 1

Introduction

I
n his book Concepts of Force, Max Jammer calls our
attention to the fact that the concept of force is one
of the “fundamental and primordial” notions of phys-
ical theories, and that “it seems [that it] has never

heretofore been the object of a comprehensive analysis and
critical investigation”, and that “[i]n general, the concept is
taken for granted and considered as sanctioned by its success-
ful applications. In fact, he continues, standard textbooks, and
even elaborated treatises, present little information, if any, of
the nature of this concept; its problematic character is com-
pletely ignored in the maze of practical utilizations. ” (Jam-
mer 1962, p.5).

Then he acknowledges that in general scientists are little
concerned with the history of concepts (ibid.). Of course he
is right but, we should say, perhaps it not a task for the sci-
entist to provide such an analysis, which is more concerned
to the obligations of the historian of science. But the same,

1



2 CHAPTER 1. INTRODUCTION

or at least quite similar things, can be said about the study of
the underlying logic and mathematics the scientist employs in
her work. And such an analysis, although may be also not re-
quired to be performed by the scientist, would be taken into
account by the philosopher of science. Unfortunately, this is
not what we see in most of the textbooks on the subject. Logic
and mathematics are also ‘taken for granted’, to employ Jam-
mer’s words, in general being confused with (and ‘considered
as sanctioned’ by) that what lay people call classical logic and
standard mathematics, yet in most cases they are not able to
give even a rough characterization of neither of them.

In this book we shall be concerned with precisely the logic
and the mathematics that underly the most common physical
theories. Although the results here outlined can be applied in
general, we shall be more concerned with physics and, more
specifically, with quantum theory. Just to tell you what we
have in mind, let us recall that non-relativistic quantum me-
chanics, for instance, in its usual presentation, makes use of
Hilbert spaces, expressing the states of the physical systems
as vectors in an Hilbert space. Thus, one of these vectors may
be written as a linear combination (or superposition, as the
physicist uses to say) of an orthonormal basis formed by en-
geinvectors of a certain linear operator on such a space. But
the existence of a basis for general spaces (not for a partic-
ular space, where in some cases we can just exhibit a ba-
sis) depend on the axiom of choice, hence of the underlying
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logic (see below about the meaning of this expression). Still
concerning the axiom of choice, we recall that quantum me-
chanics makes use of unbounded operators, such as position
and momentum, and the existence of these operators also de-
pend on the postulates of the underlying mathematics (as we
shall see at page 108). In the same vein, one of the most
important theoretical results in quantum theory is Gleason’s
theorem (it does not matter us to formulate it here), which
was stated by Gleason for separable Hilbert spaces (Chernoff

2009).1 Robert Solovay extended Gleason’s theorem also for
non-separable Hilbert spaces, but at the expenses of intro-
ducing non-measurable cardinals, whose existence cannot be
proven in standard set theories (such as ZF, the Zermelo--
Fraenkel first-order set theory, supposed consistent). As we
shall see, the consideration of the underlying mathematics (and
logic) has relevance for certain kinds of foundational and philo-
sophical discussion. Here it is another example of a more
philosophical nature.

The so-called semantic approach to scientific theories claims,
saying in short, that a theory is characterized by “identifying
a class of structures as its models” (van Fraassen 1980, p.44).
Without contextualization, this says practically nothing, so we
need to go further. The notion of model, for most of the de-
fenders of such a view, “derives from logic and metamathe-

1An Hilbert space is separable if t has a denumerable basis. We shall be back to this example later (see
page 109).



4 CHAPTER 1. INTRODUCTION

matics”, referring to “specific structures” (ibid.), and “[a]ny
structure which satisfies the axioms of a theory (. . .) is called
a model of that theory” (op.cit., p.43). That means that mod-
els are considered as such in the sense of logic, namely, as
set-theoretical structures that satisfy the postulates of the the-
ory. In other words, models are sets. But, although these
philosophers aim at to concentrate themselves in the mod-
els, and not in the syntactical aspects of the theory, the ax-
iomatization cannot be put completely aside. Models (in that
‘logical’ sense) are models of something, and this something
can be seen as encapsulated in a set-theoretical predicate (Sup-
pes 1967, 2002), later termed ‘Suppes predicate’ (da Costa &
Chuaqui 1988), as we shall see. Hence, all the standard dis-
cussion is grounded on a concept of set, and of course it is not
completely clear what philosophers mean by a set, as we shall
see below.

Important to say that set theory is not the only possible
mathematical framework we may use. Rudolf Carnap used
higher-order logic in several examples he gave in his book
from 1958 (Carnap 1958). Category theory could also be used
instead. But set theory is the most common mathematical the-
ory considered in these discussions, so we shall be restricted in
considering them here. Models, them, as set-theoretical struc-
tures, depend on the notion of set, and we shall discuss also
about some of the various meanings of the word model that
appear in the foundational contexts.



5

Our strategy goes as follows. We begin with a brief pre-
sentation of the different meanings of the concept of model
of a scientific theory, given in the chapter 2. The analysis is
of course not exhaustive, but it provides the basic tools for
the general discussion. Next, we recall some aspects of ax-
iomatization and related issues. The distinction (generally not
acknowledged in the philosophical literature) between order–1
structures and order–n structures (n > 1) is introduced, prepar-
ing the field for a more detailed discussion done at chapter 5.
Chapters 3 and 4 continues discussing the different notions of
the word ‘model’, and some simple cases are taken as illustra-
tions. After having discussed the nature os scientific structures
and their languages in chapter 5, all done within a ‘classical’
framework (such as our chosen Zermelo-Fraenkel (ZF) first-
order set theory), we suggest a way of departing from this
mathematical basis (and logic), by presenting a case study,
motivated by quantum physics. Historical details are given,
and a different ‘set’ theory is presented in details. Then, we
analyse what would be understood by working out of ‘classi-
cal’ frameworks.

But a care must be taken just from the beginnings. The
concepts of classical logic and of standard mathematics are
also not precise. Surely most of the authors will accept that
that what we call ‘classical propositional logic’ is part of clas-
sical logic, so it is the so-called ‘classical first order predi-
cate calculus’. But, what about ‘classical’ higher-order logic
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(type theory)? Should we consider it also as forming part of
(classical) logic? It depends. As it is well known, Quine is
one who rejects higher-order logic as being logic, claiming
that it is mathematics. According to him, (classical) logic is
first-order logic without identity and with a finite number of
primitive predicates (then he can ‘simulate’ identity and so he
doesn’t need it as a primitive concept). But of course all of
this is quite fuzzy. A right characterization cannot be done,
but we can roughly characterize the field as follows (accord-
ing to da Costa 1990). By classical logic we understand the
so-called first-order predicate calculus with or without iden-
tity (see for instance Mendelson 1997), or some of its sub-
systems, such as the classical propositional calculus, or even
some of its extensions, such as the classical higher-order logic
(type theory) or some ‘classical’ systems of set theory, such as
the Zermelo-Fraenkel set theory (ZF), von Neumann-Bernays-
Gödel set theory (NBG), or even the system of Kelley-Morse
(KM) among others. We think that standard category theory
can be added to this schema. This is not a definition, for it
is quite redundant, but at least guide our intuitions. In this
vein, by classical mathematics we can understand that part of
mathematics that can be erected within such a frameworks, for
instance all mathematics encompassed in the books by Bour-
baki, or standard category theory (Mac Lane 1998).

This book discusses how these basic frameworks are used
in constructing scientific theories, and as we said above, we
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shall be more concerned with physics. In the final part of the
text, a departure of this ‘classical’ schema is suggested.

In a quite general setting, what we sustain is a pluralistic
approach to science and its philosophy. Up today we have
a wide field of alternative logics, and distinct mathematics.
The choice of a particular setting cannot be done out of prag-
matic criteria, such as simplicity, expressive power, or even
beauty. This of course brings to evidence a nice topic for the
philosophical discussion, say in the sense of avoiding naïve
relativism. The important fact, as we intend to submit to your
the reader, is that today the philosopher of science cannot even
more be completely distant from the foundational issues. Even
without being a specialist in the field (say, in logic and set the-
ory), she would be aware of their basic concepts and tools, for
instance to avoid the claiming that the set-theoretical struc-
tures that are (mathematica) models of scientific theories are
what we shall term order-1 structures. But let us begin our
discussion.
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Chapter 2

Models of scientific theories

T
he word model has several meanings and uses not
only in general, but even in science. We can present
a Lego ‘model’ of the Eiffel Tower for instance
just for fun. An Earth globe can be used by kids

for studying geography. Watson and Crick constructed a sup-
posed ‘model’ of the DNA molecule with more sophisticated
scientific interests, which contributed to give them the insights
that lead them to win the Nobel Prize. Billiard balls are some-
times used to roughly exemplify the behaviour of molecule
gases in classical mechanics. From another perspective, en-
gineerings and other applied scientists generally make use of
mathematical ‘models’ of certain situations they ‘model’ gen-
erally using mathematical devices, such as those which repre-
sent certain populations, say in biology, the heat transfer phe-
nomena or the movement of a fluid. In this sense, a mathemat-
ical model is supposed to act as a simplified-mathematically
treated portion of reality, acting more or less like a map of a

9



10 CHAPTER 2. MODELS OF SCIENTIFIC THEORIES

city, which of course should be not confused with the city it-
self. There are also ‘models’ in logic. In this case, they usually
are taken to be set-theoretical structures that satisfy the postu-
lates of a theory; as put by Tarski, “[a] possible realization in
which all valid sentences of a theory T are satisfied is called a
model of T” (Tarski 1953, p.11). To some people, like P. Sup-
pes, the notion of model in the sense (the ‘logic sense’) is the
most fundamental one, and should prevail in the philosoph-
ical discussions on the foundations of science (Suppes 2002,
pp.20-21).

For instance, take group theory. It studies some mathe-
matical structures generally built in a set theory such as the
Zermelo-Fraenkel set theory (ZF)1 of the kind G = 〈G, ∗〉,
where G is a non-empty set and ∗ is a binary operation on G
obeying well known postulates. As an example, let us take
the additive group of the integers, Z = 〈Z,+〉, where Z is
the set of the integers and + is the usual addition on such a
set. But we could study the collection of all groups, which is
not a set of ZF. From a certain perspective, it can be called
a category. To study it, we use category theory (for a gen-
eral view, see Marquis 2007). Here we will be interested in
models that are set-theoretical structures, but we shall men-
tion an important distinction between models of theories such
as group theory and ‘models’ of theories such as ZF proper,

1If you don’t have familiarity with this theory, it would be better to read chapter 5 first, or at least its
first part.
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which cannot be constructed within ZF proper (supposed con-
sistent). These considerations will bring us interesting philo-
sophical questions regarding the mathematical stuff (say, ZF)
we are using to built the structures that are the ‘models’ of sci-
entific theories. The reasons for that will appear in due time.
From now on, we shall use the word model without quotation
marks for this ‘logic sense’. Below the concept will become
clear in some of its different aspects.

2.1 Axiomatization

Models, as set theoretical structures, are models of something,
namely, of the postulates of a certain theory. There are no
models per se. To speak of the postulates of a theory requires
to speak of its axiomatization. As it is well known, the ax-
iomatic method is an heritage from the ancient Greeks, and
has influenced in much the Western culture, mainly mathemat-
ics. It is, in a sense, the method par excellence of presentation
of a mathematical theory. The axiomatic method was used
also outside mathematics, for instance by Spinoza, who tried
to write his ethics more geometrico, that is, as the geometers
do, namely, axiomatically.

Yet it had been used before, for instance by Newton,2 the
axiomatization of physical theories was proposed as the 6th

2According to Suppes, some people regard Archimedes’ On the Equilibrium of Planes as the first book
on mathematical physics, and its first chapter would be “an axiomatic analysis of measurement” (Suppes
1988, p.40).
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of his celebrate list of 23 Mathematical Problems by David
Hilbert during the Second International Congress of Math-
ematicians, held in Paris in 1900 (see Gray 2000), and this
program was later extended to other disciplines as well, such
as biology, by Woodger and others. During the XXth cen-
tury, it became acknowledged by most specialists that there
are two basic ways (essentially equivalent) to axiomatize a
theory, namely, (1) to make explicit its underlying mathemat-
ical structure, in the sense of Bourbaki, that is, a species of
structures, which characterizes structures of a certain species
(say, groups) (Bourbaki 1968, chap.4), and (2) to construct
a set-theoretical predicate that formalizes it (also called its
Suppes predicate). Roughly speaking, the structures that sat-
isfy the Suppes predicate of a certain theory are the theory’s
models. Both mathematical structures and set-teoretical predi-
cates, for most of mathematical and scientific theories, are set-
theoretical constructs (da Costa & Doria 2008, p. 70), as we
have seen in the case of groups. Since we know the postulates
of Zermelo-Fraenkel set theory, of vector spaces, Euclidean
geometry and so on, we could think that we can apply the same
procedure to all these theories. But it is necessary some care
here, as advanced earlier, for there are important differences
concerning models of a geometry and ‘models’ of a set theory
such as ZF, to be explicated later. From the formal point of
view, the only requirement a postulate has to obey is to be a
formula of the theory’s language (following the standard prac-
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tice, we do not distinguish between axioms and postulates).3

It is also well known that Hilbert’s position against, for in-
stance, Frege’s, who said that the sentences we use in mathe-
matics express nonlinguistic ‘thoughts’, so that there would be
no sense in reinterpreting thoughts. Thus, to Frege, Hilbert’s
claim that there may be different interpretations that render the
axioms true could be never accepted (see Blanchette 2009).
But, in what regard physical theories, can we consider the pos-
tulates, say of non-relativistic quantum mechanics (in some
formulation) as formulas of a certain language and no more?
(From now on, when we say ‘quantum mechanics’ –QM– we
mean ‘non-relativistic quantum mechanics’ plus some inter-
pretation, which will be mentioned if necessary).

This brings us an interesting question. Take for instance
one of the standard formulations of QM (Toraldo di Francia
1981, pp.270ff—see section 4.1.2). Provided that the states of
a physical system are done by vectors in a Hilbert space, if A
is an Hermitian operator representing an observable and {|ui〉}

is an orthonormal basis constituted of eingenvectors of A, so
that A|ui〉 = ai|ui〉, let |ψ〉 =

∑
i ci|ui〉. We know from one of the

postulates (see section 4.1.2) that the spectrum of A (the set
of its eingenvalues) contains the possible results of a measure-
ment of A. One of the postulates (the Projection Postulate)
states that “[i]f we carry out the measurement [of A] and it

3But sometimes in logic we call ‘postulates’ the collection of axioms (or axiom schemata) and the
inferences rules of a formal system.



14 CHAPTER 2. MODELS OF SCIENTIFIC THEORIES

gives the result ai, the state vector |ψ〉 [as above] becomes |ui〉

immediately after the measurement.” (ibid., p.271).
How can we regard this postulate as a sentence of some for-

mal language, say a first-order language? It would quite dif-
ficult, if not impossible, to state it to fulfill the above require-
ments. But we can accept that we can do it at least in prin-
ciple. As da Costa says, “the standard postulates of quantum
mechanics (so as those of quantum field theory) may be taken
as rules for we to associate mathematical formalisms to certain
physical systems. They can, with due qualifications, become
axioms of an standard axiomatics (then we need to take, for
instance, physical system, states of physical system and ob-
servable as primitive concepts). But they can also be taken as
general principles that govern the ‘models’ of certain physical
systems.” (personal communication). Van Fraassen expressed
himself the same way, when in his The Scientific Image he
states that “the ‘axioms of quantum theory’(. . .) don’t look
very much like what a logician expect axioms to look like;
on the contrary, they form, in my opinion, a fairly straightfor-
ward description of a family of models, plus an indication of
what are ro be taken as the empirical substructures of these
models” (van Fraassen 1980, p.65).

Thus, although there is, as we see, a deep question regarding
the very nature of the application of the axiomatic method to
science, we shall assume that the words postulates and axioms
of a physical theory are to be understood in the usual mathe-
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matical sense. But we may go deeper, by presenting not only
the postulates of the theory themselves, but also the underlying
logic, getting the formalized version of the theory. It would be
relatively easy to formalize group theory this way, but non-
relativistic quantum mechanics would demand a lot of work,
and we really don’t know if it would be advantageous. Really,
it would be need to formalize all the theory of Hilbert spaces,
differential equations, probability theory and so on. Although
we can regard this task as possible, it seems more natural to
suppose a set theory to begin with so that all these ‘step theo-
ries’ can in principle be developed. This strategy (essentially,
Suppes’ one) leads us directly with what if of interest, namely,
the theory itself.

2.2 Models as kinds of structures

Some philosophers of science linked to the so-called seman-
tic approach claim that to present a theory is to characterize a
class of structures, the ‘models’ of the theory. The origins of
this idea goes to the desire of going out of logical positivism,
which describes a theory as a kind of calculus, usually said to
be grounded on first-order logic, whose interpretations were
given by some correspondence rules (see the introductory pa-
per by Suppe in Suppe 1977).4 The semantic approach, on

4Really, there seems to be not a consensus about the precise meaning of a theory according to logical
positivism, for different philosophers arrived to different views. Furthermore, as Suppe shows, in some
characterizations even modal logic was enabled.
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the contrary, at least so it is claimed, focuses on ‘models’.5

Thus, we find van Fraassen, saying that “[t]o present a theory
is to specify a family of structures, its models” (van Fraassen
1980, p.64). And he says that he agrees with Suppes in seeing
how a theory is to be identified, namely, as a class of models
(cf. ibid., p.66). Below we shall see that declarations such
as this one need qualification, for we need to consider these
models (as set theoretical structures) as given in some set the-
ory, and them several interesting points shall appear. By the
way, the approaches given by van Fraassen and by Suppes do
not exactly fit one another. Suppes’s suggestion is to present a
set-theoretical predicate, a formula of the language of set the-
ory (extended by some specific symbols, as we shall see later)
which provides a description of the structures that satisfy the
predicate (the models of the theory)—that it, Suppes is pre-
senting a species of structures in the sense of Bourbaki, while
van Fraassen focuses on the models themselves, in a certain
sense trying to minimize the role of the theory’s postulates.

But it should be insisted that there are not models which are
not models of something. Thus, we need something to link
the models as belonging to some ‘class of models’, and the

5Van Fraassen still distinguishes between set-theoretical models and what he calls ‘model-types’, which
would stand for that ‘models’ the scientist makes use, say Hydrogen atoms for Bohr’s theory of the atom
(van Fraassen 1980, p.44). From the mathematical point of view, it is quite difficult to understand in
what sense an Hidrogen atom may be a model of a scientific theory, for the semantic rules apply only
to mathematical devices. Of course scientists take these concepts informally, but the philosophers would
provide a careful analysis of these relationships (which of course is not van Fraassen’s aim), for instance in
creating a mathematical model of the Hidrogen atom first (the (MM) of the next chapter), and then to apply
the semantic rules—if available.
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‘natural’ option is to search for some postulates, perhaps in
the form of a set-theoretical predicate such that the models are
those structures that satisfy the predicate (which comprises the
axioms/postulates). Thus, although we may be focused on the
models, the axiomatization cannot be put completely aside, for
it is the axioms that determine the class of structures that are
the models of the theories being considered, and this forces
us to consider languages. As we shall see below, to be aware
of this intuitive fact is really quite relevant for the philosoph-
ical discourse about scientific theories. Anyway, even without
a precise characterization of what is to be understood by a
model, the model-theoretical or semantic approach to scien-
tific theories became the paradigm of present day philosophy
of science (van Fraassen ibid.; Suppe 1977; Suppes 2002).

We shall consider here those models of scientific theories
that are set-theoretical structures in the Tarskian sense, and in
this sense we agree with van Fraassen (op.cit., p.44). Thus,
the DNA double helix is not a model, being regarded as an
heuristic device to provide the grounds for the construction of
(in principle) mathematized theories and ‘truly’ models. The
axiomatic method was used first to provide a kind of polish-
ing of a certain defined area. Later, mainly due to people such
as Hilbert, it became a fundamental method of exploration.
Even starting with a well known field of knowledge, once we
obtain an axiomatic mathematical theory, it becomes abstract
(we shall discuss this point below) and (being consistent) it
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may have models in the Tarskian sense, and some of them, of
course, may fit — with reservations — the intuitive heuristic
device which has originated the axiomatic system. For most
theories, either in mathematics or in the empirical sciences,
these models are set-theoretical structures but, as we shall see,
this way of talking need to be qualified, for instance when the
considered theory is set theory itself, for the ‘models’ of set
theories in general cannot be constructed within themselves.
The ‘theory of models’ began with Tarski in the 1920s, who
arrived at the notion of model within the scope of ordinary
mathematics (in the ‘logical’ sense posed above)—see Keisler
1977; Shoenfield 1967, ch.5. The theory of models studies
certain types of mathematical structures (we shall term order–
1 structures) and how we can operate with them and construct
them. In model theory, we have some specific theorems deal-
ing with certain (set-theoretical) structures, but let us insist
that all of them refer to what we are calling order–1 structures.
But in science we need to deal with higher-order structures, as
we shall see, thus model theory in its usual sense must be taken
carefously in these discussions (for instance, for higher-order
structures built in higher-order languages, some basic theo-
rems of model theory do not hold, such as compacity, com-
pleteness, and the Löwenheim-Skolem theorems, with impor-
tant consequences). The advantages, as we shall see later, is
that even higher-order structures can be built using first-order
languages, although we make use of set theory.
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The mathematical structures we usually use can be defined
basically in three distinct ways (although there may be others—
you can see for instance the suggestion by da Costa & French
2003, pp.26-27). Thus:

(i) We can make use of the resources of a set theory, as Bour-
baki did (Bourbaki 1968).

(ii) Alternatively, we can make use of higher-order logic, as
Carnap did (Carnap 1958).

(iii) Or then we can make use of category theory (Mac Lane
1998).

Notwithstanding, Tarski’s approach and all subsequent model
theory deal with order–1 structures only (we will not use the
expression first-order structures for the reasons to be explained
below; shortly, we introduce this terminology for not making
any confusion with the order of a language). These are set-
theoretical structures, n-tuples composed by a non-empty set
D (the domain of the structure), plus a collection (possibly
null) of distinguished elements of D, a collection of relations
on elements of D and a collection (possibly empty) of opera-
tions on elements of D, that is, something which can be written
as

A = 〈D, {ai}i∈I, {R j} j∈J, { fk}k∈K〉 (2.1)

where I, J,K are sets of indices. Sometimes we express our-
selves differently, just by considering the distinguished ele-
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ments, relations and operations instead of sets of them, as for
instance in considering

N = 〈ω, 0, s,+, ·〉 (2.2)

for first-order arithmetics, and not N = 〈ω, {0}, {s,+, ·}〉.
As it is well known, we can consider just relations, for in-

dividual constants can be seen as 0-ary relations and n-ary op-
erations (functions from Dn to D) can be seen as n + 1-ary re-
lations. Thus our Tarskian structures become something like

A = 〈D, rι〉, (2.3)

where rι stands for a collection of relations on D, that is, sub-
sets of Dn. Hence, the relata are individuals of D. Sometimes
it is convenient to use operation symbols instead of relations.
Thus we arrive at a structure of the form

A = 〈D, fι〉, (2.4)

where fι stands for a collection of n-ary functions from Dn in
D. A typical case is a group, as we have seen before. A struc-
ture such as (6.3) is called an algebra, and we shall consider
them in due time (see section 6.3).

Many philosophers of science report to model theory when
speaking of the ‘models’ of scientific theories, which sub-
sumes that these would be order–1 structures, although it is
not always clear what they mean by a ‘model’. For instance,
in Przelecki 1969 we find the author saying that her mono-
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graph intents “to apply some concepts, theorems, and meth-
ods of model theory (rather simple and elementary ones) to
the semantical problems of empirical theories.” (p.4). We of
course are not claiming that this cannot be done, but it is im-
portant to acknowledge that the ‘models’ of scientific theories
are in general not those dealt with by standard model theory:
they are not order–1 structures. And we don’t have yet an ar-
ticulated ‘theory of models’ for order–n structures (n > 1),
although some works have been advanced in this direction.6

The study of the mathematical structures that may be mod-
els (in the logic sense) of the scientific theories can be seen
from several points of view. As recalled by da Costa & French
(2003, p.22), for Beth and van Fraassen, “theory structures are
captured in terms of state spaces, for Suppe they are under-
stood as relational systems, and for Suppes and Sneed [one
of the proponents of the structuralistic approach to science],
they are regarded in terms of set-theoretical predicates” (see
also van Fraassen op.cit., p.67). We shall not enter this discus-
sion here, but simply adopt the third version (as these authors
do), for it seems to be more general.

Important to realize that when we consider set-theoretical
structures, we of course need to use a set theory. Without loss
of generality, we shall consider here the first-order Zermelo-
Fraenkel set theory (with the axiom of choice, ZFC); ZF stands

6This theory is called ‘Generalized Galois Theory’ by Newton da Costa—see da Costa & Rodrigues
2007.
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for ZFC without the axiom of choice and ZFU for the corre-
sponding theory with ur-elements. The choice of a set the-
ory as a meta-framework may be important depending on the
kind of analysis we intend to do. Really, the set-theoretical
techniques developed by Gödel, Cohen and others enable us
to build ‘models’ of set theory where some basic principles,
such as the axiom of choice, do not hold, and this brings is
important philosophical consequences we shall see below.



Chapter 3

Informal account to models

E
ven if we restrict our analysis to set-theoretical struc-
tures, we may consider different ‘stages’ in which
these structures can be considered. We shall discuss
this point in the sequence. To begin with, perhaps it

would be interesting to follow Hilbert and Bernays in distin-
guishing between formal axiomatics and concrete axiomatics
(see Kneebone 1963, p.201).

3.1 Formal vs. concrete axiomatics

From the historical point of view, the paradigm of the ax-
iomatic method, as is well known, is Euclid’s Elements, al-
though today we are aware that he made deductions also from
not assumed hypotheses.1 The concept of axiomatization, as
we accept it today, was put forward by the XIXth century, in

1For instance, the first proposition (theorem) of the Elements asks for the construction of an equilateral
triangle on a straight line. In the proof, Euclid assumed that two circles intercept on a certain point, but this
fact cannot be derived from the postulates.

23
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great part due to Hilbert. Until those days, the axiomatic sys-
tems were ‘material’, always encompassing an intended inter-
pretation. That is, the axiomatic systems involved a material
content, for instance when we say that we have axiomatized
evolution theory: the axiomatic system has an intended (gen-
erally intuitive) ‘model’ from its beginnings, and to axiom-
atize was taken sometimes as something deprived of real im-
portance, serving more as a way to ‘clean up’ a certain already
well know subject. The XXth century shown us that this is not
so. Below we shall have a look at Suppes’ theory of human
paternity.

It was later realized that an axiomatic system, such as arith-
metics, which has as the intended model what we call the
standard model,2 becomes a formal theory, with its symbols
deprived of any interpretation. This step was of fundamental
importance for the development of logic during the XXth cen-
tury. Being so formal, a certain axiomatic theory may com-
port other interpretations, other models as well, sometimes
not equivalent (not isomorphic) to the intended one, and be-
ing purely abstract mathematical models (structures that sat-
isfy the postulates, without any appeal to ‘reality’). First-
order arithmetics provides a typical example, having also non-
standard models as well, not isomorphic to the standard model.3

2Summing up, the domain is the set of natural numbers ω = {0, 1, 2, . . .} (the finite ordinals), endowed
with an unary function of ‘taken the sucessor’, plus the standard concepts of addition and multiplication;
see Enderton 1977.

3Informally speaking, in a non-standard model, there may exist ‘natural numbers’ which are none of the
elements of the set ω mentioned previously.
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In other words, formal axiomatics provides axiomatic systems
which are independent of any content, or “factual knowledge”
(Kneebone loc.cit.).

3.2 From ‘the reality’ to abstract models

If we consider the distinction between concrete and formal ax-
iomatics, we should agree with Kneebone, when he says that

“[i]in applying the concrete axiomatic method4 we
take some body of empirical knowledge with which
we are already tolerably familiar, and we try to make
this knowledge systematic by idealizing the concepts
which it involves and picking out from among the
known facts a small number of basic principles from
which all else can be derived by deduction.” (op.cit.,
p.201)

This ‘empirical knowledge’ may be understood as a previ-
ous theory or, as we shall prefer to call it here, informal the-
ory. Then we get an axiomatized (or formalized, depending on
the level of axiomatization we consider) version of this infor-
mal theory, which we shall term theory for short. This theory
(there may be several—infinitely many—theories of a same
informal theory), after its primitive concepts are deprived of

4Following Hilbert, we have used already the expression material axiomatics in these cases.
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any content, becomes an abstract entity, and may be inter-
preted in different ways, giving rise to the distinct models of
the theory. Let us put the things under a certain more general
perspective.

We begin by accepting, as suggested by Bernard d’Espagnat,
that there is an independent objective ‘reality’ (R). But, as he
says, it remains veiled to us (d’Espagnat 2003, 2006).5 The
most we can experience is an empirical reality (ER) (or phe-
nomenalist reality) given to us by our senses, experiments, or
learning knowledge. Cultural aspects (sometimes even guided
by ideological ideas, as Lysenko’s ‘Stalinistic-genetics’ exem-
plifies) seem to me to be quite important for our way of form-
ing a picture of some portion of (R) we are interested in.
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‘Veiled’ Reality
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(ER)

The empirical (phenomenalist) reality (ER)

������� @@R
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The mathematical (theoretical) model (MM)
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The theory of that model (T)The ‘heuristic’ models (H)
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(2)
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The scientist The logician

Figure 3.1: A general simplified schema for physical theories showing different senses
of the word ‘model’. I am not claiming that this figure traces a realistic picture of the
scientific activity, being just a general idealized schema that can help us in approaching
the different levels where models may appear in the scientific practice.

5But what I will say does not intent to be in total agreement with his ideas.
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By (MM) I mean an informal mathematical structure (let’s
call it model1) we construe based on technical expertise, back-
ground knowledge, insights, etc., generally elaborated taking
(ER) into account, and by simplifying (or perhaps by ‘putting
some discipline’ over if). Sometimes we make use of heuris-
tic models, like the DNA double helix model1 of Watson and
Crick mentioned above to discipline the empirical data and or-
ganize our mind (the (H) in the figure). But scientists do not
stop with these iconic models, for they need to get a theory,
and in most advanced sciences, they need to consider mathe-
matics. (I am not suggesting that those disciplines that do not
make explicit use of maths, such as psychology, are not ‘ad-
vanced’. Or aim is just to point out that the most rigorous ones
are those that are closer to maths, such as physics.)

But, in general, at the level of (MM), we use the resources
at our disposal (working within a kind of normal science, to
make an analogy with Thomas Kuhn’s ideas), and only rarely
need to develop new resources. Anyway, sometimes this hap-
pens, as Newton’s case shows paradigmatically (he developed
Differential and Integral Calculus to deal with physical prob-
lems — yet in his time this distinction between math and physics
did not exist).

Logic is used here only informally. Typical examples of
(MM)s in this sense are all the non-axiomatized scientific the-
ories. I think that it is not a mistake to say that most scientists
work until this level; their models1 are either iconic models1
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or informal mathematical models1, as those used by engineers,
applied mathematicians, economists, and so on. Scientists in
general aim at to deal with a portion of (R)—or at least with
(ER)—and do that by means of informal models1 or structures
(‘informal’ means neither axiomatized nor formalized).

Important to remark that there can be many (MM)s, depend-
ing on the scientist’s expertise. Thus, the same phenomenalist
reality may give rise to different and even incompatible math-
ematical models1, depending on how the empirical data are
interpreted. It is also possible that a further analysis shows
that some informal theory (MM) is inconsistent, such as the
well known case of the Bohr’s theory of the atom (da Costa &
French 2003, ch.5). In this case, the next step of getting the ax-
iomatic or formalized version of (MM) needs to be taken quite
carefully, for perhaps the consideration of a non-classical logic
may be indicated. But it should be remarked that the (MM)s,
once they are only informally stated, can be seen as inconsis-
tent only when the contradictory theses appear quite explicitly,
for in general no detailed analysis of their mathematical coun-
terparts is advanced.

But logicians and philosophers of science want more. It
is interesting to arrive at an axiomatized or even to a for-
malized version of the informal theory (MM). Let us call (T)
an axiomatic or formal theory associated to (MM). For in-
stance, a version of Darwinan theory of evolution was axiom-
atized by Mary Williams in the late sixties (see Magalhães
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& Krause 2001); McKinsey, Sugar and Suppes gave an ax-
iomatic version of classical particle mechanics, as we shall
see soon; Walter Noll axiomatized continuum mechanics (Ig-
natieff 1996); Clifford Truesdell axiomatized thermodynam-
ics; George Mackey presented an axiomatic version of non-
relativistic quantum mechanics (Mackey 1963); Archimedes,
Newton, and many others made use of the axiomatic method
out of mathematics even before the XXth century. In speak-
ing this way, it is useful to distinguish between an axioma-
tization of a certain informal theory, which means to make
explicit some primitive concepts and postulates (equivalently,
a set theoretical—or Suppes’—predicate), and a formalization
of the same theory, which demands to make explicit of all the
underlying logic apparatus.

Thus I am using the word theory to mean an axiomatized
or even formalized version of (MM). But in model theory we
usually say that a theory of a structure E, Th(E), is the set
of all sentences (of a language adequate for that structure—
see below) true in E (Keisler 1977, p.50). Here, the termi-
nology is a little bit different, meaning—just to emphasize—
the axiomatic/formal version of the informal theory (MM). Of
course also here we may have different and even non equiva-
lent theories (in this sense) of the same model1, (MM), but let
us fix one, and call it T . It is precisely here that set-theoretical
predicates enter the scene, it we adopt (as we are suggesting
by now) to do. As Suppes said, “to axiomatize a theory is to



30 CHAPTER 3. INFORMAL ACCOUNT TO MODELS

define a set-theoretical predicate” (Suppes 2002, p.30).
Thus, (T) is an axiomatic or even formal version of (MM).

So, (T) is an abstract mathematical structure (mainly in its for-
mal version) having no interpretation attributed to its primitive
concepts. It is precisely to emphasize this that Hilbert told us
that “[o]ne should always be able to say, instead of ‘points,
lines, and planes’, ‘tables, chairs, and beer mugs’.” (Gray
2000, p.49). During the XXth century, we have learnt that an
abstract formal or axiomatic theory may have several abstract
models (A)—let us speak this way of those models which are
set-theoretical structures that satisfy the postulates of the the-
ory, which we shall term models2. Most of these models2

are just abstract mathematical structures, without (necessarily)
any commitment to applications or even with some link with
the realm that motivated the elaboration of the theory (think
for instance of the non-standard models2 of first-order arith-
metics, although today they are studied also for applications).

The process of course does not end with the abstract models2.
After we have arrived to such stage, we may have learnt more
about the domain of (R) we are interested in, so that a new
look at (R) can be done, and the process starts again. This is a
dynamical process, without end. Really, further investigations
may suggest radically different approaches, which induce dif-
ferent (MM)s and (T)s.

From now on, we shall not make any further reference to
the distinction between models1 and models2, leaving the dif-



3.2. FROM ‘THE REALITY’ TO ABSTRACT MODELS 31

ferences implicit by the context. For sure the reader will rec-
ognize each case. The distinction will be made only when
some emphasis is necessary.
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Chapter 4

The nature of the models

W
e may say that there are two basic ways to
consider set-theoretical structures and mod-
els. The first is one raises from what Hilbert
and Bernays termed ‘formal’ axiomatics, as

we have seen before, and is more or less quite similar to what
we usually teach in initial logic classes and resembles: we
consider a language, say a first-order one, and then give it an
interpretation, which means of provide a non-empty domain
together with a mapping that interpret the chosen non-logical
symbols. It may happens that this structure is a model for
the axioms formulated in the considered language. This is
achieved when the sentences that express the postulates of the
theory are true (in the Tarskian sense) in the structure. The
another alternative follows a roundabout way, and was termed
by those authors ‘concrete’ (or ‘material’) axiomatic. We start
with a structure which we suppose ‘models’ (in the sense of
the models1 of the previous chapter) a certain framework (say

33
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of empirical sciences), in which we put a set representing the
elements of the domain, sets of these objects and so on, so as
the relevant primitive relations we suppose to hold for such
entities. That is, we start with an informal theory (MM). Then
we look for the language of that structure (in the sense to be
presented in the next chapter), in which we talk of it and for-
mulate the axioms that give the operative characteristics of the
used symbols, so that the structure itself turns to be a model of
the axioms we use. The two approaches seen to be equivalent.

This second way seems to be closer to what scientist really
do. In order to schematize or to structure a certain field of
knowledge (the empirical sciences are our main goal here),
we may consider certain individuals (ants in biology, say),
which can be thought of as collected in a set, then we con-
sider subsets (or properties) of them, relations and operations,
etc. (such as those expressing their role in the hierarchy of
the ant colony). Of course the basic domain may not comprise
just one set, but several sets (as mentioned before, in the case
of vector spaces), or even sets of sets of elements, as the case
of topological spaces exemplifies. Classical particle mechan-
ics, for instance, was obtained as a generalization of several
distinct sample cases involving a set of massive bodies, an in-
terval of time and some forces acting on them (as we shall see
soon). All of this can be modeled as a structure, where we can
collect the domain(s) and relevant relations holding on its ele-
ments. But in most of the applications in empirical science, we
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should use ZFU; strictly speaking, a collection of ants would
not be considered as a set in the usual sense of the ‘pure’ set
theories (without ur-elements). Furthermore, recall that in the
empirical sciences, these structures are in general not order–
1 structures. The elements we consider in the structure, out
of the domain(s) are the primitive elements of the structure,
and we shall suppose here the the structures comprise rela-
tions only (beyond the domain).

This schema immediately induces us to consider a language
able to speak of this structure and, in general, of the whole
scale based on its domain, obtained from the domain by using
set-theoretical operations (as we shall see in the next chap-
ter). In this language we introduce the basic rules and laws we
suppose the elements and relations do obey, getting, first, an
informal theory (MM). Later, when we feel that it is all right,
we can present some postulates we suppose the chosen rela-
tions would satisfy, so providing a theory (T) of that field. This
schema is not universal, for sometimes we go ‘directly’ to the
postulates (or to the ‘equations’, as scientists generally prefer
to call them), as Maxwell’s electromagnetic theory exempli-
fies. Generally we do all of this without paying attention to the
language, using it informally, but the postulates are formulated
in a certain language, the language of the structure (which in
general are not first-order languages), and of course it is im-
portant to realize its existence. In the next chapter we shall see
the right definitions; here we shall proceed informally.
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Let us give a simple example. Consider Suppes’ theory of
human paternity. We shall sketch a formal (first-order) ver-
sion of this theory by supposing its language composed by
the usual sentential connectives, quantifiers, punctuation sym-
bols, individual variables and the equality symbol. The spe-
cific symbols are two unary predicate symbols A and M and
a binary predicate P. The formulas are defined as usual, and
A(x) is read ‘x is alive’, M(x) says that ‘x is a male human
being’, and Pxy reads ‘x is father of y’. An interpretation for
this language may be a 4-tuple P = 〈D, X,Y,R〉, where D is a
non-empty set (the set of human beings), X ⊆ D, Y ⊆ D and
R is a binary relation on D that stands for those order pairs
such that the first element if father of the second one. X and Y
interpret the predicates V and M respectively.

An important remark is the following. What does it mean
to construct a language such as that of the above theory within
ZFC?. The individual variables of L∈ (the language of ZFC)
are thought as representing sets an the intended interpretation
(the intuitive ‘universe’ of sets), but from a formal point of
view, and ZFC is a formal theory, there is no interpretation
associated to its language. Thus, all the primitive symbols of
the above language are terms of L∈; if we associate to it the
intended interpretation, these symbols are to be seen as names
of sets. So, a symbol such as ‘(’, the left parenthesis, is a name
of a set, and so on. It would be quite difficult to proceed in ex-
plaining how certain sequences of symbols form the formulas,
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but we beg the reader to believe that this is possible.
As for the formalization, we can introduce, based on Suppes

(1988, cap.8), the following postulates:

(L) A complete set of postulates for first-order logic with
identity.

(P1) ∀x∀y(Pxy→ ¬Pyx)

(P2) ∀x(Ax→ ∃!yPyx)

(P3) ∀x(Ax→ ∃!y(¬My ∧ Pyx))

It is easy to derive some theorems, such as ¬Pxx (no human
being is father of itself), among others. By definition, we can
write W(y) for Pyx ∧ ¬My and call such an y the mother of
x. It is clear that the intend interpretation provides an intuitive
semantics for the system in an obvious sense. We can see that
the above axioms are true with respect to this interpretation.

Abstract modes can also be constructed in the metatheory
(of course we are supposing ZF here). For instance, take D =

{〈a, b〉, 〈b, c〉}, X = {b} and Y = {a}. Then we can study
the metamathematical properties of this system, for instance
to look for a completeness theorem or to provide a study of
these models, such as if there is a representation theorem. In-
formally speaking, a representation theorem will show that
among the models of the theory there is a small class such
that every model has in this class an isomorphic model. For
instance, in group theory, every group is isomorphic to a group
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of permutations (Cayley’s theorem), or that every Boolean al-
gebra is isomorphic to a field of sets (Stone’s theorem). In the
same vein, a representation theorem for models of a scientific
theory would help us in understanding them by acquaintance
to this ‘small class’. See Suppes (op.cit.) for more details.

But, as we have remarked above, there is no a ‘model the-
ory’ for higher-order structures. Thus we need to be very care-
ful.

4.1 Suppes predicates

Now let us show the another side of the coin, by approaching
human paternity theory from a different alternative (really, you
will not see much difference, but they exist). This is Suppes’
approach of presenting a set theoretical predicate (later called
‘Suppes’ predicate’ by da Costa and Chuaqui 1988). All the
initial machinery involving logic, set theory and other possible
step theories of which our main theory depends, are supposed
to be subsumed into set theory. Thus, if a theory depends on
Riemannian geometry, tensor calculus, differential manifolds,
real numbers, differential equations and so on, as in the case of
general relativity, we don’t need to axiomatize (really, to for-
malize) all these step theories. As Suppes suggested, we can
regard them as adequately given by set-theoretical resources.
This enables us to go ‘directly’ to what interests, the theory
proper, so we don’t need to axiomatize also all these step the-
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ories. More precisely, let L∈ be the language of set theory. By
a predicate, we understand a formula of L∈ (perhaps extended
with other specific symbols) with only one free variable. If A
is a structure built in such a theory, let us consider a predicate
P as formed by two parts (cf. da Costa & French 2003, p.37):
the first part tells us how we can obtain A from some basic
sets (its base sets). The second part is the conjunction of the
axioms of the structure. If A1, . . . , An are the base sets of A,
we may write the predicate

P(A; A1, . . . , An) (4.1)

Then, the species of structures corresponding to A is, by
definition, the predicate

P(x)↔ ∃x1∃x2 . . .∃xnP(x; x1, . . . , xn). (4.2)

In this sense, A is a structure of species P, and P is called a
Suppes predicate.

For instance, we may consider human paternity theory as
modeled by a structure such as

P = 〈D, X,Y,R〉, (4.3)

as above, and we define a set-theoretical predicate (a formula
of the language of set theory) of the kind

P(x) = ∃D∃X∃Y∃R(x = 〈D, X,Y,R〉 ∧ (D , ∅)
∧(X ⊆ D) ∧ (Y ⊆ D) ∧ (R ⊆ D × D)

∧(P1) ∧ (P2) ∧ (P3)),
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where (P1), (P2) and (P3) are adequate formulations of the
three axioms above. Notice that in this formulation we are
using the language of set theory supplemented with additional
parameters which correspond to the primitive elements of the
theory, and in this case, the formula above has x as its only
free variable, hence the formula is transportable in the sense
of Bourbaki (informally, it says that the definitions does not
depend upon any specific property of the involved sets, which
enables us to consider a class of structures of the kind (4.3)
satisfying it). The structures x that satisfy the predicate P are
the models of the set-theoretical predicate, and they constitute
the class (generally, it is not a set) of the models of the theory.
Of course there are infinitely many models most of them just
abstract models, having no (in principle) any commitment to
applications.

Here is another important example: group theory. As it is
well known, a group can be seen as a structure G = 〈G, ∗, e〉
where G is a non empty set, e ∈ G and ∗ is a binary operation
on G, that is, ∗ : G × G 7→ G. Alternatively, we can consider
∗ as a ternary relation on G, that is, it is an element of P(G ×
G ×G) satisfying the additional condition of being a function.
Thus, this structure has only one basis set, G. Starting with it,
we get G×G, then G×G×G and finally P(G×G×G). So we
can chose the desired element satisfying the desired properties
(namely, ∗ obeying the standard group axioms). The Suppes
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predicate will be

G(x)↔ ∃x1∃x2∃x3(x = 〈x1, x2, x3〉 ∧ x2 ∈ x1 ∧ x3 ∈

P(x1 × x1 × x1) ∧G1 ∧G2 ∧G3),

where G1,G2,G3 stand for suitable formulation of the group
axioms. Of course this is quite artificial and we prefer to use
the standard mathematical practice in saying that a group is a
structure of the kind G = 〈G, ∗, e〉 where G is a non empty
set, e ∈ G and ∗ is a binary operation on G, so that (G1) ∗ is
associative, (G2) e is the identity element of ∗ and (G3) any
element of G has an inverse relative to ∗ in G. This is of course
an equivalent way to present the theory, and we shall follow it
in our examples below.

Thus, in a terminology to be introduced in the next chapter
(but which is informally described here) an axiomatic theory
T can be abbreviated by presenting the following items (based
on da Costa & Rodrigues 2007, p.28):

(i) The language L∈ is supplemented with additional terms,
the primitive terms of T .

(ii) A species of structures (in the sense of Bourbaki 1968,
ch.4), that is, a class of structures with relations of the same
order,1 described in the extended language. One way of
specifying the species of structures is by presenting a Sup-
pes predicate, as above.
1We say that these structures have the same signature.
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(iii) A set (finite or infinite) of sentences of a suitable lan-
guage,2 which are the axioms of T .

Of course we suppose that the structures of the mentioned
class satisfy the axioms, that is, they are models of the ax-
iomatics. Below we shall sketch some examples, but without
all the details; we just present the class of structures, leaving
the language implicit.

4.1.1 Classical particle mechanics

Thus, to present a set-theoretical predicate, or a Suppes pred-
icate, is equivalent to present the postulates of the theory, as
we do usually—really, in practice we of course do not write
something like (4.4). As a simple case in science, let us take
Classical Particle Mechanics (CPM) as formulated by McKin-
sey, Sugar and Suppes in 1953. Simply put (details in Suppes
1957, chap.12; Suppes 2002, chap.7),3 a CPM is a structure of
the form (that is, this schema specifies a species of structures)

CPM = 〈P,T, s,m, f , g〉 (4.4)

where P is a finite non-empty set (the ‘particles’), T is an in-
terval of real numbers, standing for the instants of time, s is a
function from P × T to R3 (the position of the particle p ∈ P
at time t ∈ T is written as a vector s(p, t)), m is a function

2More precisely, the language is Lωωω({D} ∪ rang(rı)), where D is the domain of the structures which are
of the form A = 〈D, rı〉—see the next chapter.

3These formulations are not the same; the second one is more precise.



4.1. SUPPES PREDICATES 43

which associate a positive real number to each particle (the
numerical value of its mass), for each p, q ∈ P, f (p, q, t) is
the force which the particle q exerts on p, and g(p, t) is the
resultant external force acting on p at t ∈ T . All these con-
cepts are subjected to certain postulates given below (here we
follow Suppes 1957, p.294).

(1) For p ∈ P and t ∈ T , s(p, t) is twice differentiable on T .

(2) For p, q ∈ P and t ∈ T , f (p, q, t) = − f (q, p, t).

(3) For p, q ∈ P and t ∈ T ,

s(p, t) × f (p, q, t) = −s(q, t) × f (q, p, t).

(4) For p ∈ P and t ∈ T ,

m(p).
d2s(p, t)

dt2 =
∑
q∈P

f (p, q, t) + g(p, t).

Other theories can (in principle) be treated in the same way.

4.1.2 Non-relativistic quantum mechanics

Now we shall describe in a rather simple way a Suppes pred-
icate for non-relativistic quantum mechanics, by adapting To-
daldo di Francia’s postulates (1981, pp.270-1). Of course we
shall suppose that the reader has some understandings of the
subject.
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Working in ZF, we say that a non-relativistic quantum me-
chanics (QMNR) is a structure

QMNR = 〈S , {Hi}, {Ai j}, {Tik}〉i∈I, j∈J,k∈K (4.5)

where S is a set of physical systems, {Hi} is a collection of
Hilbert spaces, {Ai j} is a collection of Hermitian operators on
the space Hi and {Tik} is a collection of unitary operators on Hi,
{Tik} ⊂ {Ai j}, where the following guidelines (usually called
‘axioms’) are satisfied:

(i) For each physical system s ∈ S , we associate a complex
Hilbert space Hs ∈ {Hi}. The vectors |ψ〉 of this space rep-
resent the states of the physical system. It is called the state
vector of the system, and stands for all we know about it.
The state vectors are normalized, for k.|ψ〉 (for any compex
number k) represents the same state as |ψ〉.

When we have a system composed by several elements of
S , we associate to it the tensor product of the Hilbert spaces
of the composing systems (in some order). If the cardinal of
the subset of systems is n (call them s1, . . . , sn), the Hilbert
space is

H = Hs1 ⊗ . . . ⊗Hsn.

A typical vector of this space is written |ψ1〉 ⊗ . . . ⊗ |ψn〉, or
simply |ψ1〉 . . . |ψn〉 for short. When the systems are consid-
ered to be indiscernible, we make Hi = H j for any i and
j.
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(2) Let |ψ(t)〉 represent the state at time t. Then, for each |ψ〉
we associate an unitary operator Ts such that for any instant
of time t, we have that

|ψ(t)〉 = Ts(t).|ψ(0)〉, (4.6)

where |ψ(0)〉 is the state at time t = 0. Ths represents the
unitary evolution (in time) of the vector state, and it is called
the Schrödinger equation.

(3) The eingenvalues of A, that i, those (real) scalars ai such
that A|ψi〉 = ai.|ψi〉 are the possible results of a measurement
of A. It is assumed that the Hermitian operators represent
observable physical quantities that can be measured on the
system at a certain state. Sometimes we distinguish between
the observable (such as mass, energy, momentum, number
of particles, etc.) from the corresponding Hermitian opera-
tors by writing A for the observable and Â for the operator.
We think that we don’t need this distinction here.

(4) It is know that any Hermitian A is diagonalizable, what
means that we can find a basis {|αi〉} for the considered Hilbert
space formed by engeinvectors of A. Thus, for any state
|ψ〉, we can write |ψ〉 =

∑
i ci|αi〉, where ci = 〈αi|ψ〉 are the

Fourier coeficients. Thus, |ci|
2 = Pi represents the prob-

ability that the measurement of A gets the value ai. This
postulate is known as Born rule.

(5) If a measurement of A gives the result ai, the state vector
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|ψ〉 becomes |αi〉 immediately after the measurement. This
is known as the collapse of the vector state.

If we consider the observable ‘position of the (considered)
system along the x axis’ and A the corresponding operator,
then its engeinvalues (call them xi) are the possible positions
of the system. Let us write |x〉 for the corresponding eingen-
vector of the eingenvalue x. Thus, from (4), the probability of
finding the system in the state |ψ〉 at the position x is |〈x|ψ〉2. In
doing that, Dirac wrote ψ(x) = 〈x|ψ〉, and called ψ(x) the wave
function of the system. For any time t, if H is the Hamilto-
nian of the system (energy operator), the wave function ψ(x, t)
obeys the Schrödinger time dependent equation in the form

i~
∂ψ(x, t)
∂t

= Hψ(x, t). (4.7)

The two ways to write the Schrödinger equation are equiv-
alent. We shall not pursue more details here, for we are just
exemplifying the way a set-theoretical predicate can be done.
But it should be remarked that the above formalisms stands for
just one physical system. Composite physical systems (say, a
two electrons system) are dealt with by associating to each part
(each electron) one Hibert space as above and to the composite
system the tensor product of the Hilbert spaces. If the systems
are considered indiscernible, we use the same Hilbert space
for all of them. We shall speak more on quantum physics in
chapter 8.4

4In order to see this schema applied to biology, look to the synthetic theory of evolution as formulated
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in (Magalhães & Krause 2001).



48 CHAPTER 4. THE NATURE OF THE MODELS



Chapter 5

The mathematical basis

W
e shall outline the mathematical framework
where the mathematical counterpart of sci-
entific theories can be discussed, namely,
the Zermelo-Fraenkel set theory, ZF. We have

chosen to treat it as a first-order theory, and its language, pre-
sented below (section 5.2), will be termed L∈.1 But before
describing ZF, we need to discuss a little bit about the con-
struction of axiomatic/formal systems.

5.1 The Principle of Constructivity

In his book Ensaio sobre os Fundamentos da Lógica (‘Essay
on the Foundations of Logic’),2 da Costa calls ‘the Principle

1In fact, we could use a different language, say by using other primitive symbols and postulates (although
apparently equivalent), and it would be a debatable question to say that these formulations would be different
theories. But there is also the possibility of constructing a theory grounded on second-order logic, as
Zermelo preferred—see Moore 1982, pp. 267ff—(or still higher-order) logic, and in this case in fact we
should have different theories, for their properties would be distinct, as we shall see soon.

2There is a French version of this book, translated by Jean-Yves Béziau, called Logique Classique et
Non-Classique, Paris, Flammarion, 1996.

49
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of Constructivity’ the following methodological rule:

“The whole exercise of reason presupposes that it has
a certain intuitive ability of constructive idealization,
whose regularities are systematized by intuitionistic
arithmetics, with the inclusion of its underlying logic.”
(da Costa 1980, p.57)

What does he mean? The explanations began earlier in his
book, and we base our argumentation on his ideas, with the
risk of leaving out much of his rich and clear account. In this
section, when we make reference to a certain page only (say,
by writing ‘page 51’), it refers to the mentioned book by da
Costa. To speak a little bit of such matters is of course quite
important, for we intend to present a formal system (ZF) using
expressions such as ‘infinite set of individual variables’, for
instance, which presupposes a previous notion of ‘infinite’,
hence, it apparently presupposes a mathematics it intends to
base.

But let us ‘listen’ to da Costa:

“Formal disciplines are essentially discursive. But
the discourse develops itself in different levels, and
each one of them must be understood, or intuited, as
already noticed by Descartes. Even if one reasons
symbolically and formally, the different elementary
steps of the evolution of the discourse need to be clear
and evident, for in the contrary there would be no
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reasoning, and one would not know what she is do-
ing.” (p.50).

In trying to systematize the ‘experimental reality’ (the ER
of page 79), we make use of our capacity of reasoning. We
use intuition and other devices, such as learned theories, per-
sonal experiences, memory, imagination, expertise, insights.
In a certain sense, all of this depends on the present day state
of the evolution of science, so as of our own biological and
cultural characteristics, as we have seen before. But intu-
ition is not enough. We need to systematize our intuitions,
and in mathematics, the axiomatic method became the (ap-
parently) best methodological tool, being extended to science,
as we have seen already. Well developed sciences, or disci-
plines, yet not completely either axiomatized or formalized,
can be treated, from a mathematical perspective the same way
as the formal sciences, being also essentially discursive. In
other ways, scientific knowledge, being essentially conceptual
knowledge, needs discourse, and our ‘discourse’ needs lan-
guage and symbolism (p.35).

As is well known, in intuitionistic mathematics we have an
intuitive ‘visualization’ of the entities that interest us (p.50).
This is essentially an intellectual intuition, an expression that
intends to capture the idea that “there cannot be immediate
and evident knowledge without contemplation, without a look
to the objects that interest us or, at least, of the conceptual re-
lations which define them; in an analogous way, there is no in-
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tellectual contemplation which does not enable us to formulate
direct judgments, linked to different levels of evidence” (p.51).
The reference to intuitionistic mathematics is grounded on the
fact that, according to da Costa, it provides an intuitive ‘vi-
sualization’ of the entities that interest us (p.52), contrarily to
standard mathematics, where there may be not is such an in-
tuition (p.54). He exemplifies with examples of the following
kind: we have no a clear ‘vision’ neither of transfinite cardi-
nals, nor of the totality of the real numbers, but only an in-
tuition of the system of relations that implicitly define these
concepts by means of axiomatic systems (p.54). This ‘intu-
itive visualization’ provides us with an intuitive pragmatic nu-
cleus and based on this nucleus we articulate a kind of algebra
(da Costa doesn’t use this word in this context) that enables us
to compose them, operate with them and so on, going to more
sophisticated and sometimes not intuitively evident conceptu-
alizations. This way, we go out of the intuitive nucleus, and in
flying so high, our ‘autopilot’ is the axiomatic method.

In this sense, we begin by describing a formal system us-
ing this intuitive nucleus, of finitist and constructive nature; as
da Costa says, exemplifying, “it is today universally accepted
that there cannot be formalized arithmetics without intuitive
arithmetics” (p.57). It is this informal and intuitive manipu-
lation with symbols and concepts that, at first glance, enable
us to make reference to the tools we need to characterize our
axiomatic/formalized theories. Thus, it is in this sense that
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we formulate the language of ZF described below; in saying,
for instance, that we have a denumerable infinite collection
of individual variables, we could say that our language en-
compasses two symbols, x and ′, and the variables would be
expressions of the form x, x′, x′′, . . ., and the same for the in-
dividual constants. This way, we avoid speaking of idealized
concepts (in Hilbert’s sense, such as ‘denumerable many’) and
keep ourselves in a constructive fashion. Enough for this kind
of discussion. Let us turn now to the ZF set theory.

5.2 The ZF set theory

The language L∈ of ZF has the following categories of primi-
tive symbols:

(i) The propositional connectives: ¬ and→

(ii) The universal quantifier: ∀

(iii) Two binary predicates: = and ∈

(iv) Auxiliary symbols: left and right parentheses: ( and )

(v) A denumerable infinite set of individual variables: x1, x2, . . .

(vi) A denumerable infinite set of individual constants (or
‘parameters’): a1, a2, . . . (most formulations don’t use indi-
vidual constants, so the terms are just the individual vari-
ables).
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This vocabulary forms the primitive alphabet of ZF. Other
symbols can be introduced by abbreviative definitions, such
as the other sententical connectives ∧, ∨ and ↔, the existen-
tial quantifier ∃ and ‘specific’ symbols of set theory, such as
⊆ (subset), P (for the power set) and all other mathematical
machinery. But all of this presupposes that we know the syn-
tax of L∈, and later we shall speak of its semantics. In the
intended intuitive interpretation (as we shall see below), the
individual variables range over a collection of objects we call
sets. The individual constants name particular sets we use for
a purposes, say by terming ‘R’ the set of the real numbers.
Both individual variables and individual constants are called
terms of the language.

The syntax of L∈ can be described without difficulty, as
done in standard books of logic and set theory (see Franco
de Oliveira op.cit., pp.196ss). We shall use x, y, z, . . . for terms
of L∈ in general, either individual variables and constants, but
in the formulas ∀xα(x) and ∃xα(x), x is always a variable.

Let α(x) be a formula of L∈ in which x is the only free vari-
able. We shall call this formula a condition In the intuitive
theory of sets (which admits as ‘sets’ whatever collection of
objects you wish), we have the following principle, called the
Axiom of Comprehension for Classes, namely, given a condi-
tion α(x), there exists a collection (called a class) which con-
sists exactly of those elements that satisfy the condition. We
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denote this class by
{x : α(x)}. (5.1)

Not all classes are sets of ZF (ZFC, ZFU). For instance,
Russell’s class {x : x < x} is not a set of none of these theories
(supposed consistent). The same happens with some ‘large’
classes, such as the class of all groups, of all vector spaces,
of all models of a scientific theory, of a set theory such as
ZF (ZFC, ZFU). These collections are very large to be sets
of these theories (but they can ‘exist’ for instance in some
stronger set theories). So, what is a set? It depends on the
axioms we use. Below we shall see the postulates that deter-
mine what are the sets of ZFC.

5.2.1 The postulates of ZF

Let F(x) be a formula of L∈ where x is free. The collection of
the objects satisfying F(x) is written {x : F(x)} and is called
a class. The question is: what classes are sets? The answer
depends on the axioms we use. In ZF (ZFC, ZFU) we shall
have some that will deserve to be named sets, while others do
no. Thus, the postulates below determine what are the sets
of ZFC.3 There are different set theories (really, potentially
infinitely many). One of the most well-known is the system
NBG, the von Neumann, Bernays and Gödel set theory. In

3For instance, the so-called ‘Russell’s class’, namely, R{x : x < x} is not a set of ZFC, but it ‘exists’ in
some paraconsistent set theories—see da Costa et al. 2007.
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this theory, the basic objects are classes. But some of them are
sets, namely, those classes that belong to other classes. Those
classes that do not belong to other classes were termed proper
classes by Gödel. The sets of NBG and the sets of ZF are
essentially the same objects (NBG is a conservative extension
of ZF).

The logic postulates of ZF are those of the first order logic
with identity, that is, being α, β, and γ formulas:

(1) α→ (β→ α)

(2) (α→ (β→ γ)→ ((α→ β)→ (α→ γ))

(3) (¬α→ ¬β)→ ((¬α→ β)→ α))

(4) α, α→ β/β (Modus Ponens)

(5) ∀xα(x)→ α(t), where t is a term free for x in α(x)

(6) ∀x(α → β(x))/(α → ∀xβ(x)), if x does not appear free
in α

(7) ∀x(x = x)

(8) u = v→ (α(u)→ α(v)), where u and v are distinct terms
of L∈.

The specific postulates are the following ones:

(ZF1) [Extensionality] ∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)

(ZF2) [Pair] ∀x∀y∃z(∀w(w ∈ z↔ w = x ∨ w = y))
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(ZF3) [Separation Axioms] If α(x) is a formula of L∈ with
only x as a free variable, then for each α, the following is an
axiom: ∀w∃x∀y(y ∈ x↔ y ∈ w ∧ α(y))

Taking α(x) as x , x, and applying the separation schema
on a set w whatever, we get a set with no elements, which
using the axiom ZF1 we can show is unique. This set is called
‘empty set’ and denoted by ∅ (we can suppose that this symbol
is one of the individual constants, and the same happens for
other introduced symbols naming sets). The set x of postulate
ZF3 is written (in the metalanguage) as x = {y ∈ w : α(y)}.
This poses a fundamental difference between this set and a
class as given at equation (5.1). Here, the elements that belong
to x are taken from an already given set w, while in (5.1) they
are not coming from a previous set. Thus, axiom (ZF3) is
called the postulate of the limitation of size (of sets), and it is
due to Zermelo.

(ZF4) [Union] ∀x(∀y(y ∈ x → y , ∅) → ∃w(∀z(z ∈ w ↔
z ∈ y ∧ y ∈ x))). The set w is written

⋃
x, and sometimes

u ∪ v if x has just to elements, u and v.

(ZF5) [Power set] ∀x∃y∀z(z ∈ y ↔ z ⊆ x), where u ⊆ v :=
∀w(w ∈ u→ w ∈ v). The set y is written P(x), the power set
of x.

(ZF6) [Substitution Axioms] Let F(x, y) be a formula in
which x and y are distinct and free variables. Let u and v
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be distinct variables from both x and y. Then, the following
expression is an axiom:

∀x∃!yF(x, y)→ ∀u∃v∀y(y ∈ v↔ ∃x(x ∈ u ∧ F(x, y)).

In saying that ∀x∃!yF(x, y) holds, we are assuming that F is
y-functional.

(ZF7) [Infinity]

∃x(∅ ∈ x ∧ ∀y(y ∈ x→ y ∪ {y} ∈ x).

(ZF8) [Choice]

∀x(∀y(y ∈ x→ y , ∅) ∧ ∀t∀z(t ∈ x ∧ z ∈ x ∧ t , z
→ t ∩ z = ∅)→ ∃t(t ⊆ x ∧ ∀u(u ∈ x→ ∃v(t ∩ u = {v}))).

We could formulate these axioms without recurring to de-
fined symbols such as ⊆, ∪ and others. But we have used them
here to keep the text more readable. The axiom of choice is
considered as the second most famous axiom of all mathemat-
ics, being overcome only by Euclid’s parallel postulate. There
are excellent books on its history and importance (see for in-
stance Fraenkel et al. 1973, ch.2, §4).

5.2.2 Informal semantics of L∈

From the formal point of view, the symbols of L∈ have no
meaning. But, intentionally, we usually accept that they make



5.2. THE ZF SET THEORY 59

reference to the objects of a certain intuitive non empty do-
main of objects we think as representing sets, but in principle
they could be of any ‘nature’ we wish. If D is such a domain
of sets, we interpret the predicates = and ∈ as being respec-
tively the identity of D and in a ‘membership relation’ of D.
Furthermore, the expressions ∀xα(x) and ∃xα(x), where α(x)
is a formula of L∈ in which x is the only free variable, mean
‘for all elements of D’ and ‘there exists an element of D’ such
that α(x) holds respectively. In this sense, an interpretation for
L∈ is an ordered pair (intuitively speaking) A = 〈D, ξ〉, where
D is a non empty set and ξ is a binary relation (in the intuitive
sense) on D. The elements of D are called sets and ξ interprets
the symbol ∈ of L∈.4 To each individual constant ai of L∈, we
assume that the interpretation associates (by means of an in-
tuitive function) a particular individual of D; the individual
constants act as names of particular sets.

One of the outstanding problems is to find an interpretation
that makes the postulates of ZF ‘true’ (in the intuitive sense).
To begin with, let us reproduce here some examples of possi-
ble interpretations for L∈.5 The first interpretation takes D as
the set Z of the integers, and ξ as the relation < on the integers.
Thus, the integers are now our sets, and x ∈ y means x < y.
Of course this is an interpretation as we have described infor-
mally; to the predicate = of identity we associate the set of all

4All of this is quite well described in Franco de Oliveira op.cit., pp. 209ff.
5Based on Franco de Oliveira op.cit., p.210.
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couples 〈x, x〉 with x ∈ Z, and the connectives and quantifiers
are interpreted as usual (∃x means ‘there exists an integer x so
that . . .’ and so on).

But we could take another interpretation, just taking D = N

(the set of the intuitive natural numbers) and ξ being the order
relation < on such a domain. This is also an interpretation.
Now let us consider the sentence (a formula without free vari-
ables)

∀x0∃x1(x1 ∈ x0). (5.2)

The reader should recognize that (5.2) stands for a formula
of L∈. In the metalanguage, we could write ∀x∃y(y ∈ x)).
According to the first interpretation, it means that for any in-
teger there exists an integer which is least than it, and it is
true (in the intuitive sense). But, according to the second in-
terpretation, it means that for any natural number there exists
an integer which is least than it, and it is false. Thus, a certain
sentence may be true according to one interpretation, but false
according to another one. Franco de Oliveira still gives us an-
other example, concerning the axiom of the unordered pair.
Or course we could provide other examples than his ones, but
his book is so well written and clear that it would be really a
mistake do not acknowledge it.

Take the sentence of L∈ that expresses the axiom of exten-
sionality, namely (written in the metalanguage)

∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y). (5.3)
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This sentence is intuitively true in both interpretations above,
as it is easy to see (for any two integers or natural numbers a
and b, if a < b iff b < a, then of course a = b. But now
take the sentence that expresses that there exists an empty set,
namely,

∃x∀y(y < x), (5.4)

which is false in the first interpretation but true in the second
one.6 This would not be surprising, for the two given inter-
pretations, although trully ‘interpretations’ of L∈, are not ad-
equate for expressing our supposed intuitive universe of sets.
How can we thought of interpretations which are models of
ZF, then? We shall discuss this important topic next.

5.3 ‘Models’ of ZF

A model of a formal theory, as we now already, is an inter-
pretation that makes its postulates true (in the Taskian sense).
Can we think of models of ZF in this sense? As we shall see,
we can, but the corresponding structures will be classes which
are not ZF-sets (if we suppose ZF consistent).

The consistency of ZF can be proven only relative to an-
other stronger theory, whose consistency is then put also into
question, and to answer whether this stronger theory is by its
turn consistent, we will need an still stronger theory, and so on.

6Here y < x abbreviates ¬(y ∈ x). The empty set can be obtained from the above axioms as follows.
Given a set z whatever, consider the formula F(x) ↔ x , x and apply the separation axioms. Then we get
a set with no elements, which is unique by extensionality; we usually write ∅ to represent such a set.
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Important to recall that there are two notions of consistency,
one syntactical and another ‘semantic’; the syntactic defini-
tion says that a theory T , whose language contains a negation
symbol ¬, is consistent iff there is no formula α such that both
α and ¬α are theorems of T . The semantic definition says
that a theory is consistent iff it has a model (an interpretation
that satisfies the axioms of T ). Semantic consistency implied
syntactic consistency, but not the other way around.

The reason we cannot prove the consistency of ZF within
itself is grounded on the way we have formulated this theory.
Built from a recursive denumerable language, and being suffi-
ciently strong to cope with elementary arithmetics, it is subject
to Gödel’s first incompleteness theorem (see Smullyan 1991),
which, roughly speaking, says that no theory whose set of
axioms is recursively enumerable encompassing elementary
arithmetics (really a certain ‘part’ of it) can be at the same time
consistent and complete (complete in the syntactical sense of
proving either α or ¬α for any formula α of its language).7

Being consistent, ZF has ‘models’. In the 1940s, Gödel
studied the so-called ‘universe of constructible sets’, L (con-
structed in a stronger theory) which constitutes an inner model,
a transitive class of sets containing all the ordinals, and which
results to be a ‘model’ of the ZF axioms plus the axiom of
choice (ZFC) and for the generalized continuum hypothesis

7By recursively enumerable, we intuitively means that there is a an algorithm (a computer program)
that, in principle, can enumerate all the axioms of the theory, but not the sentences that are not axioms.
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(that is, 2ℵα = ℵα+1 for any ordinal α).8 The technique of
constructing inner models became one of the important tools
in mathematical logic, but we are not concerned with them
here, although we shall see later what does it mean to say that
the axioms of ZF are true in an inner model M; it suffices to
emphasize that ZF has ‘models’ (if consistent), and that these
models are not ZF-sets.

Thus, we may ask for a description of an universe of sets
in which we can show that the axioms of ZFC are ‘true’ (in
the intuitive sense). One of these possible universes is the cu-
mulative hierarchy of sets, which informally speaking means
that a set is ‘constructed’ only after we have ‘constructed’ its
elements. Sets are elaborated in stages, starting from a basic
collection of ur-elements, entities that are not sets but which
can me members of sets, and performing the set-theoretical
operations.
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Figure 5.1: The well-founded ‘model’ of ZFC without
ur-elements.

For instance, given
the objects (sets of ur-
elements) a and b, we
can form the sets {a},
{a, b}, then {{a}, {a, b}}
(which we identify with
the ordered pair 〈a, b〉,
and so on. Zermelo’s

8A set A is transitive if x ∈ A → x ⊆ A for any x. Yet satisfying this property, L is not a set of ZF, but a
proper class.
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original universe of sets
was of this kind, al-
though his axiomatiza-
tion didn’t capture it in
full.9 Later, Fraenkel has shown that the ur-elements are not
necessary for the foundations of mathematics, and his ideas
(so as Skolem’s) have conduced to a ‘pure’ set theory, whose
stages begin from the empty set. Figures 5.1 and 5.2 exem-
plify the universes of set theory without and with ur-elements
respectively.
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pure sets
(no ur-elements)

(sets with
ur-elements)

On

A

Figure 5.2: The universe of sets with ur-elements. On
is the class of ordinals, and A is the set of atoms (ur-
elements).

This intuitive ‘uni-
verse of sets’ can be
described using the or-
dinals for indexing the
stages, getting V0, V1,
and so on. Thus,
we are conduced to
the so-called von Neu-
mann universe, termed
V . We sketch both
descriptions, with and
without ur-elements next. Important to notice that these de-
scriptions afe done in the meta-language, as we shall justify
below. Just to mention, the sequence of ordinals can be writ-

9We shall not discuss this point here, but this is due to the fact that is axioms are compatible with the
existence of extraordinary sets, such as sets that belong to themselves. See Krause 2002. There are good
discussions on the construction of sets in stages, as in Shoenfield 1977 and Franco de Oliveira 1982.
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ten as follows:

0, 1, 2, . . . , ω, ω + 1, . . . , ω2, ω2 + 1, . . . , ω2, . . . (5.5)

In this sequence, there are ordinals β such that there exist
an ordinal α and β = α + 1. These are called sucessor or-
dinals. For instance, all natural numbers (the finite ordinals)
are sucessors, so as are ω + n, ω2 + n for any natural number
n. But ω, ω2, etc. are not sucessors, for they do not have an
‘immediate predecessor’. They are called limit ordinals.

Thus, the von Neumann cumulative hierarchy is defined as
follows (corresponding to Figure 5.1):

V0 = ∅

V1 = P(V0)
...

Vn+1 = P(Vn)

Vλ =
⋃
β<λP(Vβ), for λ a limit ordinal,

...

V =
⋃
α∈On Vα, where On is the class of ordinals

(which is not a set of ZF).

The word ‘cumulative’ means that every stage Vα contains
all objects of the lower levels Vβ, for β < α. We have also
seen some of the consequences of this assumptions, and now
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we shall see some other results. If we assume the existence of
a set A of ur-elements to begin with, we pose (see figure 5.2)

V0 = A

V1 = V0 ∪ P(V0)
...

Vn+1 = Vn ∪ P(Vn)
...

Vλ =
⋃
β<λP(Vβ), for λ a limit ordinal,

Vλ+1 = Vλ ∪ P(Vλ)
...

V =
⋃
α∈On Vα, where On is the class of ordinals

(which is not a set of ZF).

The remarks that follow will make reference to both uni-
verses. First of all, it should be noticed that any Vα is a transi-
tive class. Now let us consider the following question: given a
certain ordinal α, which axioms of ZFC are satisfied in 〈Vα, ∈〉,
where ∈ the membership relation relativized to Vα (that is,
x ∈ y means x ∈ y and x, y ∈ Vα)? Interesting is that we
can prove the following results:10

10Let M be a class (it may be a set) and F a formula of L∈. The formula FM is called the relativization
of F to M if it is obtained by substituting ∃x ∈ M for ∃x, and ∀x ∈ M for ∀x. Thus, it says exactly what
F says but concerning elements of M only. The results mentioned below are proven in Franco de Oliveira
1981, pp.298ff, Enderton 1977, pp.249ff; Fraenkel et al. 1973, p.289.
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(i) Any Vα is a model of the following axioms: Extensional-
ity, Separation, Union, Power Set, Choice, Regularity.

(ii) For the Pair axiom, we need a limit ordinal. This can
intuitively be understood for the set of two objects is of a
higher level that the levels of the objects.

(iii) For the infinity axiom, we need that α be a limite ordinal
greater that ω, for instance, ω2.

(iv) For the Replacement Axioms, we need more, for in-
stance, an inaccessible cardinal.

Usually we call Z the Zermelo set theory, which is ZF with-
out the substitution axioms. All the levels Vα can be con-
structed in Z as well. But, by the above results, we see that
Vω2 is a ‘model’ of Z, since ω2 is a limit ordinal. Then, if con-
sistent, Z cannot admit Vω2 as one of its sets, for in this case
we would be against Gödel’s second incompleteness theorem.
Reasoning in the same vein, we cannot prove the existence
of inaccessible cardinals within ZFC. Thus, we can’t prove
the existence of V , the whole universe of sets, within ZFC.
Of course we could think that the universe can be constructed
within a stronger theory. This is true, but we would just trans-
fer the problem to this another theory, for we also don’t know
what its notion of set means. This problem brings interesting
philosophical questions, due to the fact that, if consistent, a set
theory such as ZFC (formulated as a first-order theory) is not
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categorical.11

We have made such a digression on set theory and on its
‘models’ just to show to the reader that there are differences
in speaking of certain structures as models of certain theo-
ries and ‘models’ of the set theories themselves. The models
of both mathematical and scientific theories, such as groups,
vectors spaces, Euclideian geometry, metric spaces, differen-
tible manifolds, classical mechanics, relativity theory, etc. can
be constructed within Z, ZF, ZFC or ZFU or in another the-
ory. But the ‘models’ of these theories themselves cannot
be constructed within themselves (supposing them consistent).
Below we shall discuss a little bit a particular case involving
quantum mechanics.

5.4 The different ‘models’ of ZF

We have remarked above that ZF (Z, ZFC, ZFU), formulated
as as first-order theory, is not categorical. Let us comment a
little bit on this claim in order to see its consequences, even
to physical theories. We shall mention just a case, among sev-
eral possible others which could be obtained by using tech-
niques such as Cohen’s forcing, but which are out of the level
of this text. The importance of the ‘models’ of set theory for
the philosophy of science may be explained as follows. A for-
malized theory (even of in the empirical sciences) say by a

11A theory is categorical if its models are isomorphic.
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Suppes predicate is generally elaborated to cope with a certain
informal given theory, as we have seen before. But in order to
achieve this aim, we need to provide an interpretation to our
formalism, generally by associating to it an structure built in
set theory or, what it is the same, in a ‘model’ of the set theory
we use as our metatheory. But a set theory such as ZF (ZFC,
ZFU) has different models. If axiomatized as a first-order the-
ory, it has even a denumerable ‘model’ due to the Löwenheim-
Skolem theorem, and since in general we never know in what
model we are working, we really will have difficulties to state
that the interpretation we provide fits the intended concepts.
We remark once more that despite we can think in sets and
related concepts as done by the ‘standard model’ of ZF, we
cannot be sure that this is really so, for we have no grounds
for proving that such a ‘model’ exists. Let us consider a par-
ticular example concerning denumerable ‘models’ only.

Real numbers can be used in physics for representing time,
probability measure, eingenvalues of self-adjunct operators, to
parametrize certain functions, and so on. The physicist has an
intuitive idea of what real numbers are, so as what are sets.
If pressed, a physicist may mention even some definition of
real numbers from the rationals, say by convergent sequences
(Cauchy sequences) or by Dedekind cuts (see Enderton 1977,
pp.111ff; Franco de Oliveira 1981, pp. 87ff). These construc-
tions are done within ZF, say. But suppose ZF is consistent.
Then it has ‘models’. The first we can imagine may be called
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the standard model, which is more or less identified with an
‘universe of sets’ such as the V seen before. But, as we have
seen, we cannot prove in ZF that such a ‘model’ exists, so we
don’t have any evidence that our intuitive account to sets, that
is, our intuitive idea of a set, is captured by the elements of
such an universe. But there is more. As a first-order theory,
ZF is subjected to the Löwenheim-Skolem theorem, which im-
plies two things: firstly, since any model of ZF must satisfy
the axiom of infinite, ZF will have an infinite ‘model’ (recall
that ‘model’ is being written in quotation marks to emphasize
that is is not a set of ZF, but a proper class). Then, by the
upward Löwenheim-Skolem theorem, ZF has models of any
infinite cardinality, being non isomorphic. But let us fix in
the another result entailed by this theorem: by the downward
Löwenheim-Skolem theorem, having models, ZF has a denu-
merable model.12 What for science?

Let us suppose that our theory T demands the real number
system, as most physical theories do. Then, it seems ‘natural’
to suppose that the set R of the real numbers is not denumer-
able, as Cantor shown in the XIX century with his famous
diagonal argument. But, in such a denumerable ‘model’, the
set that (in the ‘model’) corresponds to the set of real num-
bers must be denumerable. This is of course puzzling, but
there is not a contradiction here. As remarked by Skolem, this

12Roughly speaking, the downward version of the theorem says that if a consistent theory T in a countable
language has a model, then it has a denumerable model. The upward theorem says that such a theory, having
infinite models, has models of any infinite cardinality.
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result, known as the ‘Skolem paradox’ is not a formal ‘para-
dox’, but just something against our intuition, showing that
what there is no within ZF (that is, a ZF-set) is a bijection be-
tween R and ω, but this does not entail that such a bijection
does not exists outside ZF, that is, as something which is not
a ZF-set. Thus, if a physical theory demands a mathematical
concept which, if standardly defined, presupposes the set of
real numbers, how can we grant that it is non-denumerable?
In other words, how can we ensure that, working within ZF
we are making reference to some ‘model’ that fits our intu-
itive claims? Unfortunately, this is not possible, and the most
we can do is to fix a particular ‘model’ of ZF when we need
to give an interpretation of concepts, but we will be always
subject to questionings. Really, as remarked, we can’t show
that even the so-called ‘standard’ (intended) model of ZF does
exist!

In what concerns scientific theories, as remarked by da Costa,
“we should never forget that set theories, supposed consis-
tent, have non-standard ‘models’, thus any theory founded on
them will have non-standard models too." (personal communi-
cation). This entails that if we try to provide an understanding
for the concepts we use (that is, by given them an interpreta-
tion), we need to consider ‘models’ of ZF and this poses us an
impasse: we never know in which model we are working, so
we really never know what our concepts really mean. All we
can do is to suppose we are working in the standard ‘model’,
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where (apparently) sets are as we imagine, that the real num-
bers cannot be enumerated, that there are basis for our vector
spaces, and so on. The look for non-standard models for phys-
ical theories is still a novel domain of research, and of course
it will be a rich one.



Chapter 6

Structures, and languages

W
e recall that we have chosen to work in first-
order ZFC and will be following (da Costa
& Rodrigues 2007) for the mathematical def-
initions. Within ZFC we can, at least in

principle, construct particular structures for mathematics and
for empirical sciences —sometimes we may be in need to
strength ZFC, say with universes (which enables us to deal
also with category theory, although we shall be restricted here
to set-theoretical structures). As we shall see, the language of
ZFC, termed L∈, yet taken here to be a first-order language, is
so powerful that using it we construct even languages which
are not first-order and structures which are not order–1 struc-
tures (these definitions shall be introduced in what follows).
To go to some details, we need to introduce a few basic defi-
nitions we present in the next sections.

The general idea can be seen with an analogy with group
theory. Starting with a non-empry set G, by using the set-

73
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theoretical operations we obtain P(G × G × G), and then we
may chose an element of this set (which is a set whose ele-
ments are collections of 3-uples of elements of G) satisfying
the required properties (the group axioms of course).1 The cor-
responding structures (namely, the groups) are order–1 struc-
tures.
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A = 〈D, rı〉
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Figure 6.1: The well-founded ‘model’ V = 〈V, ∈〉 of
ZF, a structure built within ZF, and the scale based on
the domain D. For details, see the text.

Summing up, what
we are going to see
is that a mathemati-
cal structure, such as
those used in mathe-
matics and in the em-
pirical sciences, can be
constructed within a set
theory such as ZFC
(with or without ur-
elements). The fig-
ure below provides a
schema of this situa-

tion, using ‘pure’ set theory (without ur-elements) with an ax-
iom of foundation, as in standard first-order ZFC. It should be
remarked that while the structure A (to be defined below) is a
set, the whole universe V is not, as we have seen in the last
chapter.

1The binary group operation ∗ is a certain function from G ×G in G or, what is the same, it is a certain
ternary relation on G, that is, a collection of triples 〈a, b, c〉 of elements of G, with c = a ∗ b.
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This is a first point usually ignored in the philosophical dis-
cussions: there are fundamental differences in saying that a
certain structure (a set) A is a model of some collection of
sentences (written in the language of the structure, as we shall
see soon) and that a certain classM = 〈M, E〉 is a model of ZF
(or either of ZFC or ZFU), in the sense we have discussed in
the last chapter. These diverse uses of the word ‘model’, as we
have already referred to above, need to be understood by the
philosopher of science. This is the main reason we propose
the discussion we shall start now.

6.1 Basic definitions

From now on, except when we explicitly mention another sit-
uation, we shall be working in first-order ZFC set theory. The
definitions follow da Costa & Rodrigues 2007.

Definition 6.1.1 (Types) The set T of types is the least set sat-
isfying the following conditions:

(a) i ∈ T (i is the type of the individuals)

(b) if t1, . . . , tn ∈ T, then 〈t1, . . . , tn〉 ∈ T

Thus, i, 〈i〉, 〈i, i〉, 〈〈i〉, i〉, 〈〈i〉〉 are types. Intuitively speak-
ing, in this list we have types for individuals, for sets (or prop-
erties) of individuals, for binary relations on individuals, bi-
nary relations whose relata are properties of individuals and
individuals, and properties of properties of individuals.
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Definition 6.1.2 (Order of a type) The order of a type, Ord(t),
is defined as follows:

(a) Ord(i) = 0

(b) Ord(〈t1, . . . , tn〉) = max{Ord(t1), . . . ,Ord(tn)} + 1.

Thus, Ord(〈i〉) = Ord(〈i, i〉) = 1, while Ord(〈i, 〈i〉〉) = 2.
Relations will be understood here as both extensional sets

(collections of n-tuples) and being of finite rank (that is, hav-
ing finite elements only). Unary relations are sets.

Definition 6.1.3 (Order of a relation) The order of a relation
is the order of its type.

Thus, binary relations of individuals are order–1 relations,
and so on. We shall introduce a function tD as follows:

Definition 6.1.4 (Scale based on D) Let D be a set. Then,

(a) tD(i) = D

(b) If t1, . . . , tn ∈ T, then tD(〈t1, . . . , tn〉) = P(tD(t1) × . . . ×
tD(tn)).

(c) The scale based on D is the union of the range of tD, and
it is denoted by ε(D).

Let t = 〈t1, . . . , tn〉 ∈ T, t , 0. The elements of tD(t) are
relations of degree or rank n. For instance, a binary relation
on D is an element of tD(〈i, i〉) = P(tD(i) × tD(i)) = P(D × D).
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According to definition 6.1.3, the type of a binary relation on
D is 〈i, i〉, as intuitively expected. If n = 1, we speak of unary
relations (or ‘properties’) or sets of individuals of D, and we
speak of distinguished individuals of D as order–0 relations.
Since a binary operation on D (as the group operation) can
be seen as a ternary relation on D, we can deal with it as
follows. Having the scale ε(D), we just take an alement of
tD(〈〈i, i, i〉〉) = P(D×D×D) satisfying well known conditions
(the group postulates, written in this ‘relational’ notation). In
this sense, it can be shown that we can map Bourbaki’s eche-
lon construction schema (Bourbaki 1968, chap.4) within this
schema.

Definition 6.1.5 (Structure) A structure E based on a set D
is an ordered pair

E = 〈D, rι〉 (6.1)

where D , ∅ and rι represents a sequence of relations of de-
gree n belonging to ε(D). These relations are called the prim-
itive elements of the structure.

For instance, a structure such as

K = 〈K,+, ·, 0, 1〉

can be used for representing fields (let us recall once more that
although in the definition of structure we have mentioned rela-
tions only, we shall use operation and distinguished elements
as well, according to the standard mathematics practice for,
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as we have seen, n-ary operations are n + 1 relations and dis-
tinguished elements are 0-ary relations—later we shall turn to
consider algebras). For vector spaces over a field K, we usu-
ally write V = 〈V,K,+, ·〉, where V is the set of vectors. In
this case, in order to conform it to the above definition, we can
write

V = 〈D,V, S ,+V , ·S V〉,

where D = V ∪ K (being K the domain of the structure of
field K = 〈K,+, ·〉), where V and S are new unary relations
for ‘being a vector’ and ‘being a scalar’ respectively, and the
new operations +V and ·S V are adequate binary operations rep-
resenting the vectors addition and the product of vectors by
scalars respectively. In the same vein (although with more dif-
ficulties) we can consider structures for Euclidean geometry,
differential manifolds, particle mechanics and so on.

We may also have structures of infinite order. If we call κD

the cardinal associated to E, defined as

κD = sup{|D|, |P(D)|, |P2(D)|, . . .},

being |X| the cardinal of the set X, then, if κD is an infinite
cardinal, we can construct in ε(D) all ordinals less than κD.
Since in such a construction we are taking all ordinals less
than a certain ordinal, the ordinals here should be understood
in Frege’s sense, and not a la von Neumann.

Definition 6.1.6 (Order of a structure) Let E = 〈D, rι〉 be a
structure. Its order, Ord(E), is defined as follows: if there is
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a greatest order of the relations in rι, then the order of the
structure is that greater order, and it is ω otherwise.
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Figure 6.2: A scale based on D and two structures; E′

if of a higher order than E. On is the corresponding
segment of the class of ordinals, and ordinals α and β
are such that α < β, so the order of E′ is greater than
the order of E (see the text below).

If the primitive re-
lations of the structure
are just relations hav-
ing individuals of D as
relata, we say that the
structure is of order–
1. The above struc-
tures for fields and vec-
tor spaces are order–1
structures, for their re-
lations have as relata
just elements of the do-
mains. The same hap-
pens for groups and

other standard algebraic and order structures (partial order, lin-
ear order, etc.). But we could suppose that there are structures
whose relations relate not only individuals of D, but subsets of
elements of D (equivalently in extensional contexts, properties
of individuals). In this case we speak of order–2 structures. In
this way, we can define order–n structures for any n ∈ ω with-
out difficulty.

Thus, order–1 structures (as those dealt with by model the-
ory) consider only order–1 relations, that is, those which have
as relata the elements of the domain only, but not its subsets
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or other higher relations. More sophisticated structures nec-
essary for treating empirical sciences (and mathematics) are
not order–1 in this sense. Really, suppose the axiomatization
of classical particle mechanics by McKinsey, Sugar and Sup-
pes we have considered above. There, the primitive elements
of the structure do not deal with just particles (elements of
the set P—see section 4.1.1), but involve derivatives and other
functions. So, a structure such as CPM (see equation 4.4) is
not an order–1 structure. Yet, the structures for empirical sci-
ence can be constructed within ‘first-order’ ZFC, that is, the
Zermelo-Fraenkel set theory grounded on elementary logic, as
put forward by Bourbaki in what respects mathematical struc-
tures (Bourbaki 1968, ch.4). So, the reader should realize that
the order of a language and the order of a structure are dis-
tinct concepts, and this is why we are introducing the termi-
nology order–n structures and relations to differentiate them.
So, ‘first-order’ ZFC stands for that theory which has elemen-
tary logic as its underlying logic, while order–1 structures are
those structures that have just order–1 relations as primitive
elements. Particularly (let us emphasize this), the above defi-
nitions show that we can consider order–n (n > 1) structures
within the scope of first-order languages.

As remarked by da Costa and Rodrigues [op.cit.], the usual
mathematical structures can be reduced to structures embed-
ded in this schema, yet sometimes this can be very difficult.
The above definition of structure may encompass also struc-
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tures having several sets as domains of individuals (just take
D to be their union). Finally, sometimes we need to deal with
relations of infinite degree, which (according to these authors)
can also be reduced to the structures in the above sense.

6.2 Languages

An important remark is the following. Recall that, as we have
said, we are working within ZFC. Hence, all we have at our
disposal are the devices of L∈. As we have seen already (see
the last chapter), in the intended interpretation the terms of
L∈ stand for sets which, from an intuitive viewpoint, are col-
lections “into a whole of definite and separate [i.e., distinct]
elements of our intuition or of our thought”, as said Cantor.
(see Fraenkel 1966, p.9). Then, when we construct a certain
language, as those we shall consider below (for instance, the
language Lωω1ω

(R) to be considered next), what kind of enti-
ties are their symbols? The answer is that they are terms of
L∈, that is (in the intended interpretation), names for sets of
ZFC.

What, then, is a language? Da Costa put the things clearly
when he says that we usually believe that without language
there is no logic, for the logic operators are usually applied to
linguistic items such as sentences (da Costa 2007; we shall fol-
low him in this section, with adaptations—but see also Gratzer
2008, and Barnes & Mack 1975). However, he says, some-
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times we may wish to apply logic to handle other items that
do not seen as linguistic, but as arbitrary objects, “such as be-
lieves and assumptions which sometimes do not involve lan-
guage or, at least, well defined languages”.2 Thus, the ‘linguis-
tic’ approach to logic is sometimes not so useful, and we can
find a more general account (as he proposes) by means of Ab-
stract Logics (sometimes called Universal Logics). Remem-
ber that the expression ‘universal algebra’ comes from White-
head’s book (from 1898) Universal Algebra, which means,
roughly speaking, the study of algebraic structures (or alge-
bras—see below) from a general (‘universal’) point of view,
departing from the study or particular algebraic systems. Thus,
we can see a language as an algebra, which can be defined
within ZFC. Let us sketch this idea a little bit.

6.3 Algebras

So far we have considered a structure as something that can
be written as E = 〈D, rι〉. But of course this is not the only
possible notation. In this section, we shall change our notation
by considering structures of the kind

A = 〈A, fλ〉, (6.2)

where A is a non empty set and fλ stands for a family of oper-
ations of rank n on A. That is, each member f of this family

2He also recalls that a similar thesis was proposed for instance by Russell.
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associates one and only one element of A to each n-tuple of el-
ements of A. If 〈x1, . . . , xn〉 denotes one of these n-tuples and
y the corresponding element, we write

y = f (x1, . . . , xn)

to indicated that. If n = 2, we usually write x1 f x2 instead of
f (x1, x2) —as in elementary algebra, where we write a + b and
not +(a, b). If n = 0, we say that f determines a fixed element
of A.

Definition 6.3.1 (Algebra) An algebra, or algebraic structure,
is a structure

A = 〈A, fλ〉, (6.3)

where A , ∅ and fλ is a sequence of operations defined on A,
each one of them of a definite finite rank n.

A subalgebra of A is an algebraB = 〈B, f ′λ〉 such that B ⊆ A
and the f ′λ are the restrictions of the corresponding fλ to B.
Now let X ⊆ A and let [X] denote the collection of all subal-
gebras of A. Since X ∈ [X], then [X] , ∅. The intersection⋂

[X] is again a subalgebra of A and contains X. It is called
the subalgebra generated by X. It is to be the smallest algebra
over A that contains X, sometimes denoted by 〈X〉 or by 〈X〉A
if there is some risk of confusion.

Really, we should be quite careful here. Suppose we have a
group, seen as an algebra G = 〈G, ∗〉, where G , ∅ and ∗ is a
binary operation on G. If we simply take a subset G′ ⊂ G and
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an operation ∗′ = ∗|G′, the restriction of ∗ to G′, may be that
〈G′, ∗′〉 is not a group. But this does not happen if we describe
a group by mentioning all the basic operations, namely, asG =

〈G, ∗,¯, e〉, where ¯ is an unary operation on G that associates
to each a ∈ G its inverse ā ∈ G and e is the identity element
of the group. In this case, G′ = 〈G′, ∗|G′,¯|G′, e〉 (provided that
e ∈ G′) is a group. From now on, our subalgebras will be
always of this kind, that is, they shall ‘preserve the structure’.

Any algebra has a type of similarity, or signature (please do
not make confusion with the concept of type given before). Al-
though we shall not introduce the definition here, it is quite in-
tuitive. Take for instance the field of reals, R = 〈R,+,×, 0, 1〉.
By considering the rank of the involved operations, we may
say that this structure has type of similarity (2, 2, 0, 0). Sim-
ilarly, the structure N = 〈ω, s, 0,+,×〉 for elementary arith-
metics has type of similarity (1, 0, 2, 2) —notice that only the
rank of the operations are mentioned. Two algebras of the
same type of similarity are called similar. An homomorphism
from an algebra A = 〈A, fλ〉 into a similar algebra B = 〈B, gλ〉
is a mapping h : A 7→ B such that for all a ∈ A, h( f (a)) =

g(h(a)). If h is bijective, then it is called an isomorphism, and
in this case we write A ≡ B.

The following definition is attributed to G. Birkhoff (see
Gratzer op.cit., p.162).

Definition 6.3.2 (Free algebra) Let K be a class of algebras
of the same signature and A ∈ K . Let X = {xi}i∈I be a subset
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of elements of A such that X generates A, and let φ : I 7→ A
such that φ(i) = xi. Then we say that A is a free algebra over
K with the elements of X as free generators it for any algebra
B = 〈B, gλ〉 ∈ K , and any mapping ψ : I 7→ B, there is an
homomorphism h from A into B such that h(xi) = ψ(i).

The following diagram intends to clarify the definition us-
ing an easier notation.

I A

B

φ

ψ
h

-

i φ(i) = xi

?

HH
HHH

HHH
HHH

HHH
HHjψ(i) = yi

h(xi) = yi

Figure 6.3: Free algebras: h ◦ φ = ψ, that is, the dia-
gram commute.

We can prove that
the homomorphism h,
when exists, is unique,
and there are also nec-
essary and sufficient
conditions for the exis-
tence of free algebras
which do not interests
us here. Let us see now

(although without full details) how we can identity formal lan-
guages with free algebras.

6.4 Languages as free algebras

Let us suppose a simple case to exemplify how can we see
what a language is from an algebraic point of view. In order to
make the ideas clear, I shall consider in parallel an example,
taking the language of classical propositional logic, LCPL.
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Thus, suppose we have a set X = {xi}i∈I (this set may be
infinite) and another set fλ whose elements will be denoted
generically by f . I shall use for this set the same notation
we used above to define an algebra. This second set plays
the role of the operations of the algebra we shall define. In
our sample case, X = {p0, p1, . . .} is the set of propositional
variables, and fλ = {¬,→} are the propositional connectives
(we could use whatever adequate set of connectives of course).
We still suppose that there is a mapping ar : fλ 7→ ω, the arity
function, which assigns a natural number to each element of
fλ, called its arity. For instance, ar(¬) = 1 and ar(→) = 2.

Now we define by induction a set F as follows:

(1) F0 := X ∪ {〈 f , x1, x2, . . . , xar( f )〉 : f ∈ fλ ∧ xi ∈ X}.
This is the set of the atomic formulas. The (ar( f ) + 1)-tuple
〈 f , x1, x2, . . . , xar( f )〉 is written f x1x2 . . . xar( f ). In our exam-
ple, the atomic formulas are the propositional variables and
the expressions of both forms ¬pi and→ pip j. This last one
may be abbreviated by pi → p j.

(2) Now let αi, i = 1, . . . denote atomic formulas. Then,
the set of complex formulas is F1 = {〈 f , α1, α2, . . . , αar( f )〉 :
f ∈ fλ ∧ αi ∈ F1}, and again the tuples are abbreviated by
fα1α2 . . . αar( f ). For instance, in our example, we may have
as complex formulas expressions such as ¬¬pi, → ¬p1 →

p2¬p3, this last one being abbreviated by ¬p1 → (p2 →

¬p3), according to a standard notation. In our case study,
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we can introduce other operational symbols by definition,
such as the other standard connectives ∧, ∨ and↔.

(4) In a general way, let Fn := {〈 f , α1, α2, . . . , αar( f )〉 : f ∈
fλ ∧ αi ∈ Fn−1}, then

(5) F =
⋃

n∈ω Fn.

We can prove thatA = 〈F , fλ〉 is a free algebra by adapting
the proof given in Barnes & Mack (1975, p.5). We call a free
algebra constructed this way a language.

Thus we can see how a language can be constructed in
ZFC. The cases of first-order usual languages, higher-order
languages and even infinitary languages can be treated the
same way, although they will demand more details. Anyway,
they can be treated as being certain free algebras. Thus, when
we mention certain languages to speak of structures in the next
section, they can be considered as constructed within ZFC.

6.5 Languages for speaking of structures

Of course we aim at to speak of structures and of all the objects
of a scale. To do that in an adequate way, we consider two ba-
sic infinitary languages, termed (cf. da Costa and Rodrigues)
Lωωω(R) (or simply Lω(R)) and Lωωκ(R).

In general, an infinitary language Lηµκ, with κ < µ being
infinite cardinals (or ordinals) and 1 ≤ η ≤ ω, enables us
to consider conjunctions and disjunctions of n ≤ µ formulas
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and blocks of quantifiers with m < κ many quantifiers. The
superscript η indicates the order of the language (first-order,
second order, etc.). In both cases R is the set of the constants of
the language. Thus, in Lωµω(R) (ω < µ) we may have infinitely
many conjunctions and disjunctions of formulae, but blocks
of quantifiers with finitely many quantifiers only. Lωωω(R) is a
higher-order language, suitable for type theory (higher-order
logic). Standard first-order languages are of the kind L1

ωω, so
is L∈. Put in a more precise way,

Definition 6.5.1 (Order of a language) A language Ln
µκ, with

1 ≤ n < ω, is called a language of order n. A language Lωµκ is
said to be or order ω.

A language of order n contains only types of order t ≤ n
and quantification of variables of types having order ≤ n − 1
(da Costa & Rodrigues 2007, p.8).

In order to exemplify how we can define a higher-order lan-
guage using a frst-order language (such as L∈), let us sketch
the language Lωω1ω

(R), but we could consider whatever infini-
tary languageLωµκ, provided that the involved cardinals exist in
ZFC (for instance, we couldn’t use an inaccessible cardinal).3

The primitive symbols of Lωω1ω
(R) are the following ones:4

(i) Sentential connectives: ¬, ∧, ∨,→,
∧

, and
∨

.
3As we have seen in the last chapter, there are cardinals whose existence cannot be proved in ZFC,

provided this theory is consistent. Inaccessible cardinals belong to this class.
4Of course we could use the above schema of free algebras to characterize this language, but this would

demand a lot of artificiality and will not conduce to nothing really relevant. The important thing is to
acknowledge that the languages we will consider can be treated as free algebras.
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(ii) Quantifiers: ∀ and ∃

(iii) For each type t, a family of variables of type t whose
cardinal is ω.

(iv) Primitive relations: for any type t, a collection of con-
stants of that type (possibly some of them may be empty).
The collection of these constants form the set R.

(v) Parentheses: left and right parentheses (‘(’ and ‘)’), and
comma (‘,’).

(vi) Equality: =t of type t = 〈t1, t2〉, with t1 and t2 of the
same type.

Variables and constants of type t are terms of that type. If T
is a term of type 〈t1, . . . , tn〉 and T1, . . . ,Tn are terms of types
t1, . . . , tn respectively, then T (T1, . . . ,Tn) is an atomic formula.
If T1 and T2 are terms of the same type t, then T1 =〈t1,t2〉 T2 is
an atomic formula. We shall write T1 = T2 for this last for-
mula, leaving the type of the identity relation implicit. If α, β,
αi are formulas (i = 1, . . . ), then ¬α, α ∧ β, α ∨ β, α → β,∧
αi, and

∨
αi are formulas. Then, we are able to write for-

mulas with denumerably many conjunctions and disjunctions.
Furthermore, if X is a variable of type t, then ∀Xα and ∃Xα
are also formulas (and only finite blocks of quantifiers are al-
lowed). These are the only formulas of the language. The
concepts of free and bound variables and other syntactic con-
cepts can be introduced as usual.
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Now let E = 〈D, rι〉 be a structure, where rι ∈ R, that is, the
primitive relations of the structure are chosen among the con-
stants of our language Lωω1ω

(R). Then, Lωω1ω
(R) can be taken

as a language for E = 〈D, rι〉, provided that κD = ω (recall that
κD is the cardinal associated to E). Still working within (say)
ZFC, we can define an interpretation of Lωω1ω

(R) in E = 〈D, rι〉
in an obvious way, so as what we mean by a sentence S of
Lωω1ω

(R) (a formula without free variables) being true in such
a structure in the Tarskian sense, that is,

E |= S . (6.4)

In the same vein, we can define the notion of validity. A
sentence S is valid, and we write

|= S ,

if E |= S for every structure E.
Important to emphasize that we are describing the language

Lωω1ω
(R) using the resources of some set theory such as ZFC.

This way, we can speak of denumerable many variables, for
instance, in a precise way. In this sense, any symbol ofLωωκ(R),
as we have remarked already, can be seen as a name for a set.
Thus, ‘(’ (the left parenthesis), for example, names a set.

6.5.1 The language of a structure

Now let E = 〈D, rι〉 be a structure, while rng(rι) denote the
range of rι. Remember that rι stands for a sequence of rela-
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tions of the scale ε(D), that is, it is a mapping from a finite
ordinal into a collection of relations in the scale. Thus rng(rι)
stands for just the set of these relations. So, Lωωω(rng(rι)) (=
Lω(rng(rι))) the basic language of the structure (it is not the
only one, for other stronger languages encompassing it could
be used instead). In this case, we can interpret a sentence con-
taining constants in rng(rι) in E = 〈D, rι〉, and to define the
notion of truth for sentences of this language according to this
structure in an obvious way.

Digression For certain applications in science, sometimes it
is better to consider partial relations as the primitive relations
of a certain structure. A relation (say, a binary one) R on a
set A is partial if there are situations where we cannot assert
neither that aRb not that ¬(aRb) (see da Costa & French 2003
for all the philosophical discussion on this topic). In this case,
the notion of truth is changed to partial truth, a concept that
generalizes Tarski’s approach and seems to be more adequate
for empirical sciences. But we shall not touch this point here
(but see da Costa & French 2003).

6.6 Definability and expressive elements

Now we wish to understand when an object of a scale ε(D) is
definable in a structure E = 〈D, rι〉 by a formula ofLω(rng(rι))
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so as when an element of the scale is expressible in the struc-
ture with respect to a sequence of objects of the scale.

Definition 6.6.1 (Definability of a relation) Let R be a rela-
tion of type t = 〈t1, . . . , tn〉 and E = 〈D, rι〉 a structure. We say
that R is definable in E if there exists a formula F(x1, x2, . . . , xn)
ofLω(rng(rι)) whose only free variables are x1, . . . , xn of types
t1, . . . , tn respectively, such that in Lω(rng(rι)) ∪{R}, the for-
mula

∀x1 . . .∀xn(R(x1, . . . , xn)↔ F(x1, x2, . . . , xn))

is true in ε(D).

For instance, for each type t we can define an identity rela-
tion =t as follows. Let Z be a variable of type 〈t〉, then we can
easily see that for suitable structures and scales, the following
is true:

∃!It∀x∀y(It(x, y)↔ ∀Z(Z(x)↔ Z(y))).

We may call It the identity of type t, and write x =t y for
It(x, y), what intuitively means that identity is defined by Leib-
niz Law (see chapter 8), as it is usual: just re-write the above
definition as follows:

x =t y := ∀Z(Z(x)↔ Z(y)).

Usually, we suppress the index t and write just x = y, leaving
the type implicit (= is of type 〈t〉, while x and y are both of
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type t). This kind of definability, which involves structures
and scales is called semantic definability, and goes back to
Tarski.

Here it is another example. Suppose the language L∈ of
‘pure’ set theory ZF. As is is well known, this language has
∈ as its only non-logical constant. If we aim at to define the
subset relation ⊆, we can do it in the extended languageL∈∪{⊆
} by showing that the formula

∀x∀y(x ⊆ y↔ ∀z(z ∈ x→ z ∈ y))

is true in any structure built in ZF. Below we shall give some
further examples.

Another important case is the next one, also involving a se-
mantic definability.

Definition 6.6.2 (Definability of an object) Let E = 〈D, rι〉,
ε(D), and Lω(rng(rι)) as above. Given an object a ∈ ε(D)
of type t, we say that it is Lω(rng(rι))-definable or definable in
the strict sense in E = 〈D, rι〉 if there is a formula F(x) in the
only free variable x of type t such that

E |= ∀x(x =t a↔ F(x)). (6.5)

The case of the well-order on the reals, mentioned above,
shows that, taking into account the last definition, the least
element of (0,1), that cannot be definable by a formula. Let us
consider a ‘positive’ example. Let N = 〈ω,+, ·, s, 0〉 be an of
order–1 structure for first-order arithmetics. In order to define
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a natural number (any one) we need just a finitary language,
say Lωωω(R) with R = {+, ·, 0, s}. Then, it is easy to see that (in
an obvious abbreviate notation)

N |= ∀x(x = n↔ x = ss . . . s(0)),

If we consider a suitable infinitary language, say Lω1ω (where
we can admit denumerable infinite conjunctions and disjunc-
tions), we can inside the parentheses the formula we abbrevi-
ate by

x ∈ ω↔ x = 0 ∨ x = 1 ∨ . . . , (6.6)

which permits us to define not a particular natural number, but
the notion of ‘being a natural number’. An important remark:
the expression (6.6) is not a formula strictly speaking (for the
dots do not make part of the language), but abbreviates a for-
mula of Lω1ω).

An illustrative case is the following one. We know that
within ZFC (supposed consistent), the set R of the reals is not
denumerable. This means that we cannot find a mapping (a set
in ZFC) that maps the reals onto the natural numbers. Thus,
using standard denumerable languages, we do not have suffi-
cient names for the reals, and . But if we use a suitable infini-
tary language Lµκ (for suitable ordinals µ and κ) we can find
a name for each real, so we can define all of them by the con-
dition given in definition (6.6.2). This shows that definability
and other related concepts depend on the employed language.
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Here it is another interesting case related to the above def-
initions. Using the axiom of choice we can show that every
set is well ordered (by the way, let us insist, this sentence is
equivalent to the axiom of choice). For instance, the set ω
of natural numbers is well ordered by the usual less-than re-
lation ≤. We can define the usual order ≤ as follows:5 a ≤
b := ∃c(b = a + c). This usual order relation, notwithstand-
ing, does not well order the set Z of the whole integers, for the
subset {. . . ,−2,−1, 0}, for instance, has not a least element.
But if we order Z by writing it as {0,−1, 1,−2, 2, . . .}, then it
is well-ordered by this order, termed ≤1, which can be defined
by a ≤1 b := (|a| < |b|) ∨ (|a| = |b| ∧ a ≤ b), where ≤ is the
usual order relation and < is defined as a < b := a ≤ b∧a , b.

Obviously the ‘usual’ relation (defined on R) does not well
order the set of reals (for instance, an open set (a, b), with
a < b, has not a least element). But, can we find a well order
on such a set? According to the axiom of choice, we can as-
sume that this order does exist, since its existence is consistent
with ZFC (supposed consistent). The problem is that it can be
proven that the ZFC axioms (plus the so-called generalized
continuum hypothesis) are not sufficient to show that this or-
der can be definable by a formula of its language.6 In the same
vein, we cannot define the least element of a certain subset of
reals (say, the open interval (0, 1)) in the sense of definition

5Of course this definition can be conformed to definition 6.6.1.
6The interested reader can check theorem 4.11 of S. Feferman’s paper and the remark at p.342, just after

the proof of the theorem; see http://matwbn.icm.edu.pl/ksiazki/fm/fm56/fm56129.pdf.
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(6.6.2). All of this show that the notions of definability and
expressibility, among others, depend on the language and on
the theory we are supposing.

6.7 On the new symbols

In our formalization of ZFC, we have used individual con-
stants to facilitate our mentioning of certain particular sets,
for in doing that we would have a denumerable set of ‘names’
to them. This is a matter of choice. Most authors don’t use
individual constants, but just individual variables. Since it is
supposed that this move doesn’t change the set of theorems,
we regard the resulting theories as being the same, yet their
languages differ. In this section, we shall make some few re-
marks we regard are of philosophical importance which, al-
though they are well known by the logician, can be not so
well understood by the general philosopher interested in foun-
dational issues. So, let us suppose for a moment that our lan-
guageL∈ has no individual constants. To avoid any confusion,
we shall term it L∈−.

Due to our new convention, the only non-logical symbol of
L∈− is ∈. So, how can we refer to a particular relation R? (the
same holds for a particular object whatever, such as a struc-
ture named A for instance). This is a common practice in the
mathematical discourse. Really, in geometry we usually say
"Let A be a point in a line r", making use of individual letters
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for naming particular entities, the point and the line. How can
we explain this move of naming objects with constants that do
not appear as primitive concepts of the employed languages?
There are two answers to this challenge.

The first is that we simply extend the languageL∈− with ad-
ditional constants to name the objects we intend to make refer-
ence to. Thus, we can extendL∈− with symbols of three kinds:
(1) additional individual constants, (2) new predicate symbols,
and (3) new operation symbols. In whatever situation, we
must be sure that the so-called Leśniewski’s criteria are being
obeyed (Suppes 1957, ch.8), namely, the Criterion of Elim-
inability and the Criterion of Non-Criativity. The first says,
in short, that the new symbols can be eliminated. That is, the
formula S introducing the new symbol must be so that when-
ever a formula S 1 with the new symbol occurs, there is another
formula S 2 without this symbol such that S → (S 1 ↔ S 2) is
a theorem of the preceding theory (without the new symbol).
The second criterion says that there is no formula T in which
the new symbol does not occur such that S → T is deriv-
able from the preceding theory, but T is not so derivable. In
other words, no new theorem previously unproved, and stated
in terms of the primitive symbols and already defined sym-
bols only can be derived. In our case, we can add the desired
symbols, say ‘R′ for the relation in the above definition of de-
finability of a relation (see definition 6.6.1), once we grant that
the Leśniewski’s conditions hold (which of course we suppose
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here).
The another alternative is to work with L∈− proper, and re-

gard all other symbols as metalinguistic abbreviations. This
is ‘more economic’, and we usually do it for instance when
defining (in L∈−) the concept of subset, posing for instance
that A ⊆ B := ∀x(x ∈ A → x ∈ B). The new symbol ⊆
does not make part of the language L∈−, but belongs to its
metalanguage, and the expression A ⊆ B simply abbreviates
a sentence of L∈−, namely, ∀x(x ∈ A → x ∈ B). We can un-
derstand this move as enabling us to use an auxiliary constant
(say, ‘R’), provided that the object which it will name exists
(the proof of its existence is called theorem of legitimation by
Bourkaki (1968, p.32).7 In the example, given two sets A and
B, we realize that all elements of A are also elements of B,
hence we are justified to write A ⊆ B for expressing that (as a
metalinguistic abbreviation). In logic, we usually express that
by the so called method of the auxiliary constant, which may
be formulated as follows. Let c be a constant that does not
appear in the formulae A or B. Assume that we have proven
that ∃xA (the theorem of legitimation). If we have also proven
that A[x

c] ` B, where A[x
c] stands for the formula obtained by

the substitution of c in any free occurrence of x, then ` B as
well.

But we need some care even here. Suppose we wish to
refer to real numbers. We cannot name all of them in the

7This is essentially what Mendelson calls ‘Rule C’; see Mendelson 1997, p.81.
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standard denumerable language L∈−. But in general we can
name a particular real number, say by calling it zero. But there
are real numbers that cannot be named even this way, as we
have seen above when we have discussed the well-order of
the reals. This poses an interesting question regarding em-
pirical sciences. In constructing a mathematical model of a
physical theory, we suppose we represent physical entities,
say quantum objects and the properties and relations holding
among them, in the mathematical framework we have cho-
sen, say ZFC set theory. How can we ensure that this really
makes sense? For instance, in some common interpretations
of quantum mechanics (the Copenhagen interpretation), we re-
ally cannot (with any sense) make reference to quantum enti-
ties out of measurement. Out of measurement, quantum en-
tities are no more than sets of potentialities or possible out-
comes of measurement, to use Paul Davies’ words in his In-
troduction to Heisenberg 1989 (p.8). Let us give an example
we shall discuss also below. Suppose we are considering the
two electrons of an Helium atom in the fundamental state.

The anti-symmetric wave function of the join system can be
written as

|ψ12〉 =
1
√

2
(|ψ1〉|ψ2〉 − |ψ2〉|ψ1〉). (6.7)

where |ψi〉 (i = 1, 2) are the wave functions of the individual
electrons. Notice that we need to label them by ‘1’ and ‘2’
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for our languages are objectual —we speak of objects.8 But
we need to make this labeling to be not compelled with indi-
viduation, so we use (in this case) anti-symmetric functions,
for the if |ψ21〉 stands for he wave-function of the system after
a permutation of the electrons, then ||ψ12〉|

2 = ||ψ21〉|
2, that is,

the relevant probabilities are the same. For now, what import
is that this function cannot be factored, giving a particular de-
scription of the electrons. Only after a measurement, say of the
component of their spin in a given direction, is that the wave
function collapses either in |ψ1〉|ψ2〉 or in |ψ2〉|ψ1〉, then indi-
cating, say, that electron 1 has spin up in the chosen direction,
while electron 2 has spin down in the same direction or the
other way around. But, before the measurement, nothing can
be said of them. This implies that when we say, for instance,
that there are two electrons, one here and another there, we are
already supposing a measurement, thus begging the question
concerning their individuation.

Situations such as this one are puzzling if we consider the
underlying mathematics as the classical one. For suppose we
aim at to define the electron of an Helium atom that has spin
up in a given direction. According to definition (6.6.2), we
need to find a formula F(x) so that, if we denote that electron
by a, we can prove that the following formula

∀x(x = a↔ F(x)) (6.8)
8Toraldo di Francia says that objectuation is a primitive act of our mind; see his 1981 book, p.222.
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is true in an adequate ‘quantum structure’. But, what would
be taken to be F(x)?

Really, according to standard set theory (ZF), when we say
that there is an electron here and another there, they are al-
ready distinct entities, and we are presupposing a kind of re-
alism concerning these entities. In other words, in supposing
two entities within ZF, we are really begging the question con-
cerning their individuation.9

These remarks, we think, point to an interesting philosoph-
ical problem of studying the definability of physical ‘objects’
and relations, but this point will be not discussed here too.

9This is, in my view, the mistake made by Muller and Saunders (2008) and by Muller and Seevincki
(2009) in discerning quantum entities; in assuming the mathematical framework as being ZF, they are al-
ready assuming that the represented entities are either identical (that is, they are the very same entity) or that
they are distinguishable, and this is not a characteristic of quantum objects proper, but of the mathematics
they have employed.
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Chapter 7

Back to empirical sciences

G
oing back to empirical science, we think that it is
time to address some few comments on general phi-
losophy of science where the notion of mathemat-
ical structures seem to be relevant. The discussion

of course cannot be detailed, so we begin by considering just a
case, but an important and updated one, namely, the recent dis-
cussions on structural realism. After this discussion, we turn
to consider the possibility of leaving ‘classical frameworks’.

7.1 ‘Full-blooded’ structural realism

Philosophers have recently considered two versions of struc-
tural realism: the epistemological version (ESR), roughly speak-
ing, says that all we can know (about the world) are structures,
while the ontological version (OSR) says that all there is are
structures (for details, see French & Ladyman 2003). Here we
would like to advance an alternative view, perhaps closer to
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the epistemological version: that we construct, at a rigorous
mathematical level according to the above schema, in order
to get a view of the world, are structures, mathematical struc-
tures. Let us call this view Full-blooded Structural Realism
(FSR).1 And here, contrary to what happens with OSR, where
it is difficult to say what a structure is (see below), we really
can consider that the structures we elaborate are as those as
described above. But of course much need to be done to make
these ideas clear.
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R = {〈a, b〉 : a, b ∈ A} ∈ P3(A)

〈a, b〉 ∈ P2(A)

{a}, {a, b} ∈ P(A)

a, b ∈ A

6

going upwards

Figure 7.1: In ZF, the relations on a set A are con-
structed from the elements of A going upwards in the
hierarchy.

It should be remarked
that according to the
proponents of OSR, since
all things would be
structures, we need a
concept of mathemati-
cal structure whose re-
lations do not involve
relata other than struc-
tures themselves. In
other words, what is
demanded are relations
without the relata. But
it easy to see why such a definition cannot be done within stan-
dard set theories like (extensional) ZFC. Suppose we wish to
define a binary relation on a (given) set A such that a and b are

1This terminology was suggested by Otávio Bueno.
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elements of A (we are working in an extensional set theory,
where the axiom of extensionality holds by hypothesis—our
theory is ZFC). Surely a and b could be ur-element (if we
work in ZFU). It doesn’t matter which is the case. In both
theories (ZFC and ZFU, formulated as usual), given a and b
(see figure 7.1), we may get by the pair axiom the set {a, b},
so as the singletons {a, a} = {a} and {b, b} = {b}. The next
step (note that we are going upwards in the universe, getting
sets of greater ranks) we get (again by the pair axiom) the set
{{a}, {a, b}}. But this set is written (Wiener-Kuratowski’s def-
inition) 〈a, b〉. We can do this with other elements of A of
course, and we can, with other axioms of ZFC (or ZFU), take
collections of these ordered pairs, that is, a binary relation on
A. In other words, from A, we get in the scale based on this
set the sets A × A, P(A × A), and then we chose an element of
this last set satisfying some desired properties, such as being
reflexive (all pairs 〈x, x〉 must be there, for all x ∈ A).

This shows that in set theories such as those we are suppos-
ing here (and which are assumed in the standard literature),
there are no relations without the relata, that is, ‘pure’ rela-
tions as the proponents of the OSR wish. The problem of find-
ing a right definition of structure that fits their claims remains
open (I guess that perhaps Tarski’s set theory grounded in his
theory of relations—see Tarski & Givant 1987—can be used
here, but this is still an open problem).

But, by adopting PSR, we don’t need to go so far as Max
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Tegmark when he says that “our universe is not just described
by mathematics—it is mathematics” (Tegmark 2007). I be-
lieve we really don’t know what the universe is, but all ap-
proaches we provide are (in potentia) mathematically driven
models, elaborated in terms of set-theoretical structures.2 Of
course this doesn’t imply neither that all we know are struc-
tures (epistemologial structural realism) nor that all there is are
structures (ontological structural realism), but that we know
the world, or at least we so suppose, by constructing struc-
tures. A slogan for FSR would be read as saying that all we
know in science is through structures, that is, in order to un-
derstand, we elaborate conceptual networks about our descrip-
tions of the world by means of (in principle) mathematical
structures that save the appearances or, as we prefer to say,
which are quasi-truth (da Costa & French 2003). In this sense
our position has resemblance but departs from van Fraassen’s
empiricists structuralism, according to which “all we know
through science is structure” (van Fraassen 2008, p.238). In
fact, according to van Fraassen, “scientific theories give us
information only about the structure of processes in nature,
or even that all we know is structure” (van Fraassen 1997),
while in FSR we claim that we know the processes in nature
by means of (mathematical) structures linked to some inter-
pretation. And, when we try to provide an interpretation to the

2Of course I am ignoring here higher-order logics and category theory, but they could be offered as
alternatives.
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symbols we used to elaborate our theories, the very nature of
the models of set theory enter the scene. But of course much
would be done to develop such a philosophical view, so we
postpone the issue to a future work.

7.2 Leaving the classical frameworks

So far we have been restricted to what can be constructed
within ZFC, its underlying logic included, which we report
as ‘the classical’ framework. But of course we could investi-
gate some ways to go out of this schema. The possibility of
even to (wittingly) think of a departure from standard mathe-
matics (or logic) is possible only if we have our theories put
axiomatically. Ever since the XIXth century we were faced
with several kinds of geometries distinct from Euclidean ge-
ometry, as it is well known. For instance, in Euclidean geome-
try, we can prove (using the so called postulate of Archimedes)
that two triangles having the same bases and the same altitude
have equal areas. This is false in non-archimedian geometry,
as Hilbert has shown (Hilbert 1950, p.40). But we wish to con-
sider this question from another point of view, namely, from a
possible exchange of the set theory employed, where the rele-
vant structures are built. Let us consider this possibility a little
in this section.

Non-classical logics were developed during the XXth cen-
tury, as is well known, and although they quite important,
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we shall not consider them here. Even in set theory the rise
of ‘non-cantorian’ frameworks are today widespread. Really,
due to results such as those of Gödel and Cohen, among oth-
ers, we know today a series of techniques that enable us to
construct (potentially) infinitely many ‘models’ of a set the-
ory such as ZF in which some of the ‘classical principles’,
such as the axiom of choice, and the continuum hypothesis, do
not hold. These non-cantorian set theories (Cohen’s words)
are today quite common in discussions involving set theory
proper, but they are still far from the interest of the general
philosopher of science. In this section we shall present some
few details on this direction, trying to show that the considera-
tion of non-classical logics and alternative mathematics would
be part of the philosophical discussion. Of course I need to
beg the reader to understand that I can’t provide here all the
details, so I would be imprecise in some aspects. But I hope
the general ideas can be understood.

Let’s begin with a fact involving the foundations of quan-
tum mechanics.3 In quantum theory, position and momen-
tum operators are quite relevant. In the Hilbert space L2(R)
of the equivalence classes of square integrable functions, they
are unbounded operators. Just to recall, if A is a linear op-
erator, then A is unbounded if for any M > 0 there exists a
vector α such that ||A(α)|| > M||α||. Otherwise, A is bounded.
But the american logician Robert Solovay proved that if ZF is

3I refer to non-relativistic quantum mechanics when no further indications are given.
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consistent, and if DC stands for a weakened form of the ax-
iom of choice entailing that a ‘countable’ form of the axiom
of choice can be obtained. (In particular, if {Bn : n ∈ ω} is a
countable collection of nonempty sets, then it follows ZF plus
DC has a model in which each subset of the real numbers is
Lebesgue measurable (using the full axiom of choice, we can
show that there are subsets of the set of real numbers which
are not Lebesgue measurable).4 Let us call ‘Solovay’s axiom’
(AS) the statement that “Any subset of R is Lebesgue measur-
able”. Then, in the theory ZF+DC+AS (termed ‘Solovay’s set
theory’), it can be proven that any linear operator is bounded
—see Maitland-Wright 1973. Thus, if we use Solovay’s the-
ory instead of standard ZF to build quantum structures, how
can we consider unbounded operators in quantum mechanics?

Here is another example also involving Robert Solovay. One
of the fundamental theorems in quantum mechanics is Glea-
son’s theorem (it does not matter us here to formulate it). The
theorem shows the existence of certain probability measures
in separable Hilbert spaces. Solovay obtained a generalization
of the theorem also for non-separable spaces, but it was neces-
sary to assume the existence of a gigantic orthonormal basis
whose cardinal is a measurable cardinal. But the existence of
measurable cardinals cannot cannot be proven in ZF set theory
(supposed consistent). Thus, in order to get the generalization,

4It does not matter for us here what a Lebesgue measure is. Intuitively speaking, it generalizes the usual
notion of measure –lengths, areas, etc.
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we need to go out of ZF. These examples show that for certain
considerations, it is extremely important to consider the math-
ematical framework we are working in.

These examples show that there are alternative mathemat-
ical (and or course, logical) frameworks in which the philo-
sophical discussions could take place, and depending on the
theory used, the results may change. It is worthwhile to em-
phasize that philosophers of science should pay attention to
this plurality of logics (recall the variety of non-classical log-
ics there are) and mathematical frameworks at our disposal.
Then, in considering these alternative mathematical frame-
works, we should agree with da Costa and Doria when they
say that

“[i]t is therefore natural to enquire whether the use of
one or another of those models of set theory [they re-
fer to those ‘models’ of set theory built with Gödel
and Cohen’s techniques] have consequences for the
general theory of mathematical structures; in partic-
ular, whether the employment of a certain kind of
model has consequences for the axiomatization of phys-
ical theories.” (da Costa & Doria 2008, p.71)

In chapter 8 we present a more elaborated example taken
from present day philosophy of physics. But before that, let
us make some comments on the nature of the ‘models’ of ZFC.



Chapter 8

Quantum physics and the Leibniz’s
principle

L
eibniz’s Principle of the Identity of Indiscernibles
(henceforth, PII) plays an important role in present
day philosophy of physics. Those philosophers
who have considered it in connection with quan-

tum physics are divided up into two classes: those who think
that quantum physics violate the principle (at least in some of
its forms–see below) and those who sustain that PII remains
intact even with the consideration of indiscernible (or indistin-
guishable) quantum objects. In this chapter we shall consider
this topic in order to show a possible way to go out of standard
set theories to deal with some questions, such as this one. Our
discussion will be not exhaustive, and for further historical and
philosophical details, we suggest French & Krause 2006. The
mathematical theory presented here (termed quasi-set theory)
and all the related discussion is taken from French & Krause
2010 (forthcoming).
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The first problem, arisen from the discussion we have made
above, is to say precisely of what we are speaking about. What
we understand by Leibniz’s principle? Of which ‘quantum
mechanics’ are we speaking about? We shall address some
remarks on these topics in what follows.

8.1 The Leibniz’s principle

Leibniz’s metaphysics is of course a difficult subject. We shall
not discuss it here, but just make some remarks to what be-
came known as his Principle of the Identity of Indiscernibles,
PII for short.1 When he developed his ideas, present day math-
ematical logic was not known, although he is regarded as the
first philosopher that had the intuition that Aristotelian logic
was not adequate to give us an account of the kind of reason-
ing done within mathematics. In what respects PII, we can
found in several parts of his writings references to the idea
that there cannot be two absolutely indiscernible objects, two
objects which, as he referred to, differ solo numero.

In recent literature on the philosophy of physics, there is
a lot of discussion on the validity of Leibniz’s principle in
quantum physics. The fact that quantum entities may be in-
discernible is against the thesis that there are no indiscernible
objects, which is the essence of the principle. The problem be-

1There are good recent works on Leibniz’s notions of individuals and individuation, as for instance
Nachtomy 2007, and Cover & O’Leary-Hawthorne 2004.
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gin with the definitions of the involved concepts. Informally
speaking, indiscernible things are those entities that partake
all their properties, or attributes, while identical things are the
very same entity (although physicists call ‘identical’ just what
we have termed the indiscernible particles).2 Leibniz claimed
that indiscernible things are identical. But the precise meaning
of the concepts of ‘identity’, ‘indiscernibility’, ‘property’ etc.
are not clear and depend on the employed language and logic.
We shall not discuss this topic here, for we have addressed
much of this discussion in French & Krause 2006. Here, we
will just mention some basic facts in order to give to the reader
an idea for the understanding of what follows.

In L∈, how could we define indiscernibility and identity?
ZF encompasses a theory of identity, given by its logical ax-
ioms (7) and (8) of page 56 and the principle of extensionality
(ZF1) (the same axioms hold for ZFC and for ZFU with a suit-
able modification in the axiom of extensionality, for it holds
only for sets, and not for the ur-elements).3 Thus, if ‘two’ sets
have the same elements, they are identical. The converse is an
immediate consequence of axiom (8). If there are ur-elements,
they are identical if they belong to the same sets. Since for
any set or ur-element a, the only element that belongs to the
set {a} is a itself, it results that in ZF, ZFC or ZFU any object
is identical with itself, and with no other object. Summing up,

2More precisely, ‘identical’ particles are those particles that agree with respect to all their ‘intrinsic’
(independent of the state) properties, according to Jauch (1968, p.275).

3The axiom of extensionality of ZFU says that sets that have the same elements are identical.
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there are no indiscernible objects. Of course we can speak of
indiscernibility only relative to a certain group of properties,
which we identify with sets: any property determines a class,
and in particular a set. The axiom of extensionality says that
we don’t need to go beyond sets to conclude that two objects
are identical, it suffices that they belong to the same sets. So,
in ZF, ZFC and ZFU all objects are, in a sense, individuals, if
we define an individual as an object which is indistinguishable
only from itself. Thus, any object described by these set the-
ories are individuals. But quantum physics seens to present a
challenge to this conclusion. Bosons, that is, those elementary
particles that may be in the same state, hence being absolutely
indiscernible by all means, may be indiscernible, but they are
of course the same object. There are philosophers who sustain
that this result holds also for fermions (see French & Krause
2006, ch.4). This is disputable, and there is no philosophical
or logic argumentation that can prove that, for it is a physical
question. But let us suppose that we have the grounds for sus-
taining that the principle does not hold in the quantum realm,
that is, that there may be indiscernible but not identical ob-
jects (quantum entities). How can we deal with them within
standard mathematics and logic? The answer is straightfor-
ward. We ‘confine’ the discussion to a deformable (non-rigid)
structure, where there are automorphisms other than the iden-
tity function. This is, in a certain sense, what we do when we
use symmetric and anti-symmetric vectors/wavefunctions to
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represent the relevant states of composite systems in quantum
physics. We start with distinct things, and then we postulate
that their states are described by symmetric or anti-symmetric
functions, so that no distinction can be noticed (even in the
case of fermions, which due to the Pauli’s exclusion principle
cannot be in the same state, we never can say which is which).
This is of course a trick, and physics goes well using it. In
the case of non-rigid structures, we know already that in ZF
any structure is substructure of a rigid structure, so that the
initial indiscernibility revels the very nature of the individuals
in the extended structure. No way. To deal with legitimate in-
discernible things, we must proceed as the Pytagorians, when
they realized that it was necessary to leave the realm of ratio-
nal numbers: we need to leave standard logic and classical set
theories and to develop a new kind of mathematics, and below
we present one.

8.2 Quasi-set theory

Quasi-set theory was proposed to handle collections of indis-
tinguishable (or indiscernible) objects. Informally speaking,
these objects would be so that they can form aggregates (quasi-
sets) having a (quasi-)cardinal (perhaps greater than one) but
so that they would be not entities that ‘maintain’ their distin-
guishability; once mixed among others, one would no more be
able to tell which is which, and so that it would be not possible
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to attach them a label, a proper name. This idea is grounded
on Schrödinger’s claim that “you cannot mark an electron, you
cannot paint it red” (Schrödinger 1953), although this analogy
should be pursued with care (see below). For the sake of intu-
itiveness, the 100 Smiths of the film Matrix Reloaded provide
an example, for they are ‘all the same’. Is there any similarity
with electrons, protons and other quantum objects?

Figure 8.1: Are there differences either among cold atoms or among the 100 Smiths?

Important to say that the theory does not compromises us
with an interpretation of particles in quantum theory. What-
ever ‘entities’ that can be considered as indiscernible (this con-
cept must be explained) can (in principle) be covered by the
theory. The motivation to build such a theory is grounded
on a possible reading of the behaviour of quantum objects,
at least with respect to non-relativist quantum mechanics (QM
for short)—although it can be extended to cope with certain
aspects of quantum field theory (QFT) as well (French & Krause
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2006, ch.9; Domemech et al. 2008, 2009). The aim of quasi-
set theory is to pursue the indiscernibility of the basic objects
supposed by the theory right from the start, as suggested by
Heinz Post (see French & Krause op.cit. for the related his-
tory). Thus, since there is a sense in saying that all objects
represented in ZF (ZFC, ZFU) are individuals, for they can
always be (in principle) distinguished from any other individ-
ual,4 to cope with Post’s ideas we must go out of ZF and find
an alternative theory. We propose the theoryQ sketched below
as such a theory.

8.2.1 Language and basic definitions

The theory Q is based on ZFU–like axioms, but encompasses
two kinds of ur-elements and not only one, as in standard ZFU.
Its languageLQ has the following categories of primitive sym-
bols: (i) propositional connectives ¬ and→, (ii) the universal
quantifier ∀, (iii) a denumerable collection of individual vari-
ables x1, . . . , xn (we shall use x, y, . . . to refer to them), (iv)
two binary predicates ≡ and ∈, (v) three unary predicates m,
M and Z, and (vi) an unary functional symbol qc. The terms of
LQ are the individual variables (which are thought as ranging
over an universe of quasi-sets and atoms), and the expressions
of the form qc(x), being x an individual variable. Intuitively

4The Excluded Middle principle holds, hence, for any a and b, we have that a = b ∨ a , b is a theorem
of ZF, yet in some cases we cannot decide which is the case. But, if we can name them and a , b, then we
can of course distinguish them, for only a belongs to the singleton {a} (or, alternatively, obeys the property
x = a —here, a property is a formula with just one free variable.
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speaking, qc(x) stands for ‘the quasi-cardinal of x’. The for-
mulas are defined in the standard way; informally, m(x) says
that x is a micro-object, M(x) says that x is a macro-object,
Z(x) says that x is a set. We read x ≡ y as ‘x is indiscernible
(or indistinguishable) from y’ and x ∈ y as ‘x belongs to y’.
The propositional connectives ∧, ∨ and↔, so as the existen-
tial quantifier ∃, are defined as usual.

The basic idea is that the M-atoms have the properties of
standard Urelemente of ZFU, while the m-atoms may be thought
of as representing entities which may be ‘absolutely indis-
cernible’ (indistinguishable solo numero), and the elementary
basic entities of quantum physics seem to be a good exam-
ple. Really, they form our ‘intended interpretation’. Within
Q, as within ZF, we can construct structures, formulate scien-
tific theories and so on. In fact, all the discussion given before
can now be extended to cope with more general structures en-
compassing indiscernible entities. Our concern here is to dis-
cuss the possibility of defining not rigid (deformable) struc-
tures that cannot be extended to rigid (undeformable) ones.
Thus, contrarily to what happens in ZF, in defining such struc-
tures we would be able to discuss quantum theories that con-
sider indiscernible objects that even outside of the considered
structures cannot be discerned one each other.

Some additional intuitive ideas related to the theory might
be useful at this point. A quasi-set (qset for short) x is some-
thing which is not an Urelement (ur-element). A qset x may
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have a cardinal (termed its quasi cardinal, denoted by qc(x)),
but the idea is that the theory does not associate an ordinal
with certain qsets, since there will be quasi sets which can-
not be ordered (since their elements are to be absolutely in-
distinguishable m-atoms, expressed by the relation ≡). The
concept of quasi cardinal is taken as primitive, since it cannot
be defined by the usual means (that is, as particular ordinals).
This fits the idea that quantum particles cannot be ordered or
counted, but only aggregated in certain amounts. In fact, if we
cannot discern among the elements of a certain collection, we
cannot define a function from an ordinal and having this set as
the counter-domain. Nevertheless, given the concept of quasi
cardinal, there is a sense in saying that there may exist a cer-
tain quantity of m-atoms obeying certain conditions, although
they cannot be named or labeled.
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Figure 8.2: The Quasi-Set Universe. On is the class
of ordinals, defined in the ‘classical’ part of the theory
(in back), and there are two kinds of ur-elements.

Figure 8.2 provides
an intuitive view of
the ‘universe of quasi-
sets’ (recall our in-
tuitive picture of the
well-founded universe
of sets with ur-elements,
given at page 64). There
are ‘copies’ of both
ZF and ZFU; really,
the theory ‘reduces’ to
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these theories if we
keep out the ur-elements or the m-atoms respectively.

The first group of axioms of Q are the postulates, that is,
axiom schema and inference rules, of classical first-order logic
without identity (see Mendelson 1997, section 2.8). It should
be noted that Q is a formal theory; thus the postulates provide
the operational meaning of the relevant concepts (in Hilbert’s
sense, the postulates implicitly define the concepts).

Definition 8.2.1

(i) Q(x) := ¬(m(x) ∨ M(x)) (x is a qset)

(ii) P(x) := Q(x) ∧ ∀y(y ∈ x → m(y)) ∧ ∀y∀z(y ∈ x ∧ z ∈
x → y ≡ z) (x is a pure qset, having m-atoms as elements,
not necessarily indiscernible from one each other)

(iii) D(x) := M(x)∨ Z(x) (x is a Ding, a ‘classical object’ in
the sense of Zermelo’s set theory, namely, either a set or a
macro Urelemente).

(iv) E(x) := Q(x) ∧ ∀y(y ∈ x → Q(y)) (x is a qset whose
elements are qsets)

(v) x =E y := (Q(x) ∧ Q(y) ∧ ∀z(z ∈ x ↔ z ∈ y)) ∨ (M(x) ∧
M(y) ∧ ∀Qz(x ∈ z ↔ y ∈ z)) (extensional identity)—we
shall write simply x = y instead of x =E y from now on.

(vi) x ⊆ y := ∀z(z ∈ x→ z ∈ y) (subqset)
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8.2.2 Specific postulates

The list of the specific postulates of Q is presented next.

(≡1) ∀x(x ≡ x)

(≡2) ∀x∀y(x ≡ y→ y ≡ x)

(≡3) ∀x∀y∀z(x ≡ y ∧ y ≡ z→ x ≡ z)

(=4) ∀x∀y(x = y → (α(x) → α(y))), with the standard
restrictions (recall that x = y means x =E y and that it does
not hold for m-atoms).

(∈1) ∀x∀y(x ∈ y → Q(y)) If something has an element, then
it is a qset; in other words, the atoms have no elements (in
terms of the membership relation).5

(∈2) ∀Dx∀Dy(x ≡ y → x = y) Indistinguishable Dinge are
extensionally identical. This makes = and ≡ to be the same
relation for this kind of entities.

(∈3) ∀x∀y[(m(x)∧x ≡ y→ m(y))∧(M(x)∧x = y→ M(y))∧
(Z(x) ∧ x = y→ Z(y))] In words, an indistinguishable of an
m-atom (M-atom, a set) is also an m-atom (an M-atom, a
set).
5As French & Krause advanced in their book, to the postulates of Q we could add a certain mereology

relating M-objects and m-objects. But if this mereology ought to reflect quantum physics in some sense, it
would overcome some typical problems, as for instance quantum holism—according to which the ‘whole’
would not be properly ‘the sum’ of its parts, so as that a whole would be formed by indistinguishable parts.
We think that to pursue such a quantum mereology is an interesting research program, despite its apparent
difficulty.
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(∈4) ∃x∀y(¬x ∈ y) This qset will be proved to be a set (in
the sense of obeying the predicate Z), and it is unique, as it
follows from extensionality. Thus, from now own we shall
denote it, as usual, by ‘∅’.

(∈5) ∀Qx(∀y(y ∈ x → D(y)) ↔ Z(x)) Informally speaking,
this postulate grants that something is a set (obeys Z) iff its
transitive closure does not contain m-atoms. That is, sets
in Q are those entities obtained in the ‘classical’ part of the
theory (see figure 8.2 once more).

(∈6) ∀x∀y∃Qz(x ∈ z ∧ y ∈ z) Usually (that is, in ZF), we
formulate the axiom in an equivalent way, saying that given
two individuals a and b, there exists a set that contains they
both as elements and nothing else. In ZF, the two formu-
lations are equivalent, but not here. We shall see why in a
moment. The suggestion of using the form ∈6 in Q is due to
Jonas Becker Arenhart, and it is also used by Halmos in his
book from 1974.6

(∈7) If α(x) is a formula in which x appears free, then

∀Qz∃Qy∀x(x ∈ y↔ x ∈ z ∧ α(x)).

The qset y of the schema (∈7), the Separation Schema, is
denoted by [x ∈ z : α(x)]. When this qset is a set, we write,
6But, while in standard ZF this axiom is equivalent to that which is most used, namely, that given two

objects a and b there is a set w which contains just a and b and nothing else, in Q this is not true. In fact,
although w = [a, b] contains ‘all’ indiscernible elements of either a or b (and probably this collection should
not be regarded as a legitimate qset), it follows from our axiom (∈6) that we can take only the indiscernible
elements from either a or b which belong to an already given qset z.
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as usual, {x ∈ z : α(x)}.

(∈8) ∀Qx(E(x)→ ∃Qy(∀z(z ∈ y↔ ∃w(z ∈ w∧w ∈ x))). The
union of x, writen ∪x. Usual notation is used in particular
cases.

As we see, axiom (∈6) says that, given x and y, there is a
qset z which contains both of them, although z may have other
elements as well. But, from the separation schema, using the
formula α(w) ↔ w ≡ x ∨ w ≡ y, we get a subqset of z which
we denote by [x, y]z, which is the qset of the indiscernibles of
either x or y that belong to z. When x ≡ y, this qset reduces
to [x]z, called the weak singleton of x. This qset is not the col-
lection of all indiscernibles from x, but it contains as elements
just those indiscernible from x that belong to an already given
qset z. Later, with the postulates of quasi-cardinal, we will be
able to prove that this qset has a subqset with quasi-cardinal
equals to 1, which we call a strong singleton of x (in z), writ-
ten [[x]]z (sometimes the sub-indice will be left implicit; re-
ally, depending on the considered qset, there may exist more
than one element in [[x]]z, that is qc([[x]]z ≥ 1). A counter-
intuitive fact is that, since the relation ≡ is reflexive and the
strong singleton of x (really, a strong singleton, for in Q we
cannot prove that it is unique) has just one element, we can
think that this element is x. But this cannot be proven in the
theory, for such a proof would demand the identity relation,
which cannot be applied to m-atoms to prove that a certain y
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is identical to x (as we shall see soon, the only fact we can
prove is that ¬(x ≡ y), the negation of this result). Anyway,
we can informally reason as if the element of the strong sin-
gleton [[x]]z is x, although this must be understood as a way
of speech. Perhaps the better way to refer to this situation is
(informally) to say that the element of [[x]]z is an object of the
kind x. In this sense, the sentences that contain strong single-
tons might be seen as sentences containing place-holders for
entities of a certain kind.7

As remarked above, we are using just one sort of variables,
for we think we can circumvent some of the problems that
may appear due to this option. For instance, although we have
originally motivated quasi-set theory with the Schrödingerian
claim that the standard concept of identity would not apply to
quantum entities (here represented by the m-atoms), definition
8.2.1 makes things a little bit different from the formal point
of view. Really, since we are using a monosorted language,
if m(x), then by the definition, we get ¬(x = y) for any y. In
particular, ¬(x = x) for any m-object x. The same happens
if x is a qset having m-atoms in its transitive closure, that is,
being x a qset which is not a set (in the sense of not obeying
the predicate Z). That is, if Q(x) and ¬Z(x), then ¬(x = y) for
any y, and in particular ¬(x = x). Anyway, there are no (as far
as we know) formal problems concerning these facts, for we

7In certain forms of structuralism, objects are regarded as merely placeholders for the relevant relations
and in this sense perhaps quasi-set theory may be useful to formalise these forms of structuralism.
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have only ‘deduced’, say, that ¬(x = x) for an m-object x, but
we can’t get its identity (that is, x = x is not a theorem of Q
which is supposed to be consistent). Although the third middle
law holds, for the underlying logic of Q is classical logic, that
is, yet ¬(x = y)∨(x = y) is a theorem ofQ, we never can prove
that x = y in the case of m-objects, and this of course does not
entail that ¬(x = y). Intuitively, perhaps we can say that, since
the concept of identity should make no sense for m-objects, it
would be quite natural to state that they cannot be identical to
themselves.

Let us go back to the postulates of Q.

(∈9) ∀Qx∃Qy∀z(z ∈ y ↔ w ⊆ x), the power qset of x, de-
noted P(x).

(∈10) ∀Qx(∅ ∈ x ∧ ∀y(y ∈ x → y ∪ [y]x ∈ x)), the infinity
axiom.

(∈11) ∀Qx(E(x)∧ x , ∅ → ∃Qy(y ∈ x∧y∩ x = ∅)), the axiom
of foundation, where x ∩ y is defined as usual.

Definition 8.2.2 (Weak ordered pair) Being z a qset to which
both x and y belong, we pose

〈x, y〉z := [[x]z, [x, y]z]z (8.1)

Then, 〈x, y〉z takes all indiscernible elements from either x
or y that belong to z, and it is called the ‘weak’ ordered pair,
for it may have more than two elements. Sometimes the sub-
indice z will be left implicit. (Of course this definition could
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be generalized, taking x and y from discernible qsets, but this
most limited axiom seems to suffice for all applications of the
theory.)

Definition 8.2.3 (Cartesian Product) Let z and w be two qsets.
We define the cartesian product z × w as follows:

z × w := [〈x, y〉z∪w : x ∈ z ∧ y ∈ w] (8.2)

Functions and relations cannot also be defined as usual, for
when there are m-atoms involved, a mapping may not distin-
guish between arguments and values. Thus we provide a wider
definition for both concepts, which reduce to the standard ones
when restricted to classical entities. Thus, we introduce the
following concepts.

8.2.3 Quasi-relations and quasi-functions

Definition 8.2.4 (Quasi-relation) A qset R is a binary quasi-
relation (q-relation) between to qsets A and B if its elements
are weak ordered pairs of the form 〈x, y〉A∪B, with x ∈ A and
y ∈ B.

In symbols, R is a q-relation iff

Q(R) ∧ ∀z(z ∈ R→ ∃u∃v(u ∈ A ∧ v ∈ B ∧ z =E 〈u, v〉A∪B).

More general quasi-relations (n-ary) can be easily defined.
Thus, a quasi-function (mapping) between z and w is a bi-
nary quasi-relation f between them such that if 〈x, y〉 ∈ f and
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〈x′, y′〉 ∈ f and if x ≡ x′, then y ≡ y′. In other words, a
quasi-function maps indistinguishable elements indistinguish-
able elements. It is easy to define the corresponding concepts
of injective, surjective, and bijective quasi-functions. The def-
initions are as follows.

Definition 8.2.5 Let A and B be qsets. A binary quasi-relation
R between A and B is q-injective, q-surjective and q-bijective
if respectively the following conditions holds (in a simplified
notation):

(i) (q-injection) R(x, y) ∧ R(x′, y′) ∧ y ≡ y′ → x ≡ x′

(ii) (q-surjection) (∀y ∈ B)(∃x ∈ A)R(x, y)

(iii) (q-bijection) R is q-injective and q-surjective.

Intuitively speaking, a q-injection doesn’t map two distinct
(yet indiscernible) qsets into the same qset. The meaning of
‘two’ here concerns the notion of quasi-cardinal. That is, the
domain of the q-function has not two indiscernible subsets
which are mapped in the same qset of the counter-domain.

Here we can see a distinctive characteristics of m-objects.
Suppose we have a set with 8 ‘classical’ elements, ordered as
a1, . . . , a8. Of course a permutation between two of them, say
the permutation π13 which exchange a1 and a3 leads to a differ-
ent arrangemen, from a1, a2, a3, a4, a5, a6, a7, a8 to a3, a2, a1, a4,

a5, a6, a7, a8. But this would not happen if they were indistin-
guishable m-atoms, for the two arrangements would be taken
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as ‘the same’. Concerning quantum objects, physicists have
used certain ‘queues’ of Calcium ions to transmit information
(see figure 8.3 below), and of course the information is inde-
pendent of the position of the particular Calcium ions. Differ-
ently, a queue with John, Mary, and Tom in this order (say, to
by tickets to the best places in a theatre) is different from an-
other with Mary, Tom, and John in this order (mainly if there
are only two tickets available).

Figure 8.3: Eight Calcium ions in a ‘W state’. (From Scientific American, Mach 2006).
For any considerations, the order of the ions it is not relevant, and any ‘permuted’ ar-
rangement acts the same way.

8.2.4 Postulates for quasi-cardinals

In standard set theories, as in the usual formulations of ZF,
a cardinal is a particular ordinal.8 Hence, if we follow this
standard tradition, in order to go to cardinals, we must have
the ordinal concept defined first (of course there are alterna-
tives to define cardinals out of ordinals, but in standard set
theory —with the axiom of choice—, any set can be (well)

8In the presence of the axiom of choice, the cardinal of a set A is the least ordinal α such that there is
a bijection between A and α. There are other ways of defining cardinals; see for instance Enderton 1977,
p.222 we do not use the axiom of choice, but relies on regularity.
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ordered). In Q, the idea is that a pure qset of indiscernible ob-
jects may have a cardinal (its quasi-cardinal), but not an asso-
ciated ordinal. Hence, in quasi-set theory the concept of quasi-
cardinal is taken as primitive, subjected to adequate postulates
that grant the operational character of the concept. In the first
versions of Q, every qset has a cardinal. But Domenech and
Holik (2007) have argued that when we consider relativistic
quantum physics, sometime we can’t associate a cardinal with
every collection. They are right, and the axiom (qc1) below
enables us to say that some qsets have an associated cardinal
only.9 The postulates are as follows, where we use α, β, etc,
for naming cardinals (defined in the classical part of the the-
ory); Cd(y) says that y is a cardinal and card(x) stands for the
cardinal of x:

(qc1) ∀Qx(∃Zy(y = qc(x)) → ∃!y(Cd(y) ∧ y = qc(x) ∧
(Z(x) → y = card(x))) If the qset x has a quasi-cardinal,
then its (unique) quasi-cardinal is a cardinal (defined in the
‘classical’ part of the theory) and coincides with the cardinal
of x stricto sensu if x is a set.

(qc2) ∀Qx(x , ∅ → qc(x) , 0). Every non-empty qset has a
non-null quasi-cardinal.

(qc3) ∀Qx(∃Zα(α = qc(x)) → ∀β(β ≤ α → ∃Qz(z ⊆ x ∧
qc(z) = β))) If x has quasi-cardinal α, then for any cardinal
9This has obvious significance, since may take ‘numerical diversity’ or ‘countability’ as indicators of

individuality; yet quasi-sets of non-individual objects may also be regarded as ‘countable’ in this sense.
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β ≤ α, there is a sub-qset of x with that quasi-cardinal.

In the remaining axioms, for simplicity, we shall write ∀Qqc x
(or ∃Qqc x) for quantifications over qsets x having a quasi-cardinal.
(Here, Fin(x) means that x is a finite qset, that is, one having
a natural number as its quasi-cardinal).

(qc4) ∀Qqc x∀Qqcy(y ⊆ x→ qc(y) ≤ qc(x))

(qc5) ∀Qqc x∀Qqcy(Fin(x) ∧ x ⊂ y→ qc(x) < qc(y))

It can be proven that if both x and y have a quasi-cardinal,
then x ∪ y has a quasi-cardinal. Then,

(qc5) ∀Qqc x∀Qqcy(∀w(w < x ∨ w < y) → qc(x ∪ y) = qc(x) +

qc(y))

In the next axiom, 2qc(x) denotes (intuitively) the quantity of
subquasi-sets of x. Then,

(qc6) ∀Qqc x(qc(P(x)) = 2qc(x))

Informally speaking, this axiom enables us to reason as if
there are 2qc(x) sub-quasi-sets of x. If qc(x) = α, then it is
consistent with the theory to assume (in the presence of axiom
qc3) that there are sub-quasi-sets with quasi-cardinals 0, 1, 2,
. . ., 2α. If the elements of x are indiscernible m-atoms, then
(as it results from axiom ≡5, as we shall see), any two sub-
quasi-sets with the same quasi-cardinality are indistinguish-
able, and the theory has no means to discern them by a for-
mula, although they are not the same quasi-set.
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8.2.5 Weak extensionality

The next postulate of Q is the weak extensionality axiom,
which intuitively says that qsets with “the same quantity” (ex-
pressed in terms of the quasi-cardinals) of elements of “the
same kind” (related by ≡) are indistinguishable (are them-
selves in the relation ≡). In the statement of the postulate
below, Qsim(z, t) means that the elements of z and t are in-
discernible and that they have the same quasi-cardinal; x/≡
stands for the quotient qset of x by the relation ≡.10 In sym-
bols,

[Weak Extensionality Axiom]

(≡5) ∀Qx∀Qy((∀z(z ∈ x/≡ → ∃t(t ∈ y/≡ ∧ ∧QS im(z, t)))) ∧
∀t(t ∈ y/≡ → ∃z(z ∈ x/≡ ∧ ∧QS im(t, z)))→ x ≡ y)

The following theorem express the invariance under permu-
tations in Q, and with this result we finish our revision:

Theorem 8.2.1 Let x be a finite qset such that ¬(x = [z]t) for
some t and let z be an m-atom such that z ∈ x. If w ∈ t, w ≡ z
and w < x, then there exists [[w]]t such that

(x − [[z]]t) ∪ [[w]]t ≡ x

Proof: (We shall suppress the subindices) Case 1: t ∈ [[z]]
does not belong to x. In this case, x − [[z]] = x and so we

10Replacement axioms and the qset version of the axiom of choice may be taken exactly as in French &
Krause 2006.
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may admit the existence of [[w]] such that its unique element
s does belong to x (for instance, s may be z itself); then (x −
[[z]]) ∪ [[w]] = x. Case 2: t ∈ [[z]] does belong to x. Then
qc(x−[[z]]) = qc(x)−1 (by a result not proven here).11 We then
take [[w]] such that its element is w itself, and so it follows that
(x− [[z]])∩ [[w]] = ∅. Hence, by (qc6), qc((x− [[z]])∪ [[w]]) =

qc(x). This intuitively says that both (x − [[z]]) ∪ [[w]] and
x have the same quantity of indistinguishable elements. The
theorem follows from the week extensionality axiom.

This above theorem is illustrated by the figure 8.4 below,
where [z] is the collection—or “quasi-class”—of all indiscernibles
of z, while [z]t is given by the pair axiom and the separation
schema.
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(x − [[z]]t) ∪ [[w]]t ≡ x

Figure 8.4: The invariance by permutations in Q. Two indiscernible elements from z ∈ x
and w < x, expressed by their quasi-singletons [[z]]t and [[w]]t, are “interchanged” and
the resulting qset x remains indiscernible from the original one. The hypothesis that
¬(x = [z]t) grants that there are indiscernible from z in t which do not belong to x.

11But see [28, p.293].
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8.3 Deformable (not-rigid) structures in Q

Let us begin by giving another look at the quasi-set universe.
Calling Qm its ‘pure’ part, that is, that erected from m-atoms,
we may define structures A = 〈D, rı〉 which cannot be ex-
tended to undeformable (rigid) structures. Recall that in ZFC,
any structure can be extended to a rigid one (see figure 8.5).
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Figure 8.5: A structure A and its scale ε(D) in the
‘pure’ part Qm of the quasi-set universe. Since iden-
tity does not hold for entities in this part, there are
structures which cannot be make undeformable.

In order to under-
stand what is happen-
ing, let us consider a
quasi-set D whose el-
ements involve a and
b and let us suppose
that a . b that
is, they are not indis-
cernible. By the weak
pair axiom, we can ob-
tain [a]D and [a, b]D.
Again by the weak
pair, we get 〈a, b〉D :=

[[a]D, [a, b]D] (figure 8.6). Thus we can define a particular bi-
nary quasi-relation R = [〈a, b〉D : a, b ∈ D] containing just one
pair for simplicity (the relation could contain more than one
ordered pair of course). The ordered pair 〈a, b〉D has the fol-
lowing property. The qset [a]D, for instance, may have more
than one element, that is, qc([a]D) ≥ 1.
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Figure 8.6: In a pure quasi-set D, the ordered pair
〈a, b〉D is formed by the elements of D that are in-
distinguishable from either a or b (in red), and may
contain more than just two elements.

Then, speaking in-
formally (and in the
metalanguage we can
use the notion of iden-
tity), there are pre-
cisely qc([a]D) elements
of D that may appear in
the relation R without
altering its meaning, in the sense that the relation obtained by
an exchange of one element by an indistinguishable one is in-
distinguishable from the original one, as entailed by the weak
extensionality axiom (words such as ‘another’ may confound
us, but we need to understand the result in terms of the theo-
rem 8.2.1). Perhaps an analogy with a situation in chemistry
helps us in understanding the motivations for these moves.

Let us take the ethylic alcohol to exemplify (Figure 8.7).
In this case, where we have the symbols H, C and O, which
should be seen (as they of course are) as places for carbon,
hydrogen and oxygen atoms. In other words, what we are
expressing with the Figure 8.7 is not something concerning
a set of particular individual atoms; the ethylic molecule is
not simple a collection (set) of certain atoms. A chemical
substance like C2H6O may originate different chemical com-
pounds, which are described by presenting their structural for-
mulas; depending on the arrangement of the atoms (their struc-
ture, or form), the same collection of carbons, hydrogens and
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oxygens may produce quite different chemical substances, called
isomers (and the same happens in several other cases). For
instance, C2H6O may stand for both CH3 − CH2 − OH, the
ethylic alcohol and H3C − O − CH3, the methylic ether (Fig-
ure 8.8). So, certain structures appear in these situations.

C

H

H

C

H

H

H O H

Figure 8.7: Ethylic Alcohol, C2H6O

But, while (as we
have seem) in standard
mathematics the sim-
ple substitution of the
elements of A by other
elements does not en-
sure that the relation is
preserved,12 in chem-
istry if we substitute

the elements by similar ones, we do find the ’same’ chemi-
cal element, regarded that H atoms are substituted by H atoms
and so on (we are talking in general terms, so we shall not
discuss how such a substitution can be performed, but sim-
ply assume that it can be done, even in ideal terms. Perhaps
more adequate examples can be found by chemists or quan-
tum physicists). This is an important point: we can (at least
ideally) substitute the H, C and O atoms by ’other’ H, C and
O atoms respectively by ’preserving the structure’. This fact
is nicely exemplified by Roger Penrose in the context of quan-

12For instance, take the set A = {a, b} and an equivalence relation R on A, say R =

{〈a, a〉, 〈b, b〉, 〈a, b〉, 〈b, a〉}. Now consider the set B = {1, 2, 3} and substitute 1 for a and 2 for b. This
give us the relation R′ = {〈1, 1〉, 〈2, 2〉, 〈1, 2〉, 〈2, 1〉}, which is not an equivalence relation on B.
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tum mechanics (which of course would provide most adequate
examples of what we are trying to say):

”according to the modern theory [quantum mechan-
ics], if a particle of a person’s body were exchanged
with a similar particle in one of the bricks of his house
then nothing would happened at all.” (Penrose 1989,
p. 360)
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H

H C H

Figure 8.8: Methylic Ether, C2H6O

Perhaps Pink Floyd
is right in saying that
we are nothing more
than “another brick in
the wall”. Back to sci-
ence, in chemistry, the
kind of ’substitutional’
property of atoms in a
certain structure makes
it in certain sense to be independent of the particular (indi-
vidual) involved elements. If we imagine that the structural
formula of the ethylic alcohol represents a certain ’relation’
among the H, C and O atoms (which is of course what is hap-
pening), then its chemical properties do not depend on the par-
ticular atoms being involved. So, there is a ’relation’ which
can be said to be independent of the individual relata it links
(except in what respects their ’nature’ –see below). Let us re-
inforce this idea of the independence of particular elements
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that enter in a certain effect by giving another example. Take
for instance a simple chemical reaction

NO + O3 → NO2 + O2,

where one nitric oxide molecule reacts with one ozone
molecule to produce one nitrogen dioxide molecule and one
oxygen molecule. We remark that it is not important what
particular oxygen atom (there are three) was captured by the
nitric oxide molecule to form the nitrogen dioxide; the only
relevant fact is that the captured element must be one oxygen
atom. Thus Toraldo di Francia says: ”this enable us to put
within parentheses the true nature of the entities and empha-
size the only secure property: the number!” (1986, p. 122).
Really, every oxygen atom of the ozone molecule plays the
same role in the reaction. Only the quantity of them is im-
portant, and for sure the same holds in the quantum context
in regarding elementary particles. An interesting point would
be to capture these intuitions from a set-theoretical point of
view, and quasi-set theory enables us to do that. So, what we
are approaching is a characterization of a concept of struc-
ture which mirrors what happens in chemical (and of course
in quantum) situations, but we shall try to do it in (quasi)set-
theoretical terms. What we can do in the theory Q is to prove
that there are quasi-relations R so that when the elements of
these pairs are ’exchanged’ by indistinguishable ones, the re-
lation ’continues to hold’, which is of course contrary to the
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case involving standard relations of usual set theories, due to
the axiom of extensionality, as we have seen.

To end our remarks, we need to justify why in quasi-set
theory there are structures that cannot be extended to rigid
or undeformable structures. Again, let us consider the struc-
ture A = 〈D, rı〉 built in the ‘pure’ part of the quasi-set theory
(see again the figure 8.5). Let us take further two elements
a, a′ ∈ D such that a ≡ a′. In order to prove that A cannot be
extended to rigid structure, it suffices to prove that there are
automorphisms of A, for since the notion of identity cannot be
used in Qm, these automorphisms cannot be the identity func-
tion. But this is trivial for whatever bijective quasi-function
h : D 7→ D such that h(a) = a′ is an automorphism, as it
results from the above considerations about quasi-relations,
for R(a, b) iff R(a′, b) (this can be generalized to n-ary re-
lations). In fact, for any relation R, [[a]D, [a, b]D] ∈ R iff
[[a′]D, [a′, b]D] ∈ R.13

The existence of deformable (non-rigid) structures seem to
be interesting from the quantum mechanics foundational point
of view. In fact, if we are to accept the existence of ‘legitimate’
indiscernible objects, objects that in no way can be differenti-
ated from one each other, than the existence of such structures
are relevant. Thus, the ‘pure’ part of quasi-set theory seems
to be the right place to find quantum structures that involve

13We remark that this result doesn’t hold for whatever indistinguishable from a, but it is true for those
indistinguishable from a that belong to D.
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indiscernible objects without the needs of the standard trick of
using symmetries for ‘making’ individuals indiscernible. In
Domenech et al. 2008, 2009, the first steps in the direction
of a construction of a quantum mechanics in this sense was
advanced, but we shall not consider these results here. But
these developments show that sometimes we get interesting
intuitions and results going out from standard frameworks.
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